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Hebbian plasticity precisely describes how synapses increase their synaptic strengths according to the correlated activities between
two neurons; however, it fails to explain how these activities dilute the strength of the same synapses. Recent literature has proposed
spike-timing-dependent plasticity and short-term plasticity on multiple dynamic stochastic synapses that can control synaptic
excitation and remove many user-defined constraints. Under this hypothesis, a network model was implemented giving more
computational power to receptors, and the behavior at a synapse was defined by the collective dynamic activities of stochastic
receptors. An experiment was conducted to analyze can spike-timing-dependent plasticity interplay with short-term plasticity
to balance the excitation of the Hebbian neurons without weight constraints? If so what underline mechanisms help neurons to
maintain such excitation in computational environment? According to our results both plasticity mechanisms work together to
balance the excitation of the neural network as our neurons stabilized its weights for Poisson inputs with mean firing rates from
10 Hz to 40 Hz. The behavior generated by the two neurons was similar to the behavior discussed under synaptic redistribution,
so that synaptic weights were stabilized while there was a continuous increase of presynaptic probability of release and higher
turnover rate of postsynaptic receptors.

1. Introduction

Even though Hebbian synaptic plasticity is a powerful
concept which explains how the correlated activity between
presynaptic and postsynaptic neurons increases the synaptic
strength, its value has been diminished as a learning
postulate because it does not provide enough explanation
how synaptic weakening occurs. In simple mathematical
interpretation of Hebbian learning algorithm, an increase of
the synaptic strength between two neurons can be seen if
their activity is correlated otherwise it is decreased [1]. This
interpretation to Hebbian plasticity allows boundless growth
or weakening of synaptic strength between the two neurons
[2]. Even though Hebbian plasticity has been supported

by the biological experiments on long-term plasticity, it is
still not completely understood how Hebbian plasticity can
avoid synaptic saturation and bring the competition between
synapses to balance the excitation of Hebbian neurons.
Normalization of weight [2], BCM theory [3], and spike
timing-dependent plasticity (STDP) [4] are the most biolog-
ically significant mathematical mechanisms that have been
discussed in the literature to address this issue effectively.
Weight normalization has been introduced either in additive
or multiplicative modes to scale the synaptic weights and
to control the continuous growth or weakening of synaptic
strength; however, these user-defined weight constraints
significantly affect the dynamic behavior of the applied
neural network and limit the performance of learning [5].
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BCM theory is another significant approach that explains
synaptic activity as a temporal competition between input
patterns. Synaptic inputs that drive postsynaptic firing to
higher rate than a threshold value result in an increase of
synaptic strength while inputs that make postsynaptic firing
to lower rate than the threshold value result in a decrease
of synaptic strength. BCM approach has mainly considered
instantaneous postsynaptic firing frequencies for its thresh-
old updating mechanism instead of spike arrival time to the
synapses. As per the recent literature, it has recognized STDP
[4] as a key mechanism of how information is processing
in the brain. STDP is a form of long-term plasticity that
merely depends on the relative timing of presynaptic and
postsynaptic action potentials [6, 7]. Although the process
and the role of STDP in information passing in some area
of the human brain in the development stages are still not
clear [8, 9], it has been shown that average case versions
of the perception convergence theorem hold for STDP in
simple models of spike neurons for both uncorrelated and
correlated Poisson input spike trains. And further it has
shown that not only STDP changes the weight of synapses
but also STDP modulates the initial release probability of
dynamic synapses [10]. Moreover, STDP has been tested on a
variety of computational environments, especially to balance
the excitation of Hebbian neurons by introducing synaptic
competition [11–13] and to identify the repetitive patterns
in a continuous spike trains [14, 15]. These experimental
studies on synaptic competition using STDP are conducted
in two forms: additive form and multiplicative form. In
additive form, for example, as in [11], synapses competed
against each other to control the timing of postsynaptic firing
but this approach assumed that synaptic strength does not
scale synaptic efficacy and hard constraints were used to
define the efficacy boundaries. In the multiplicative form
synaptic scaling was separately introduced to synaptic weight
as a function of postsynaptic activity [12, 13]. However,
because of the reduced competition between synapses, for
strong spike input correlations all synapses stabilized into
similar equilibrium. In sum, many applications based on
STDP to control the excitation of Hebbian neuron depend
on the user-defined constraints on weight algorithm which
ultimately limit the performance of learning. To alleviate
this limitation in the learning process of using hard weight
constraints, another significant approach has been discussed
in the literature to remove the correlation in input spike
trains by using recurrent neural networks [16]. Their results
claim the possibility of reducing the correlation in the spike
inputs by recurrent network dynamics. The experiment was
conducted on two types of recurrent neural networks; with
purely inhibitory neurons and mixed inhibitory-excitatory
neurons. At low firing frequencies, response fluctuations
were reduced in recurrent neural network with inhibitory
neurons when compared to feed-forward network with
inhibitory neurons. Moreover, in the case of homogeneous
excitatory and inhibitory subpopulation, negative feedback
helps to suppress the population rate in both recurrent neu-
ral network and feed-forward network. Because inhibitory
feedback effectively suppresses pairwise correlations and
population rate fluctuations in recurrent neural networks,

they suggested using inhibitory neurons to de correlate
the input spike correlations. Moving one step further by
combining the underlying concepts in [17, 18], that is,
using nonlinear temporally asymmetric Hebbian plasticity
and recent experimental observation of STDP in inhibitory
synapses, Luz and Shamir [19] have discussed the stability of
Hebbian plasticity in feed-forward networks. Their findings
supported the fact that temporally asymmetric Hebbian
STDP of inhibitory synapses is responsible for the balance
the transient feed-forward excitation and inhibition. Using
STDP rules, the stochastic weights on inhibitory synapses
were defined to generate the negative feedback and stabilized
into a unimodal weight distribution. The approach was
tested on two forms of network structure; feed-forward
inhibitory synaptic population and feed forward inhibitory
and excitatory synaptic population. The former structure
converged to a uniform solution for correlation input spikes
but later destabilized and excitatory synaptic weights were
segregated according to the correlation structure in input
spike train. Even though the proposed model in the presence
of inhibitory neurons of the learning is more sensitive to the
correlation structure, the stability of the network is needed
to be validated when the correlation between the excitatory
synapses and inhibitory synapses is present.

