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Background
Gene alternative splicing is a fundamental biological process that gives rise to a wide 
array of protein isoforms with modified properties in plant and animal systems. More 
than 95% of human genes are alternatively spliced, and high levels were reported in vir-
tually all sequenced eukaryotic species. Most splicing variations are tissue specific, but 
splicing is also altered by external stimuli [1] and aberrant splicing has been associated 
with diseases [2]. Therefore, there is a great need to accurately map and quantify gene 
splice variants, as well as to identify differences in splicing between conditions.

Current methods aim to detect and quantify alternative splicing from RNA sequenc-
ing (RNA-seq) data at the level of transcripts (isoforms), splicing events (exon skipping, 
mutually exclusive exons, alternative exon ends, intron retention), or primitive features 
(subexons, introns). Isoform-level quantification methods (Cuffdiff, Cuffdiff2, MISO, 
Sleuth [3–6]) require a reference annotation or a reconstructed set of transcripts, and 
their performance suffers from incompleteness and inaccuracies in the assemblies. Event 
level methods (DiffSplice, rMATS, SUPPA2 [7–9]) are less affected by assembly errors, 
but represent only a subset of alternative splicing variations. For both of these classes of 
methods, quantification is further complicated by the ambiguity in assigning reads that 
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map to multiple locations in the genome and multiple transcripts of a gene. In contrast, 
more recent methods (LeafCutter, MAJIQ, JunctionSeq [10–12]) target introns, which 
can be more reliably identified from read alignments, capture a wider variety of splic-
ing variations, and are less ambiguous to quantify, as intron-spanning reads associate 
with unique splice patterns. Methods further differ in how they define splicing differ-
ences. Most methods quantify changes in the relative splicing levels of the target feature 
within a group of mutually exclusive local splicing patterns (LeafCutter, MAJIQ, rMATS, 
SUPPA2, DiffSplice), or identify features whose splicing levels are inconsistent with the 
rest of the gene (JunctionSeq, DEXseq [13]), all of which are reflected as differences in 
splicing ratios. Yet others look for changes in the overall (absolute) abundance levels of a 
feature [3, 4, 6, 14], to identify isoforms whose changes in abundance lead to functional 
effects, known as isoform-level regulation. Lastly, to increase accuracy, some methods 
rely on a pre-existing set of gene annotations to identify relevant splicing variations, 
which limits the discovery of novel and potentially condition-specific features. This rich 
spectrum of methods for alternative splicing quantification and differential analysis 
offers a diverse but often inconsistent view of alternative splicing variation [15].

We introduce MntJULiP, a statistical learning method based on a novel mixture Bayes-
ian framework, for detecting differences in splicing between large collections of RNA-
seq samples. MntJULiP represents splicing variation at the intron level, thus capturing 
most types of splicing variation while avoiding the pitfalls of assembly. It infers intron 
annotations directly from the alignments, making it possible to discover new unanno-
tated candidate markers. MntJULiP detects both differences in intron abundance levels, 
herein called differential splicing abundance (DSA), and differences in intron splicing 
ratios relative to the local gene output, termed differential splicing ratio (DSR). Salient 
features of MntJULiP include:

(i)	A novel statistical framework, including a zero-inflated negative binomial mixture 
model for individual introns, in the DSA model, and a Dirichlet multinomial mix-
ture model for groups of alternatively spliced introns, in the DSR model;

(ii)	 It captures significantly more alternative splicing variation, and more types of varia-
tion, than existing tools;

(iii)	Superior performance compared to reference methods, including increased sensi-
tivity in control experiments, and high reproducibility and reduced false positives 
in comparison with real data;

(iv)	A unique mixture model that allows comparison of multiple conditions simultane-
ously, to aptly capture global variation in complex and time-series experiments; and

(v)	 Highly scalable, it processed hundreds of GTEx samples in less than half an hour, 
and the full set of 1398 GTEx samples in less than a day.

We assess the performance of MntJULiP and several reference programs on simulated 
and real RNA-seq data, with varying degrees of splice variation and different dataset 
sizes. We include in the comparisons, as feasible, the state-of-the-art intron-based tools 
LeafCutter, MAJIQ, and the event-based rMATS and SUPPA2, and Cuffdiff2 and Sleuth 
as tools compatible with the DSA test. We illustrate MntJULiP’s ability to detect more 
types of alternative splicing variation in the comparison of hippocampus samples from 
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healthy and epileptic mice. We then demonstrate MntJULiP’s capability for simultane-
ous multi-condition comparisons in a 7-point time-series experiment on differentiating 
mouse taste organoids, and its ability to handle large data sets on a collection of RNA-
seq samples from four human tissues obtained from the GTEx project. Lastly, to demon-
strate its power and usefulness, we apply MntJULiP to the 1398 GTEx RNA-seq samples 
from 13 brain regions to characterize the landscape of alternative splicing variation in 
this tissue.