However, the specifics of a biologically plausible model
of plasticity that can account for the observed synaptic
patterns have remained elusive. To get biologically plausible
model and remove the instability in Hebbian plasticity many
mechanisms have been discussed in recent findings. One
remarkable suggestion is to combine STDP with multiple
dynamic and stochastic synaptic connections which enable
the neurons to contact each other simultaneously through
multiple synaptic communication pathways that are highly
sensitive to the dynamic updates and stochastically adjust
their states according to the activity history. Furthermore,
strength of these individual connections between neurons is
necessarily a function of the number of synaptic contacts,
the probability of neurotransmitter release, and postsynaptic
depolarization [20]. These synapses are further capable of
adjusting their own probability of neurotransmitter release
(pr) according to the history of short-term activity [20,
21] which provides an elegant way of introducing activity-
dependent modifications to synapses and to generate the
competition between synapses [22]. Based on this hypoth-
esis many approaches have been proposed by modeling
the behavior at synapses stochastically [23, 24]; here the
model we have proposed differs from others because of the
computational power that has been granted to the modelled
receptors, so that behavior at a single synapse was deter-
mined by collective activities of these dynamic stochastic
receptors. Using this model, an experiment was conducted
to find the answers to the following two questions: first,
can STDP and short-term plasticity control the excitation
of Hebbian neurons in neural networks without weight
constraints? Second, if the excitation was controlled what
parameters help STDP in such a controlling activity?

A fully connected neural network was developed with
two neurons in which each neuron consisted of thousands
of computational units. These computational units were



Computational Intelligence and Neuroscience 3

categorized as transmitters and receptors according to the
role they played on the network. A unit was called a
transmitter if it transmitted signals to other neurons and
a unit was called a receptor if it received the signals into
the neuron. The receptors of a given neuron were clustered
into receptor groups. According to the excitation and the
inhibition of the model neuron these computational units
could update their states dynamically from active state to
inactive state or vice versa. Only when a computational
unit was in active state it could successfully transmit signals
between neurons. Transmitters from presynaptic neuron
and receptors of the corresponding receptor group of the
postsynaptic neuron together simulated the process of a
single synapse. Transmitter at presynaptic neuron can be
considered as a synaptic vesicle which can release only a
single neurotransmitter at a time and the model receptors
can be considered as postsynaptic receptors at synaptic cleft.
With these features, excitation of a neuron at a particular
synapse in our network was determined by the function
of the number of active transmitters in the presynaptic
neuron, transmitters’ release probability, and the number of
active receptors at the corresponding receptor group of the
postsynaptic neuron. First, in order to analyze how network
with two neurons could balance the excitation when Poisson
inputs with mean rates 10 Hz and 40 Hz were applied, Only
one neuron was fed by Poisson inputs while letting the
other neuron to adjust itself according to the presynaptic
fluctuations. Neurons stabilized its weight for both Poisson
inputs while the weight values of Poisson inputs with mean
rate 10 Hz were stabilized into higher range compared to
when Poisson inputs with mean rate 40 Hz was applied.
The analysis into internal dynamics of neurons shows that
neurons have behaved similar to the process discussed in
synaptic redistribution when long-term plasticity interacts
with short-term depression. Further, neurons have played
complementary roles to maintain the network’s excitation
in an operational level. These compensatory roles have not
damaged the network biological plausibility as we could
see that neurons worked as integrators that integrate higher
synaptic weighted inputs to lower output and vice versa.
Finally the network behavior was evaluated for other Poisson
inputs with mean rates in the range of 10 Hz to 40 Hz
and observed as the mean rate of the Poisson inputs
increases, the immediate postsynaptic neuron increases its
synaptic weights, while the immediate presynaptic neuron
of those inputs was settle, into a complementary state to the
immediate postsynaptic neuron.

2. Method

A fully connected network with two neurons was created.
Each neuron was attached to thousands of computational
units which were either in active state or inactive state
according to the excitation and the inhibition of the attached
neuron. Units attached to a neuron were classified into two
groups based on the role they played on the neuron. A
computational unit that transmitted the signal from the
attached neurons to other neurons was called a transmitter
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θ
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...

Figure 1: Structure of neuron A.
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Figure 2: Structure of the neural network.

and a computational unit that received the signals to the
attached neurons from other neurons was called a receptor.
Further, receptors attached to a neuron were clustered into
groups so that transmitters from presynaptic neuron could
contact the postsynaptic neuron simultaneously through
multiple synaptic connections. Figure 1 shows the structure
of our modeled neuron A, with n receptor groups and a
transmitter set. Moreover, transmitters in our presynaptic
neurons were similar to the synaptic vesicles in real neurons
with a single neurotransmitter. The states, either active or
inactive, of these transmitters and receptors were modeled
using two-state stochastic process as explained in the next
section. Only when the units were in active states, they were
reliable to successfully transmit or receive the signals to or
from other neurons.

The transmitters from presynaptic neurons contacted
the receptors of a particular receptor group of postsynaptic
neurons by forming a synapse between the two neurons; see
Figure 2. Through multiple receptor groups of postsynap-
tic neurons, presynaptic transmitters could make multiple
synaptic connections simultaneously forming dynamic and
stochastic synapses. As depicted in the Figure 2 each receptor
group R of postsynaptic neuron and transmitter set T
of presynaptic neuron jointly measured the excitation at
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the attached synapse w and balanced the excitation using
threshold θ as discussed in the next section.

2.1. Process at Dynamic Stochastic Synapses. When defining
the process under dynamic stochastic synapses we have
only concerned with the properties and mechanisms of use-
dependent plasticity from the few milliseconds to several
minutes time scales. Therefore, use-dependent activity to
our modeled network was introduced using short-term
plasticity; facilitation and depletion [25, 26]. When defining
the probability of neurotransmitter release at our modeled
transmitters it was assumed that facilitation at biological
synapses depends only on the external ca+2 ions that influx
to the biological synapse after arriving of an action potential
and residual ca+2 ion concentrations that the synapse already
has. And depletion has no influence on ca+2 ion concentra-
tions and merely depends on use activity of the synapse. Then
signal release probability at a transmitter in a synapse was
adopted by the model proposed in [27] which determines
the signal release probability pr as a function of ca+2 ions
influx to synapse, vesicle depletion, and signal arriving time
to the transmitter. Only the influx of ca+2 ions after arriving
of neurotransmitters into receptors of postsynaptic neuron
was considered when determining states of the receptors.

If Ps(ti) is the probability that signal is released by a
transmitter S at time ti and train t = {t1, t2, . . . , tn, . . .}
consists of exact signal releasing times of the S, S(t) consists
of the sequences of times where S has successfully released
the signals. The map t → S(t) at S forms a stochastic process
with two states, that is, Release (R) for ti ∈ S(t) and Failure
of Release (F) for ti /∈ S(t). The probability Ps(ti) in (1)
describes a signal release probability at time ti by S as a
function of facilitation C(t) ≥ 0 in (2) and a depletion
V(t) > 0 in (4) at time t. C0 and V0 are the facilitation and
depression constants, respectively. Function C′(s) given in
(3) defines the response of C(t) to presynaptic signal that had
reached to S at time t− s; α is the magnitude of the response.
Similarly V ′(s) given in (5) models the response of V(t) to
the preceding releases of the synapse S at time t− s ≤ t and τc
and τv are time decay constants of facilitation and depression.
Maass and Zador [27] allowed S to release the received signal
at time t, if Ps(ti) > 0. We updated this rule by introducing
a new θ threshold so that if Ps(ti) > θ, a transmitter S is
allowed to release the received signal. And we called it as
in active state. Receptors in the postsynaptic neuron were
modeled using the same model of Maass and Zador except
that they were not involved in the process of vesicle depletion.
Therefore, the states of the receptors were determined by
setting the depletion V(t) in (1) into a unit. According to the
recent biological findings of [22], parameters were initialized
to C0 = 20, V0 = 10,τc = 100 ms, τv = 800 ms, and α = 4:

Ps(ti) = 1− exp(−C(ti) ·V(ti)), (1)

C(t) = C0 +
∑

ti<t

C′(t − ti), (2)

C′(s) = α · exp
(
− s

τc

)
, (3)

V(t) = max

⎛
⎝0,V0 −

∑

ti<t,ti∈S(t)

V ′(t − ti)

⎞
⎠, (4)

V ′(s) = exp
(
− s

τv

)
. (5)

A modeled neuron maintained threshold values θ for
each receptor groups and set of transmitters. Let RJj I denote
the jth receptor group in postsynaptic neuron J that contact
transmitters in the presynaptic neuron I , and let XJj I(t) the
output and θJj I(t) be the threshold value of RJj I at time step
t. Similarly let TI denote the transmitters in neuron Iand let
OI(t) be the output and θI(t) the threshold value of TI at
time step t. The threshold value of the receptor group RJj I

was defined as in (6) and it was exponentially increased as
the activity of RJj I to TI is increasing (or decreased when
the activity of RJj I to TI is decreasing). Threshold value for
transmitters in neuron I , that is, TI , was defined as a function
of total synaptic inputs from all its synaptic connections to
the neuron I into the total output of the neuron as in (7).
Every 60 time steps threshold values of both neurons were
updated:

θJj I(t) = f

(
XJj I(t)

OI(t)

)
(6)

Let g be the number of receptor groups a neuron has, then

θI(t) = f

⎛
⎝OI(t) ·

g∑

i=1

XIj J(t)

⎞
⎠ (7)

f (x) = 1/(1− e−x), XJj I(t) = |RAct
J j I (t)|/|RJj I |; i = 1, 2, . . . , g;

OI(t) = |TAct
I (t)|/|TI |. |G| is the number of components in

G and |GAct(t)| is the number of active components in G at
time step t.

Moreover, according to the following predefined behav-
ioral rule signal was propagated between neurons.

Rule 1. When a receptor receives a signal from the corre-
sponding presynaptic neuron at time step t, the signal is
propagated within the network according to the following
conditions.

Condition 1. Once a received signal is applied to a receptor
if the receptor is updated to inactive state then the received
signal is inactivated otherwise the signal is propagated to a
randomly selected transmitter of the same neuron.

Condition 2. Once a transmitter of a particular neuron
receives a signal at time step t, the signal is transmitted
to a randomly selected receptor of the randomly selected
receptor group of the postsynaptic neuron if updated state
of the transmitter is active otherwise the received signal is
inactivated.

The above behavioral rule defines the underlying mecha-
nism of signal transmission between the presynaptic neuron
and the postsynaptic neuron; that is, when the related
computational units from the two neurons are active only,
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the signal is successfully transmitted. Therefore, the number
of active receptors in a receptor group of the postsynaptic
neuron and the number of active transmitters in the
presynaptic neuron jointly define the efficacy at a given
synapse. In addition to this short-term plasticity and home-
ostatic synaptic plasticity [28, 29] adjustments (it was shown
that under similar conditions, neurons processed similar to
Hebbian neurons [30] and the defined threshold mechanism
functioned as a homeostatic synaptic plasticity process; see
[31]) our dynamic stochastic synapses are subject to long-
term plasticity induced by STDP as discussed next.