MntJULiP is implemented in Python and is distributed free of charge under a GPL 
license from https://​github.​com/​splic​ebox/​MntJu​lip/.

Results
Performance evaluation on simulated data

In a first, controlled experiment, we used simulated data, namely 25 control and 25 
perturbed samples, to evaluate MntJULiP (DSR), MAJIQ, LeafCutter, rMATS, and 
SUPPA2 in detecting differences in splicing ratios, and MntJULiP (DSA), Cuffdiff2, 
and Sleuth in detecting differences in splicing abundance (see “Methods” and Fig. 1A). 
Of these, Cuffdiff2, Sleuth, and SUPPA2 rely entirely, and MAJIQ and rMATS partly, 
on a reference set of gene annotations to determine and quantify alternative splicing 
events. Further, SUPPA2 and Sleuth employ a pseudo-alignment and transcript quan-
tification step, while the rest of the tools use genome-based read alignments, herein 
generated with the STAR aligner [16]. Different methods employ different target fea-
tures and criteria for alternative splicing detection, some of which represent distinct 
splicing patterns at different locations within the gene, which makes them impossi-
ble to relate in the absence of a reference set of gene and transcript annotations. To 
address this limitation, we use the gene as the unit of differential splicing information. 
Hence, for each program tested, we consider the list of genes for which the program 
reports differentially spliced features and compare it to the set of simulated genes. On 
the DSR experiment, MntJULiP (DSR) achieved sensitivity 74.5%, which was between 
8.0 and >60.0% higher than its competitors, at very high and comparable precision, 
97.4%, followed by LeafCutter, at 68.4% sensitivity and 92.3% precision. On the DSA 
experiment, MntJULiP (DSA) had very high 97.9% sensitivity and 95.3% precision, to 
Cuffdiff2’s values of 95.9 and 70.3%, respectively. Sleuth marginally achieved the high-
est sensitivity, 98.4%, however at the expense of lower precision, 52.3%. The results 
ranked similarly when using an alternate aligner, Hisat2 [17] (Additional file  1: Fig. 

Fig. 1  Performance evaluation of MntJULiP on simulated and real data. A Comparative evaluation of 
several methods on 25 control and 25 perturbed simulated RNA-seq data sets. B Venn diagram of methods’ 
gene-level DSR predictions on 24 healthy and 20 epileptic mice. C Differential splicing at the Zxdc gene locus 
discovered in the mouse hippocampus data by MntJULiP (DSA); no two introns share an endpoint; therefore, 
the gene could not have been discovered by other tools. Introns are annotated with the fold change values 
in the comparison of healthy and epileptic mice. D Venn diagram of DSR genes, and heatmap of DSR introns 
discovered with MntJULiP in a multi-way comparison of cerebellum, cortex, and lung GTEx RNA-seq samples. 
Rows were clustered using the Ward distance. E Distribution of program-predicted features by number 
of comparisons for three methods: (i) union of MntJULiP predicted features from all (21 total) pairwise 
comparisons, (ii) MntJULiP multi-way predicted features, and (iii) union of LeafCutter predicted features 
from all (21) pairwise comparisons. F Heatmap of DSR introns discovered from the multi-way comparison of 
7-stage taste organoid RNA-seq data. Heatmaps show PSI values of differentially spliced introns. Clustering 
was performed with the Bray-Curtis distance and simple averaging

(See figure on next page.)

https://github.com/splicebox/MntJulip/
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S1A). We further examined in more detail the programs’ results by gene class. While 
true positives for all programs were fairly uniformly distributed across the constit-
uent gene categories, false positives for MAJIQ, rMATS, Sleuth, and Cuffdiff2 were 
dominated by genes outside of the simulated gene set, underscoring the difficulty for 

Fig. 1  (See legend on previous page.)



Page 5 of 16Yang et al. Genome Biology          (2022) 23:195 	

these programs to effectively distinguish and filter paralogs and other alignment and 
assembly artifacts (Additional file 1: Fig. S1B and Additional file 2).

Wall clock times for programs run with 10 threads, where applicable, varied between 
4 and 20 min for MntJULiP, LeafCutter, SUPPA2, and Sleuth, and were significantly 
higher (8–9 h) for rMATS and Cuffdiff2. MntJULiP achieved the lowest estimated total 
“sequential” time, 46 min, with all other programs’ times varying between 5 and 84 h. 
Memory requirements per thread per run varied between 400 MB and 6 GB. All pro-
grams were assessed on a server with a 4 × AMD Opteron six-core CPU with 2.8 GHz 
and 512 GB RAM running RHEL7 (Additional file 1: Fig. S1C).