2.2. Bin the Process at Synapses. The process at synapses
where transmitters from the presynaptic neuron contacted
the receptors in a particular receptor group of the postsynap-
tic neuron were binned to analyze the synapse’s excitation.
Bin is an array of seven columns, nb = 7, which stored data
of a given synapse of successive seven time steps. A single cell
of a bin contains data at a time step t, namely, the number of
active transmitters in the presynaptic neuron, the number of
active transmitters in the postsynaptic neuron, the number
of active receptors in the corresponding receptor group of
the postsynaptic neuron, and the mean release probability of
transmitters in presynaptic neuron. Let Ci be ith cell of kth
bin, the time gap between two consecutive cells is set to 5 ms
as in (8).

This allowed us to define the time represented by each
cell in a bin from its first cell as in (9); see Figure 3. This
arrangement of bin was necessary in our model to satisfy the
condition (tc1 = 0 ms) < (τ+ = τ− = 20 ms) < (tc 7 = 30 ms),
where τ+ and τ− are membrane constants for potentiation
and depression (discussed later):

Δtci+1−ci = 5 ms, i = 1, . . . , 6, (8)

tci =
(
0, tci

) =
7∑

i=1

5 · (i− 1). (9)

Let ATpre = {ATpre,1,ATpre,2, . . . ,ATpre,nb} be random
variables of the number of active transmitters in presynaptic
neuron at successive seven time steps of a bin; similarly
let ATpost = {ATpost,1,ATpost,2, . . . ,ATpost,nb} be random
variables of the number of active transmitters in postsynaptic
neuron and let ARpost,s = {ARpost,s,1,ARpost,s,1, . . . ,ARpost,s,nb}
be random variables of the number of active receptors in
receptor group s that correspons to synapse s in kth bin (Bk).
Since the activity between the presynaptic transmitters and
receptors in receptor group s is not independent, we defined
mean, μBk ,s, and variance, σ2

Bk ,s , of the kth bin on synapse s as
in (10) and (11):

μBk ,s = μATpre + μARpost,s , (10)

σ2
Bk ,s = Var

(
ATpre + ARpost,s

)

= σ2
ATpre

+ σ2
ARpost,s

− 2Cov
(
ATpre,ARpost,s

)
,

(11)

where μATpre and σ2
ATpre

are the mean and variance of ATpre.

Similarly, μARpost,s and σ2
ARpost,s

are the mean and variance of

ARpost,s. The mean and variance of both ATpre and ARpost,s

were estimated using maximum likelihood estimators, so
that μBk ,s in (10) can be written as in (12) if ATpre =
∑nb

j=1 AT
j
pre/nb and ARpost,s =

∑nb
j=1 AR

j
post,s/nb are the sample

means, and σ2
Bk ,s in (11) can be written as in (13) if S2

ATpre
=

∑nb
j=1(AT

j
pre −ATpre)/(nb − 1), and S2

ARpost,s
=∑nb

j=1(AR
j
post,s −

ARpost,s)/(nb − 1) are the sample variances of ATpre and
ARpost,s respectively. The covariance of ATpre and ARpost,s is
defined in (14):

μ̂Bk ,s = ATpre + ARpost,s, (12)

σ2
Bk ,s = S2

ATpre + S2
ARpost,s − 2Cov

(
ATpre,ARpost,s

)
, (13)

Cov
(
ATpre,ARpost,s

)

=
∑nb

j=1

(
AT

j
pre − ATpre

)(
AR

j
post,s − ARpost,s

)

nb − 1
.

(14)

The mean release probability of the presynaptic transmit-
ters within a given bin, say B k, can be defined as in (15),
if PTi be the mean release probability of the transmitters in
presynaptic neuron at time step t + i:

MT
Bk

,s
=
∑nb

i=1 PTi

nb
. (15)

2.3. Defining Synapse’s Activity Using Bins’ Activity. STDP is
a form of long-term modification to synaptic strength that
depends on the action potential arriving timing between
presynaptic neuron tpre and postsynaptic neuron tpost [4] and
can be described by weight window function defined in (16).
This weight function defines how strength between the two
neurons can be adjusted for a single pair of action potential
within the time window Δt = |tpre − tpost|. As defined
in (16) if presynaptic action potential occurs before the
postsynaptic action potential then it strengths the synaptic
strength and called long-term potentiation. Conversely if
postsynaptic potential occurs before the postsynaptic action
potential, it weakens the synaptic strength and called long-
term depression:

W(Δt) =
{

A+ · e−(tpost−tpre)/τ+ if tpre < tpost,

−A− · e−(tpre−tpost)/τ− if tpre ≥ tpost.
(16)

Here A+,A− > 0 and τ+, τ are membrane constants
of long-term potentiation and long-term depression. The
values for A+ and A− need to satisfy the condition A+τ+ <
A−τ− as it required the integral of the weight window
to be negative to generate stable synaptic strength based
on STDP [4]. Furthermore, recent biologically observations
[32] have estimated τ+ and τ− roughly to 20 ms. Thus, in
order to generate stable synaptic strength, it is required to
have A+ < A−. In our model, the weight window function
was applied in bin level at each synapse in order to apply
long-term modifications to neuron. Let HBk

pre,cpre
be the highest

amount of active transmitters recorded from the presynaptic
neuron during bin Bk and it was at cell cpre as defined
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Process at a single synapse (Δt = t(+1)− t = 1s)

Figure 3: Bin the process at a single synapse.