Lastly, we assessed the methods’ accuracy in quantifying the amount of change 
in splicing of individual introns (Additional file  1: Fig. S2). For the DSR experiment, 
MntJULiP predictions most closely aligned with the reference annotation (R2=0.935, 
Pearson correlation coefficient) between predicted and reference dPSI values, compared 
to 0.879 for LeafCutter and 0.847 for MAJIQ. For the DSA experiment, MntJULiP had 
the higher correlation (0.991 versus Cuffdiff2’s 0.848) between predicted and reference 
log fold change values of the two methods. Therefore, MntJULiP predicted values are 
strongly indicative of the amount of change and can be used reliably to inform event 
selection, for instance to select candidate events for experimental validation.

Performance evaluation on real data

We next applied the methods to RNA-seq samples from hippocampus tissue of 24 
healthy mice and 20 mice with pilocarpine-induced epilepsy, illustrating a typical RNA-
seq experiment. Programs MntJULiP (DSR), LeafCutter, MAJIQ, rMATS, and SUPPA2 
predicted between 495 and 1137 DSR genes (Fig.  1B). While it is not possible to pre-
cisely measure the prediction accuracy in the absence of a ground truth reference, we 
deem genes predicted by multiple tools as being more reliable. A majority of DSR genes 
(1024 out of 2127) were predicted by two or more tools. Importantly, MntJULiP had 
the smallest number and proportion of uniquely predicted genes, 78 (9.0% of its pre-
dictions), compared to 327 genes (33.2%) for rMATS, 347 genes (30.5%) for LeafCutter, 
100 genes (14.3%) for MAJIQ, and 248 (50.1%) for SUPPA2, and therefore reported the 
smallest number of putative false positives.

DSR tests capture only a fraction of the alternative splicing variation in an experi-
ment. To showcase the potential of MntJULiP to expand upon the classes of alternative 
splicing events detected, we assessed the outcomes of MntJULiP’s DSA test compared 
to the other methods. First, to determine whether the two tests, DSR and DSA, reveal 
different pathways that are impacted at the level of splicing in the induction of epilepsy, 
we undertook a comparative gene set enrichment analysis of the results generated by 
MntJULiP with the two models (Additional file 1: Fig. S3). Since the two formulations 
use MntJULiP’s common framework, including data models and filters, this is the first 
time an unbiased comparison has been performed. The comparison showed each of the 
DSR and DSA tests identifying unique GO categories, as well as overall differences in 
significance levels, pointing to differences in the regulatory pathways detected by the 
two methods. GO biological process categories enriched among the DSA genes involved 
regulation of cell migration and neuron projection, cell adhesion, and regulation of 
GTPase activity. In contrast, genes involved in nervous system development, including 
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axonogenesis, synapse assembly, and neuron projection, were primarily enriched among 
DSR genes, with several other categories including transcription and mRNA splicing 
showing enrichment.

Next, we assessed the ability of MntJULiP to identify new structural classes of alterna-
tive splicing events. Of the 4187 genes predicted by MntJULiP’s DSA test, 485 were also 
reported by the DSR test, and an additional 443 by other tools, representing genes with 
traditional splicing patterns (Additional file 1: Fig. S4). An additional 2439 genes were 
determined to be differentially expressed by the DESeq2 [18] method, a category that 
is captured by the DSA test. The remaining 797 genes represent a combination of genes 
with traditional event patterns that could not have been discovered by other tools, and 
putative complex or non-conventional splicing events.

Figure 1C and Additional file 1: Fig. S5 illustrate some of these examples. The pyruvate 
kinase M 1/2 (Pkm) gene has two isoforms resulting from the use of mutually exclusive 
exons (Additional file  1: Fig. S5A). Pkm1 is expressed in the adult stage where it pro-
motes oxidative phosphorylation, whereas Pkm2 is prevalent during embryogenesis and 
promotes aerobic glycolysis. Splicing dysregulation at this gene has been identified as an 
oncogenic driver and passenger factor in brain tumors [19]. While the difference in the 
isofoms’ splicing ratio is low (0.05) and may have contributed to being missed by other 
tools, introns flanking both exons yielded positive MntJULiP DSA tests. Most impor-
tantly, MntJULiP can detect classes of events that cannot be detected by other methods. 
In one example at the CWC22 Spliceosome Associated Protein Homolog (Cwc22) gene, 
the two overlapping and mutually exclusive introns at the 3′ end of the gene do not share 
an endpoint and therefore could not have been interrogated by other methods (Addi-
tional file 1: Fig. S5B). Similarly, none of the traditional methods can capture variation 
that results when one isoform’s intron chain is entirely subsumed by another, where the 
“extension” introns do not share endpoints with others. The ZXD Family Zinc Finger C 
(Zxdc) gene illustrates this example with its 3′ most terminal introns. The GENCODE 
annotation for this gene lists five isoforms, of which two can be eliminated based on the 
fact that their unique introns do not appear in any of the 44 samples. Of the remain-
ing isoforms, two have their intron chains entirely subsumed by the longest isoform. In 
Fig. 1C, the distribution and average fold change abundance differs significantly between 
the shared (average 1.03) and isoform-specific (average 1.45) intron sets, which can only 
be explained by a difference in the proportion of splice isoforms in the gene’s output. 
Lastly, further case analyses revealed other intriguing scenarios, such as at the Zfp91-
Cntf gene locus (Additional file 1: Fig. S5C). The two genes have in common the only 
intron in the Ciliary Neurotrophic Factor (Cntf) gene (chr19:12.764.380-12,765,281), 
which shows a significant sixfold increase in abundance in the epileptic mice, whereas 
all other introns for Zfp91 show a slight decrease within statistical error. While the event 
can be at first sight attributed to the differential splicing of Zfp91, careful observation of 
the expressed introns reveals that the sole Zfp91 isoform containing the intron is present 
at residual levels or not at all in both conditions. Therefore, the increase in abundance 
appears to be due to the change in the expression of Cntf, which owing to the special 
sharing of gene structure was missed by DESeq2. Cntf is a survival factor for multiple 
neuronal cell types, and an increase in its levels was shown to be involved in attenuating 
epilepsy-related brain damage [20, 21].
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True accuracy cannot be assessed in analyses on real data. However, to evaluate 
robustness and reproducibility in the tools’ predictions as an alternative measure of per-
formance [11], we divided and analyzed the data into two sets of 10 healthy and 12 epi-
leptic mouse samples. The graphs in Additional file 1: Fig. S6 show the scatterplots of 
the estimated difference in percent splicing inclusion (dPSI) between the two replicated 
experiments. MntJULiP has the highest correlation between the runs (0.579), followed 
closely by MAJIQ (0.577) and LeafCutter (0.460), and therefore its results are the most 
robust with the sample set.

Performance on large data sets

To demonstrate the scalability of MntJULiP and its capability to perform simultaneous 
multi-way comparisons, we applied it to four tissue datasets (frontal cortex, cortex, cer-
ebellum, and lung; 554 samples total) extracted from the GTEx RNA-seq collection. We 
performed pairwise comparisons as well as three-way comparisons among tissues. In a 
first experiment comparing the three brain tissues, the multi-way comparison largely 
recapitulated the individual pairwise comparisons, detecting 99.0% (1070) of the 1081 
genes and 11 additional genes (Additional file 1: Fig. S7A). The test also revealed highly 
similar splicing profiles between cortex and frontal cortex, with only one gene differ-
entiating the samples. The robustness of the method was confirmed in a second test, 
comparing the cortex, cerebellum, and lung samples (Fig. 1D and Additional file 1: Fig. 
S7C). All but 14, 18, and 21 of the genes reported from the three pairwise comparisons 
were selected by the multi-way test, and 37 genes were unique to the three-way com-
parison, for a 99.3% (5324 out of 5364 predicted genes) recovery rate. Figure  1D and 
Additional file 1: Fig. S8 show the heatmaps of PSI values for each tissue and compar-
ison, reiterating these observations. Similar results can be observed for the DSA test, 
where the multi-way comparison discovered 97.1% (15,090 out of 15,491) of all genes 
detected by pairwise comparisons, and only 36 (0.02%) unique genes among the 15,126 
predicted (Additional file 1: Fig. S7D). Importantly, the comparisons highlighted thou-
sands of differential splicing events that distinguish among the tissues [22]. Experiments 
took between 18 and 44 min per comparison on a 24 CPU Intel processor, thereby dem-
onstrating the ability of MntJULiP to handle large-scale applications.

Application to complex and time‑series experiments

All differential splicing methods to date are designed for comparing two conditions, typ-
ically “cases” versus “controls.” This simple framework is inadequate and impractical for 
scenarios that involve time-series or complex multi-condition experiments, which seek 
to determine features that vary across the full range of conditions. As an illustration, 
we applied both LeafCutter and MntJULiP to RNA sequencing data from mouse taste 
organoids at seven growth stages [23] (Accession: DRA005238; two samples each at days 
2D, 4D, 6D, 8D, 10D, 12D, and 14D, for a total of 14 samples). LeafCutter predicted DSR 
events in 889 genes and MntJULiP in 3285 genes when combining the results from all-
against-all pairwise analyses. By comparison, MntJULiP’s multi-way test predicted 212 
differentially spliced genes across all conditions. While true accuracy cannot be meas-
ured, we deem features (genes) reported by multiple comparisons to have higher con-
fidence than those predicted in a single comparison, on the basis that features that are 
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differentiated between two stages will likely show variation in other comparisons involv-
ing one of the original conditions. As Fig. 1E indicates, the distribution of genes accord-
ing to the number of comparisons in which they are reported is very similar for the 
LeafCutter and MntJULiP pairwise protocols, with 31–36% of the genes found in only 
one comparison, pointing to potentially large numbers of false positives. In contrast, the 
distribution for MntJULiP multi-way predicted genes follows a Bell curve distribution 
with the mode at 8 comparisons, which provides a more realistic reflection of the experi-
ment. Therefore, the multi-way comparison more accurately identified differences in 
splicing across the experimental range.