in (17). Similarly let HBk
post,cpost

be the highest amount of
active transmitters recorded from the postsynaptic neuron
during bin Bk and it was at cell cpost as defined in (18).
Then STDP weight window function was applied on bin’s
level by mapping HBk

pre,cpre
as an action potential occurred

in the presynaptic neuron during bin Bk which could
significantly update the synaptic strength presynaptically
at the corresponding synapse and HBk

post,cpost
as the action

potential occurred in the postsynaptic neuron during bin
Bk which could significantly update the synaptic strength
postsynaptically on the same synapse. Here we have assumed
that within the duration of a bin only the highest hitter
of that bin can significantly update the synaptic strength.
Subsequently we mapped tpre to (cpre − 1) × 5 ms and tpost

to (cpost − 1)× 5 ms. Therefore, if postsynaptic hitter occurs
after the presynaptic hitter, it leads to the potentiation, and
if presynaptic hitter is followed by the postsynaptic hitter, it
depresses the synapses during the given bin:

∀i ATpre,i > ATpre. j , i = 1, . . . , 7, j = 1, . . . , 7, i /= j

HBk
pre,cpre

=
(
ATpre,i, cpre = i

)

(17)

∀i ATpost,i > ATpost, j , i = 1 . . . 7, j = 1 . . . 7, i /= j

HBk
post,cpost

=
(
ARpost,i, cpost = i

) (18)

2.4. Mean and Variance of a Synapse. Learning based on
STDP was implemented on synapses assuming that bins of
a given synapse are mutually independent and the impact
that each bin made on the synapse sums linearly. Then mean
μSsk and variance σ2

Ssk
of the sth synapse (Ss) can be defined

as in (19) and (20) when kth bin (Bk) is interacted with the
synapse. The mean μSsk and the variance σ2

Ssk
of the synapse

Ss were estimated using maximum likelihood estimators as
shown in (21) and (22), respectively. Further, the total mean

release probability at synapse Ss at Bk was defined using bin’s
mean release probabilities as in (23):

μSsk = μSsk−1
+ μBk ,s; μSs0 = 0, k = 1, 2, . . . , (19)

σ2
Ssk
= Var

(
Ssk−1 + Bk

)
= σ2

Ssk−1
+ σ2

Bk ,s;

σ2
Ss0
= 0, k = 1, 2, . . . ,

(20)

μ̂Ssk = μ̂Ssk−1
+ μ̂Bk ,s

XSsk = XSsk−1
+ XBk ,s; k = 1, 2, . . . ,

(21)

σ̂2
Ssk
= σ̂2

Ssk−1
+ σ̂2

Bk ,s

S2
Ssk
= S2

Ssk−1
+ S2

Bk ; k = 1, 2 . . . ,
(22)

MT
Ssk
=MT

Ssk−1
+ MBk ,s; MT

Ss0
= 0, k = 1, 2, . . . . (23)

In order to generate action potentials real neurons are
necessary to be in a nonquiescence state. If a neuron is in a
quiescence state, it is not possible for the neuron to generate
action potentials that can change the synaptic strength
significantly. Therefore, STDP was applied on synapses only
if model presynaptic and postsynaptic neurons were not
in quiescence states. We defined that a neuron is not in a
quiescence state when the average output produced by the
neuron during bin Bk is greater than the average output it
had produced so far. That is, if the current mean number
of active transmitters of a particular neuron is less than
the mean number of active transmitters during the kth bin,
neuron was recognized as in a nonquiescence state at bin

Bk. That is mathematically if M
Ssk−1
ATpre

≤ MATBk
pre

and M
Ssk−1
ATpost

≤
M

ATBk
post

, the weight was updated on the synapse Ss at bin Bk

as discussed next.

2.5. Learning Based on STDP and Release Probability.
According to the model proposed in [33], the amplitude of



Computational Intelligence and Neuroscience 7

the excitatory postsynaptic current Ak of the kth spike in a
spike train is proportional to the weight at that synapse and
the release probability at the kth spike. In our approach Ak

is proportional to the impact that made by transmitters in
the presynaptic neuron and receptors in the corresponding
receptor group of the postsynaptic neuron during Bk on
the synapse Ss. If we applied the model proposed in [33]
to our kth bin instead of kth spike, we can express Ak

as in (24). Moreover, biological evidence supports the fact
that the amount of change on weight is also dependent
on the initial synaptic size [34]. Depression is independent
of the synaptic strength, whereas strong synapses are less
potentiated than weak synapses. By assuming that there is an
inverse relationship between the initial synaptic strength and
the amount of potentiation, potentiation can be expressed
for the kth bin, (Bk) as in (25) if W

p
Ss,k is the amount of

potentiation during kth bin at synapse Ss:

Ak,Ss ∝Wk,Ss ·Uk,Ss , (24)

Wk,Ss ∝ 1

W
p
k,Ss

. (25)

If we combined (16), (24), and (25), the amount of
weight updated during kth bin at synapse Ss, WSs(Δk), can
be defined as in (26) and the synaptic weight at Ss at the end
of bin Bk is determined as in (27):

WSs(Δk)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

γp · Ak,Ss

Uk,Ss
· 1

W
p
k,Ss

· e−(tpost−t pre )/τ+ if tpre < tpost

−γd · Ak,Ss

Uk,Ss
· e−(tpre−t post )/τ− if tpre ≥ tpost

k = 1 . . . , s = 1 . . .
(26)

WSs(k) =WSs(k − 1) + WSs(Δk), (27)

where γp = 0.005 and γd = 0.00525 are potentiation and
depression learning rates [11]. The amplitude Ak during the
kth bin was estimated by the proportion of the deviation that
made by the bin compared to its mean, to the deviation that
synapse had made so far compared to its overall mean. That
is, in statistically amplitude Ak during the kth bin can be
expressed as a proportion of the coefficient variation (CV =
σ/μ) during the kth bin to the coefficient variation of the
synapse Ss has as given in (28). The release probability Uk,Ss

during the kth bin was determined as a proportion of mean
release probability during kth bin to the total mean release
probability at synapse Ss has as in (29). Median of the weight
distribution at synapse Ss was taken as an estimator for W

p
k,Ss

as in (30). This is merely because median provides a good
approximation about the center of the weight distribution

than mean; that is, the median is not affected by the outliers,
whereas the mean is affected by the outliers:

AS
k,Ss =

CVBk ,s

CVSs
=
(
σ2
Bk ,s/μBk ,s

)

(
σ2
Ssk
/μSsk

) ; k = 1 . . . , s = 1 . . . (28)

Uk,Ss =
MT

Bk ,s

MT
Ssk

; k = 1, . . . , s = 1 . . . (29)

W
p
k,Ss = median{WSs(i) | i = 1, . . . , k − 1, s = 1 . . .}. (30)

3. Balancing the Excitation of the Network

An experiment was arranged to find the possibility that
can STDP and short-term plasticity together balance the
excitation of a network with two Hebbian neurons without
defining any constraints on the weight learning algorithm.
A fully connected network with two neurons, say neuron
A and neuron B, was developed; each neuron had ten
receptor groups, making a presynaptic neuron to contact
the postsynaptic neuron through ten dynamic stochastic
synapses simultaneously. Both neurons, A and B had equal
number of transmitters nT = 30000 and receptors nR =
30000; and receptors attached to neurons were uniformly
distributed among receptor groups. At the onset one percent
of transmitters and one percent of receptors in each receptor-
group was set to active state. Poisson inputs with mean
firing rates (λ) 10 Hz and 40 Hz were applied to all the
receptor groups of neuron A simultaneously while giving
enough space for neuron B to adjust itself according to
the feedbacks of neuron A,see Figure 4. Each input was
applied around two hours continuously to neuron A; and
the behavior of the network was analyzed after the synaptic
connections have established the effect of the altered activity
and network activity has developed. The values were fed to
the system according to following rule: the generated Poisson
distribution was converted to byte stream by the following
rule: if generated value is greater than the median of the
Poisson distribution then it was considered to represent value
1 otherwise it was considered to represent value 0. Only when
the represented value is equal to one, the signal was generated
and fed to neuron A.

Figures 5 and 6 show the distribution of weights of
both postsynaptic neurons A and B at Poisson inputs with
mean rates 10 Hz and 40 Hz. As shown in these figures, the
weight distributions of both neurons at each, synapse have
stabilized around 175 bins. After the weights distribution
was stabilized, the median of the weight distribution was
calculated and these calculated median values are shown in
Figure 7. As shown in the figure of Poisson inputs with low
mean rate, that is, at 10 Hz, medians of the all the synapses of
the postsynaptic neurons reach to higher value compared to
when Poisson inputs with higher mean rate, that is, at 40 Hz,
were applied. The network balanced its excitation by pushing
synaptic weights towards higher values for inputs with low
mean rate and for inputs with higher mean rate the network
has pulled down the synaptic weights into a lower weight
values. This dynamic behavior of both neurons is a necessary
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presynaptic neuron A to

postsynaptic neuron B

Information flow from
presynaptic neuron B to
postsynaptic neuron A

A B

(b)

Figure 4: Network structure with ten synaptic connections. (a) shows the developed fully connected network to test how neurons could
balance the excitation after external input was applied to part of it. TA and TB are the outputs (the number of active transmitters attached
to the neuron at a given time step) of neuron A and neuron B, respectively. Receptor groups RAB and receptor groups RBA symbolized the
number of active receptors in the corresponding receptor groups of postsynaptic neuron A and postsynaptic neuron B, respectively. SAB are
the synapses where receptor groups of postsynaptic neuron A contact the transmitters of neuron B. Similarly, SBA are the synapses where
receptor groups of postsynaptic neuron B contact the transmitters of neuron A. (b) shows how information flows between the two neurons.
When signals are passing from A to B, A is called presynaptic neuron and B is called postsynaptic neuron. Similarly, when signals are passing
from B to A, B is called presynaptic neuron and A is called postsynaptic neuron. Since external Poisson inputs are applied to neuron A only,
neuron A becomes the immediate presynaptic neuron and B becomes the immediate postsynaptic neuron for the external inputs.

adjustment to balance neurons’ excitation and subsequently
to balance the network excitation while adjusting to external
manipulations.

Next we were interested to know what makes the
neuron to stabilize its activity without being overexcited
or overdepressed in a network which has no controlling
constraints. To understand that we analyzed the internal
behaviors of neurons A and B in terms of their mean
release probability (the mean of the release probabilities
of transmitters attached to the neuron) and the coefficient
variation which measures the given synapse’s excitation
(CV = CVBk ,s in (28)) in terms of the number of active
transmitters in the presynaptic neuron and the number of
active receptors in the corresponding receptor groups of the
synapse. Thus, the value of CV shows the extent of variability
of the given synapse in relation to the synapse’s mean and
portraits effectively the synapse’s internal dynamics. So that
higher CV value implies the higher internal fluctuations and
higher deviation of the synaptic mean. Figure 5 shows the
mean release probability of the presynaptic neurons at 10 Hz
while Figure 8 depicts what is happening inside the synapse
in terms of CV at 10 Hz. As shown in these figures, the
neuron that has made higher synaptic weight has maintained
higher CV compared to the other neuron in the network.
Notably, the neuron which had the higher synaptic weight
has produced a lower mean release probability. For example,
if we analyze the behavior of neuron B, as shown in Figure 7,
its synapses SBA, from presynaptic neuron A to postsynaptic
neuron B, have scored higher synaptic weights at 10 Hz
compared to synaptic weights of postsynaptic neuron A.
Further, neuron B has maintained higher CV at all its
synapses SBA compared to the values of CV of the synapses
of postsynaptic neuron A, that is, SAB. In contrast, the

neuron B has maintained lower mean release probability
as a presynaptic neuron at 10 Hz of Poisson inputs at its
all synapses compared to neuron A. These opposing and
balancing behaviors of the two neurons are consistent in
Poisson inputs with mean firing rate 40 Hz as given in Figures
6 and 9.