To further examine the alternative splicing variation during organoid differentiation, 
we generated heatmaps of the introns discovered with the MntJULiP all pairwise and 
the MntJULiP multi-way comparison methods (Fig.  1F and Additional file  1: Fig. S9). 
Introns’ PSI values show small variation in splicing between consecutive stages, but clear 
distinguishing characteristics when comparing across all experimental timepoints. In 
particular, features detected by the multi-way comparison better distinguish between 
the organoid growth stages, with a significant inflection point between early (days 
2D–6D) and late development and differentiation into taste cells (days 8D–14D), and 
facilitate more accurate clustering of samples. Interestingly, the visualizations point to 
distinguishing features separating stage 2D from the other non-differentiated stages, and 
the separation becomes even more apparent in the DSA visualizations (Additional file 1: 
Fig. S9B). Importantly, these graphical representations highlight the ability of MntJULiP 
to detect even mild differences between conditions. We also note the ability of MnJULiP 
to work with very small numbers of samples per condition, as low as two samples per 
organoid stage.

Analysis of brain GTEx data

To showcase the ability of MntJULiP to perform very large-scale differential splicing 
analyses, we used it to analyze a collection of 1398 RNA-seq samples from 13 brain 
regions represented in the GTEx repository. When applied to all pairwise tissue com-
parisons, MntJULiP (DSR) reported differential splicing events at 426–9746 introns per 
comparison (p-val<0.05, dpsi≥0.05), occurring at 331–4745 genes, for a total of 29,347 
events at 7588 genes. The simultaneous multi-way comparison of all tissues identified 
differential splicing events at 29,559 introns (p-val<0.05, dpsi≥0.05) in 6764 genes. 
The DSR distance matrix between tissues illustrated in Fig. 2A shows strong similarity 
among the three cortex regions, as well as among the basal ganglia regions, and between 
amygdala and hippocampus. Similarly, cerebellum and cerebellar hemisphere form a 
distinct group. These relationships were recapitulated when analyzing the differences in 
splicing abundance with MntJULiP’s DSA algorithm (data not shown).

We next examined the ability of MntJULiP to detect novel introns and novel alterna-
tive splicing events, not present in the reference annotation. Out of the 179,826 introns 
validated by MntJULiP across all pairwise comparisons, 14,961 were novel, not found 
in the GENCODE v.36 gene annotations. Of these, 5407 were reported as differentially 
spliced in the pairwise comparisons, and 11,242 in the multi-way comparison. We fur-
ther went on to investigate the region specificity of the novel introns within the brain 
tissue collection, and the tissue specificity within the entirety of the GTEx data set (31 
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tissues) (see “Methods”). Because multiple regions may have been sampled spatially 
from the same tissue type and therefore have similar underlying cell type composition 
and transcriptional profiles, we grouped highly similar tissues and regions, in particular 
the cortex, basal ganglia, and cerebellar tissues, respectively. We identified 412 introns to 
be specific to one particular brain region, most of them to cerebellar areas (373 introns), 
23 introns specific to basal ganglia, and smaller numbers (<10) to other regions. Most of 
these novel tissue-specific introns, 296 out of 412 (71.8%), were reported as differentially 
spliced by the multi-way comparison, whereas 124 (30.1%) were reported to be differ-
entially spliced in at least one pairwise comparison. When all of the GTEx tissues were 
considered, 762 of the novel introns were found to be brain specific. Thus, MntJULiP has 
the ability to detect novel introns, in particular those distinguishing among tissues.

Lastly, we used the compendium of 49,186 alternative splicing events to draw a map of 
splicing variation across the human brain regions (Fig. 2B). For each pairwise compari-
son, we classified the change in an alternative splicing event as null or low (dpsi <0.05; 
“stable” events), medium (0.05≤dpsi<0.5; “variable”), and large (dpsi≥0.5; “switch”), 
unless the event was not present in either of the regions. Events with large effects include 
those that cause a major isoform switch and therefore are expected to play an important 
part in tissue differentiation. In Fig. 2B, a small proportion (up to 3%) of the events were 
“switches,” and between 2.7 and 40.2% were variable, with most events either not being 
present or showing little variation between pairs of regions. As noted, cerebellum and 

Fig. 2  Landscape of alternative splicing variation across human brain regions from 1398 GTEx samples. 
A Dissimilarity matrix showing region-to-region splicing differences determined with MntJULiP (DSR) 
(p-value<≤0.05, |dpsi|>0.2). Clustering was performed with the Bray-Curtis distance and simple averaging. 
B Splicing patterns for the 49,186 events were compared between any two brain regions, and events were 
classified by the difference in the splicing ratios. The 156 × 156 matrix shows the dynamics of splicing events 
between one tissue and each of the others. The numbers of stable (blue), variable (gold), switch (red), and not 
present (green) events between any two brain regions are shown along one line
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cerebellar hemisphere had a larger proportion of significant differential splicing events 
distinguishing them from other regions, as well as a reduced proportion of events that 
were not expressed, suggesting that variation in splicing patterns may contribute to a 
large extent to their physiological differences.

To conclude, MntJULiP is capable of analyzing very large data sets to enable the com-
prehensive characterization of alternative splicing variation within a tissue, organism, or 
species.

Discussion and conclusions
We developed MntJULiP, a novel method that detects and quantifies alternative splic-
ing differences at the level of introns, thus avoiding the pitfalls of short read assembly. A 
variety of methods for differential splicing analysis are currently available, which differ 
in their selection of target features, objective functions, and technical approaches, lead-
ing to poor consistency among the results they produce [15]. MntJULiP aims to provide 
a comprehensive view of alternative splicing variation, by representing it at the most 
granular level (intron) and by implementing two objective functions, aimed at determin-
ing differences in the absolute and relative (ratios) intron splicing levels. In comparisons 
with other programs on simulated and real data, we demonstrated that MntJULiP iden-
tifies more alternative splicing variation and more classes of variation than other tools, 
across a spectrum of experimental conditions, dataset sizes, and degrees of variation. 
Additionally, MntJULiP achieved improved accuracy, in particular precision, owing to 
its careful handling of low support introns, by filtering low abundance introns in indi-
vidual samples and across all samples in a condition.

MntJULIp introduces several technical innovations, including its zero-inflated nega-
tive binomial and multinomial Dirichlet models to account for low count genes and 
splice junctions, and the mixture distributions that allow for modeling multiple condi-
tions, thus facilitating multi-way differential analyses.

A unique capability of MntJULiP is its ability to perform multi-way comparisons, 
which is desirable when characterizing complex time-series or multi-condition experi-
ments, to identify a global set of features that distinguish among subgroups or stages. 
Importantly, our experiments suggest that analyzing all conditions simultaneously to 
determine differences in the global splicing patterns increases the accuracy, in particular 
specificity, of results.

Lastly, MntJULiP is highly efficient and scalable and can be used with thousands of 
samples, providing an effective platform for comprehensive differential splicing analyses 
of RNA sequencing data from a wide range of experiments and data collections.

Methods
Algorithm overview

MntJULiP consists of two components, a “builder” and a “quantifier” (Additional file 1: 
Fig. S10). The builder extracts the splice junctions (introns) and calculates their support-
ing read counts from the RNA-seq read alignments, filtering introns with fewer than 3 
reads in each sample, as potential sequencing and mapping artifacts. (A second filter 
that removes introns with weak support within the gene’s context is embedded in the 
statistical model below.) Individual introns are the input to the DSA analysis. For the 
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DSR analysis, introns that share an endpoint are grouped into “bunches.” If a reference 
gene annotation is provided, both individual introns and bunches are associated with an 
annotated gene if they share at least one intron coordinate. The quantifier subsequently 
evaluates candidate introns, building a learning model for each intron and bunch and 
performing two statistical tests: (i) a test for change in intron abundance (DSA), and (ii) 
a test for change in the splicing level of the intron relative to its “bunch” (DSR). For the 
DSA analysis, MntJULiP uses a mixture zero-inflated negative binomial model to esti-
mate individual introns’ abundance levels from the raw read counts. For DSR, it esti-
mates the relative splicing ratios with a mixture Dirichlet multinomial distribution. For 
both models, likelihood ratio tests are used to determine the differential splicing events 
and generate p-values, which are then adjusted for multiple testing using the Benjamini-
Hochberg correction. The framework is described in detail below.

A Bayesian read count model

We use a Bayesian statistical framework to estimate the splicing levels of introns for dif-
ferential analyses. The framework also provides a second filter for weakly supported 
introns within the context of the gene, by setting a cutoff value for the estimated read 
count mean. To start, we assume that the read count y of intron v in a given sample fol-
lows a negative binomial distribution NB(μ, θ). We consider a loose prior with an empiri-

cal µ̂ (the sample mean) modeled by a normal distribution: µ ∼ N µ̂, µ̂
10  to model 

the variability between conditions and among the individual samples. Additionally, we 
apply a restriction on the dispersion parameter with an inverse Half-Cauchy distribu-
tion: φ−1~HC(0, 5). Lastly, to model low expression introns (0 reads in most samples), we 
use a zero-inflated enhanced negative binomial Bayesian model [24]:

Let p(y) denote the probability density function for this model. For n samples and 
intron read count yj in sample j, we define the log likelihood:

We maximize the log likelihood function using the Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (LM-BFGS) optimization method and obtain point esti-
mates for parameters μ, θ over the samples.