Moreover, if the difference of the value of CVs between
two neurons was considered, it is clearly shown in the Figures
8 and 9 that this difference was reduced to amount 0.0001
after the two neurons have adjusted to the external input and
stabilized themselves. However, most importantly, even that
we could see the stabilize activity of the two neurons in terms
of synaptic weights and CV the mean release probabilities
have not reached to any stable position, but instead either
continuously positively or negatively increasing. The positive
correlation between the synaptic weights and the CV, and
the negative correlation between the synaptic weights and the
mean release probability at a same neuron have proven that
neurons could act as integrators that integrate the excited
synaptic weights and controlled the excitation via higher
CV fluctuations and produced balanced output that help
to balance the network activity. This reduced excitation in
the output flow that has allowed the other neuron to play
compensatory role and to balance the network activity.

Finally we would like to understand the behavior of
the network when applying Poisson inputs in the range
of 10 Hz and 40 Hz. The Poisson inputs with mean rates,
15 Hz, 20 Hz, 25 Hz, 30 Hz, and 35 Hz were also presented
to neuron A’s receptor groups and studied the behavior of
the both neurons on the same network. Figure 10 shows the
average value of the medians of synapses of each neuron.
When magnitude of the Poisson inputs mean rate is greater
than the STDP potentiation and depression time constants
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Figure 5: Distribution of the weights and release probabilities of neurons at Poisson inputs with mean rate 10 Hz. Each subfigure in the
figure depicts the distribution of the weight algorithm and the mean release probability at the given synapse of postsynaptic neuron A and
postsynaptic neuron B at Poisson inputs with mean firing rate 10 Hz.For example, the leftmost top subfigure shows the variation of the mean
release probability and the weight distribution at the first synapse of the ten synapses. As shown in the figure, the network, both neuron A
and neuron B, spent around 150 bins to adjust to the external Poisson inputs and subsequently reach the stability. WBA gives the distribution
of the weights of the synaptic connections from presynaptic neuron A to postsynaptic neuron B. Similarly WAB gives the distribution of
the weights of the synaptic connections from presynaptic neuron B to postsynaptic neuron A. RB is the distribution of the mean release
probability of transmitters of presynaptic neuron B and RA is the distribution of mean release probability of transmitters of presynaptic
neuron A at postsynaptic connections of neuron B. Moreover, the slopes of the mean release probabilities, mI

B and mII
B , were determined

using linear regression analysis and give the slope of mean release probability of SBA from bin 1 to 150 and bin 150 to 200, respectively.
Similarly, mI

A and mII
A give the mean release probability of SAB from bin 1 to bin 150 and from 150 to 200, respectively.

25 < λ, the medians of the stabilized synaptic weights of
synapses of neuron B as the immediate postsynaptic neurons
of external inputs have continuously increased as the mean
rate of Poisson inputs is increased. Again the compensatory
behavior from neuron A could be seen as it has generally
decreased its medians of the stabilized synaptic weights as
the mean rate is increasing. These complementary behaviors
of two neurons seem to be necessary to stabilize the overall
network activity. When 20 > λ, both neurons have worked
together to control the overall excitement of the network.
Intriguingly, when λ = 20 and λ = 25, the excitation
of the entire network was equally balanced between the
two neurons as their average value of the medians of the
stabilized synaptic weights becomes almost equal to each
other. This might be because of the effect of τ+ = τ =
20 ms that we selected for STDP potentiation and depression

time constant. This is important observation which provides
the possibilitythat postsynaptic neurons could excited and
stabilized into the same level of the presynaptic neuron if
STDP time constants are highly correlated with the mean rate
of the Poisson inputs applied. Therefore, STDP with different
time constants for potentiation and depression might be a
good solution to scale down external inputs effectively into
neuronal level.

4. Discussion

As per the literature, a synapse can be strengthened either
by increasing the probability of transmitter release presy-
naptically or by increasing the number of active receptors
postsynaptically. This general functionality at the synapses
can be varied by the interplay between long-term plasticity
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Figure 6: Distribution of the weights and release probabilities of neurons at Poisson inputs with mean rate 40 Hz. Each subfigure in the
figure depicts the distribution of the weight algorithm and the mean release probability at the given synapse of postsynaptic neuron A and
postsynaptic neuron B at Poisson inputs with mean firing rate 40 Hz. For example, the leftmost top subfigure shows the variation of the mean
release probability and the weight distribution at the first synapse of the ten synapses. As shown in the figure, the network, both neuron A
and neuron B, spent around 150 bins to adjust to the external Poisson inputs and subsequently reach the stability. WBA gives the distribution
of the weights of the synaptic connections from presynaptic neuron A to postsynaptic neuron B. Similarly, WAB gives the distribution of
the weights of the synaptic connections from presynaptic neuron B to postsynaptic neuron A. RB is the distribution of the mean release
probability of transmitters of presynaptic neuron B and RA is the distribution of mean release probability of transmitters of presynaptic
neuron A at postsynaptic connections of neuron B. Moreover, the slopes of the mean release probabilities, mI

B and mII
B , were determined

using linear regression analysis and give the slope of mean release probability of SBAfrom bin 1 to 150 and bin 150 to 200, respectively;
Similarly, mI

A and mII
A give the mean release probability of SAB from bin 1 to bin 150 and from 150 to 200, respectively.