The differential splicing abundance (DSA) model

The previous section established the general Bayesian model to estimate intron abun-
dance. Next, we describe the framework for modeling individual intron abundance and 
for DSA testing in a multi-condition experiment. Assume that samples are drawn from 
m (typically 2) conditions. Given an intron v and a sample generated from condition i, 
the intron’s read count y follows a zero-inflated negative binomial distribution with the 
condition-specific parameters μi, θi, φi , and πi, as defined earlier.

y ∼

{

0, with probability π
NB(µ, θ), with probability (1− π)

L(θ) = log p
(

y1, y2, . . . , yn
)

=

n
∑

j=1

log p
(

yj
)
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Let pi(y) be the probability density function for the complete model for condition 
i = 1…m. We define a mixture probability model for y:

where zi is the indicator variable for that sample, equal to 1 iff the sample belongs to 
condition i and 0 otherwise.

To formulate the problem, given n samples, m conditions, and yj the intron read 
count in sample j = 1…n, we define the log likelihood:

with zij ∈ {0, 1} the indicator variable for sample j and condition i.
Having these two Bayesian models, we establish a hypothesis test for differential 

intron abundance given the data: the null hypothesis is that samples are generated 
from the same condition, and the alternative hypothesis is that the samples belong to 
different conditions, and apply a likelihood ratio test:

where L(θo), L(θ1) are the log likelihoods of the null and alternative hypothesis models, 
respectively, with parameters θ0 and θ1.

Lastly, since the parameter μj of the alternative hypothesis model is the expected 
read count (mean) of the intron in condition j, we can establish an additional intron 
filter by setting a threshold for μj (e.g., μj ≥ 1), to separate a “true” intron from “noise.”

The differential splicing ratio (DSR) model

We next formulate the framework to test for differences in splicing ratios of introns 
within a “bunch,” i.e., group of introns sharing an endpoint. For simplicity, we start by 
assuming that all samples belong to the same condition and the read counts y1, y2, …, 
yk in a bundle with k introns follow a Dirichlet multinomial distribution with priors 
α1, α2, …, αk : y1, y2, …yk~DM(α1, α2, …, αk).

Let p(y1, y2, …, yk) be the probability density function of the Dirichlet multinomial 
distribution. For intron read counts yj = (y1j, y2j, …, ykj) in sample j = 1…n, we define 
the log likelihood function:

Similar to the discussion in the previous subsection, to extend to the case where 
samples belong to multiple conditions, we define a Dirichlet multinomial distribution 
with prior αi1, αi2, …, αik for each condition i = 1…m:

p(y) =

m
∏

i=1

pi(y)
zi

L(θ) = log p
(

y1, y2, . . . yn
)

=

m
∑

i=1

n
∑

j=1

zij log pi
(

yj
)

,

LR = −2[L(θ0)− L(θ1)]

L(θ) = log p
(

y1, y2, . . . , yn
)

=

n
∑

j=1

log p
(

yj
)

yi1, y
i
2, . . . , y

i
k ∼ DM(αi1,αi2, . . . ,αik)
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Let pi = (y1, y2, …, yk) be the probability density function for condition i. We define 
the log likelihood function:

where yj = (y1j, y2j, …, ykj) are the read counts of introns in this bunch in sample j, 
zij ∈ {0, 1} indicates whether sample j belongs to condition i or not, and θ represents the 
parameter set of the model.

With the two Bayesian models above, we formulate a log likelihood ratio test as before: 
the null hypothesis assumes all samples belong to the same condition, and the alter-
native hypothesis assumes multiple conditions. Under the alternative hypothesis, the 
parameters αi1, αi2, …, αik for condition i can be used to define the splicing ratio, similar 
to Percent Splicing Inclusion (PSI) [10, 25], Ψil for intron l = 1…k under condition i, as:

Sequences and materials

Simulated data

We generated 25 control and 25 perturbed RNA-seq samples with ~86 million 101 bp 
paired-end reads each, using the software Polyester [26] with human GENCODE v.22 
as reference annotation. For the control samples, we used a model of gene and tran-
script abundance inferred from lung fibroblasts (GenBank Accession: SRR493366). To 
simulate the perturbed condition, we randomly selected 2000 annotated protein coding 
genes with two or more expressed isoforms and assigned them to four groups as follows 
[12, 27]: (i) 500 genes were left unperturbed (NONE); (ii) 500 genes had only expres-
sion changes (DE), where genes were randomly assigned one half or double the original 
FPKM value; (iii) 500 genes had only splicing differences (DS), obtained by swapping 
the expression values of the top two isoforms; and (iv) 500 genes had both expression 
and splicing changes (DE-DS). Thus, 1500 genes underwent changes in splicing isoform 
abundance, and 1000 had differences in splicing and were used as the gold reference for 
evaluating the tools under the DSA and DSR models, respectively.

Real data

Reads for 44 mouse hippocampus samples (24 cases and 20 controls) were obtained from 
GenBank (ProjectID: PRJEB18790). Tissue RNA-seq samples for comparative analyses 
(121 cortex, 105 frontal cortex, 132 cerebellum, and 196 lung samples) were obtained 
from the GTEx collection [28]. Lastly, RNA-seq data from differentiating mouse taste 
organoids [23] (14 samples, 7 stages) were obtained from the Sequence Read Archive 
(Accession: DRA005238).

Performance evaluation

Reads were mapped with the program STAR v.2.4.2a [16], and separately with Hisat2 
v2.2.1 [17], to the human genome GRCh38 or mouse genome GRCm38 (mm10), as 

L(θ) = log p
(

y1, y2, . . . , yn
)

=

∑m

i=1

∑n

j=1
zij log pi

(

yj
)

�il =
αil

∑k
l′=1 αil′
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applicable. Alignments were analyzed with the programs MntJULiP v1.0.0, LeafCutter 
v0.2.8, MAJIQ v1.1.7a, rMATS v3.2.5, SUPPA2 v2.3, Sleuth v0.30.0, and Cuffdiff2 v2.2.1 to 
determine changes in alternative splicing profiles. For the simulated tests, transcripts were 
reconstructed across each sample with StringTie v2.1.4 then merged across samples with 
StringTie (ST)-merge and the GENCODE transcripts as reference, to create a set of gene 
annotations to be used with all programs. Transcript expression levels were estimated 
with salmon v1.3.0 [29] for SUPPA2, and with kallisto v0.48.0 [30] for Sleuth. To evalu-
ate the programs’ accuracy in predicting differentially spliced genes from the simulated 
data, the 1000 (DS, DE-DS) gene set and the 1500 (DS, DE, DE-DS) gene set were used as 
the gold standard for DSR and DSA prediction, respectively. Any other program predic-
tions were deemed false positives. Standard sensitivity (Sn = TP/(TP+FN)), precision (Pr 
= TP/(TP+FP)), and the F1 = 2×Sn×Pr/(Sn+Pr) value were used to measure accuracy. 
To assess the programs’ fidelity in quantifying alternative splicing for the DSR test, refer-
ence Percent Splice Inclusion (PSI) values for all reference introns were calculated from the 
simulated data, as the ratio between the intron abundance and that of its bunch. Similarly, 
for the DSA test, reference log fold change values were calculated for each intron as the log 
fold change of the cumulative expression levels of all splice isoforms containing that intron.

Functional analysis

Gene set enrichment analyses of the differentially spliced genes identified by MntJU-
LiP DSA and DSR in the comparison of epileptic and healthy mouse hippocampus tis-
sue was performed with the tool GeneSCF [31]. The analysis was performed on all GO 
databases (db=GO_all option) and the background was set to 20,000 genes (bg=20000 
option). Gene symbols were used for input (-t=sym) and the organism option was set to 
“mouse.” The lists of enriched GO categories were further summarized using the online 
tool Revigo [32].

Analysis of GTEx brain samples

Read alignments for 1398 GTEx samples from 13 brain regions (“amygdala,” “anterior 
cingulate cortex,” “caudate basal ganglia,” “cerebellar hemisphere,” “cerebellum,” “cortex,” 
“frontal cortex,” “hippocampus,” “hypothalamus,” “nucleus accumbens basal ganglia,” 
“putamen basal ganglia,” “spinal cord cervical c1,” and “substantia nigra”) were generated 
with Hisat2 v2.2.0 and analyzed with MntJULiP v1.0.0. All 78 pairwise comparisons and 
the 13-way comparison were performed. To determine novel introns, introns that passed 
the initial MntJULiP filters and were included for examination with the DSR and DSA 
tests were considered and were compared to the collection of GENCODE v.36 anno-
tated introns. To determine tissue specificity, we employed the following procedure. 
An intron was determined to be “present” in one “tissue” if it was present (>10 reads) 
in 15% or more of the samples for that “tissue.” For each intron, a matrix of expected 
(E), defined as 0.85 × the number of samples, and observed (O) number of samples in 
which the intron was absent, for all introns where O≥E, was generated and analyzed 
with a chi-square test, to weed out any introns that are “absent” at the margin of sta-
tistical error. Lastly, introns that were “present” in exactly one “tissue” and that passed 
the statistical “absence” test (p-value≤0.001) were deemed as specific to that particular 
“tissue.” For the brain region specificity analysis, we merged the cortex (3), basal ganglia 



Page 15 of 16Yang et al. Genome Biology          (2022) 23:195 	

(3), and cerebellar (2) regions, respectively, into a single “tissue” for each, as described in 
[33]. For the GTEx-wide tissue specificity analysis, intron count data for the 14,961 novel 
introns were extracted from Snaptron [33] using a local script, and samples were organ-
ized in the 31 tissues based on their GTEx tissue assignation.

Visualization

Heatmaps, Venn diagrams, and other graphical displays were produced using the visu-
alization toolkit Jutils [34] and custom Python scripts.
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