and short-term dynamics, especially short-term depression.
Short-term depression is mainly based on vesicle depletion
which is the use-dependent reduction of neurotransmitter
release in the readily releasable pool [4]. When long-term
plasticity is interacting with the short-term depression it is
called synaptic redistribution [7]. The role of this synaptic
redistribution is not yet clearly identified. However, this
synaptic redistribution allows the presynaptic neuron to
increase the probability of release and thereby increase the
signal transmission between the two neurons. In our devel-
oped network, the two neurons have simulated a behavior
similar to the effect of synaptic redistribution. Neuron B as
the immediate postsynaptic neuron of the external inputs has
scored the higher synaptic weights compared to neuron A.
That is, its synapses, where the transmitters from immediate
presynaptic neuron A contacted each receptor group of

the postsynaptic neuron B, have scored higher weights
compared to the other neuron. The presynaptic neuron A in
this functional process has maintained higher mean release
probability. Therefore, first, the synaptic weights of neuron
B have been increased presynaptically by increasing the
probability of neurotransmitter release. Second, the analysis
of CV of these synapses of postsynaptic neuron B shows that
it is laying higher range than the function of CV of neuron A,
confirming the possibility of increasing the synaptic weights
by higher turnover rate of active receptor component of
postsynaptic neuron. This behavior of postsynaptic neuron
B is also supported at Poisson inputs with mean firing
rate 40 Hz. Intriguingly, if the behavior of postsynaptic
neuron B at 40 Hz after neuron has adjusted to the external
inputs and stabilized, was analyzed, the higher fluctuations
of CV and comparatively lesser synaptic weights of neuron
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Figure 7: Distribution of the medians of synaptic weights at each synapse at Poisson inputs. The figure shows the variation of the median of
the weight distribution at each Poisson input; λ is the mean Poisson firing rate. The median in the above figures was determined after synaptic
connections have established the effect of external inputs and network stabilized. This stabilization happened after 170 bins; see Figure 5.
Medians of postsynaptic neuron B, SynapseBA show the variations of the medians of the weight distributions of synaptic connection from
presynaptic neuron A to postsynaptic neuron B. Similarly, SynapseAB show the variations of the median of the weight distributions of synaptic
connections from presynaptic neuron B to the postsynaptic neuron A.

B at Poisson inputs with mean rate 40 Hz were observed
compared to the postsynaptic neuron B’s behavior at Poisson
inputs with mean rate 10 Hz, showing the possibility that
synaptic redistribution can increase the synaptic weights for
Poisson inputs with low mean rate at steady state and not
for Poisson inputs for higher mean rate. And for higher
mean rates it is only a higher turnover rate of active receptor
components. Further, STDP potentiation and depression
time constants have made higher impact on the behavior
of those two neurons; that is, it has controlled the level
of excitation of each neuron equally when the magnitude
of the mean rate laid near the magnitude of the STDP
time constants. As the mean rate of the Poisson inputs is
increasing, the complementary roles have been initiated into
the two neurons.

STDP has successfully interplayed with short-term plas-
ticity to control the excitation or inhibition of neural
network according to external adjustments. Notably, these
adjustments are consistent and are also biologically plausible.
The stabilization of synaptic weights in an operational
level without controlling constraints seems to be possible if
STDP as long-term plasticity interacts with the short-term
dynamics. The dynamic behavior of short-term activity is
necessary to propagate and balance the excitation of neural
network without damaging the synaptic weight distribution;
similar to how CV and probability of release have played
with STDP to balance the excitation. When compared to
Luz and Shamir [19] findings, instead of specifically using
inhibitory neurons to generate negative feedback to stabilize

the excitation and inhibition of the network, here we have
used ground plasticity mechanisms that observed in biology
to alleviate the excitation and inhibition of the network. Even
though two approaches have used different derivatives of
temporally asymmetric STDP to implement the stochastic
response of neurons, both have once again proven the
possibility of stabilization of the network excitation due
to Hebbian plasticity using STDP. However, our approach
differs from their mechanism because of the integration
of the sensitivity of the release probability and turnover
rate of active components attached to a synapse. Instead of
the inhibition made on network by the inhibitory neuron
by negative feedback to impinge the excitation generate
by excited correlated spikes, our mechanism absorbed the
high firing frequency excitation or overcomes the low firing
frequency inhibition in terms of appropriate turnover rate of
active components attached to a given synapse and adjusting
release probabilities of the attached active transmitters.
The mechanism under this manipulation of excitation and
inhibition is similar to the synaptic redistribution discussed
in biology, which drives our approach more towards to
the biological plausibility. However, both systems are still
needed to be evaluated and examined on larger networks
and the approach of Luz and Shamir [19] needs to be tested
when correlation between the inhibitory and excitatory
synapses is present. Moreover, we compare the result of
[11] against our findings on how excitation was balanced.
In their model excitation was balanced by introducing
synaptic competition in which synapses competed against
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Figure 8: Distribution of the coefficient of variation (CV) at each synapse at Poisson inputs with 10 Hz. Each subfigure Figure 8 depicts
the distribution of the CV at the given synapse of both neuron A and neuron B at Poisson inputs mean firing rate 10 Hz. For example, As
shown in the leftmost subfigure SAB shows the variation of CV of synapses from presynaptic neuron B to postsynaptic neuron A. Similarly,
SBA depicts the distribution of CV of synapses from presynaptic neuron A to postsynaptic neuron B. Moreover, the slopes of the mean release
probability, mI

B and mII
B , were determined using linear regression analysis and give the slope of CV of SBAfrom bin 1 to 150 and bin 150 to

200, respectively. Similarly, mI
A and mII

A give the CV of SAB from bin 1 to bin 150 and from 150 to 200, respectively. As depicted in all these
subfigures, at all the synapses when its around 200 bins, the difference of the CVs of neuron A and neuron B was about 0.001 and time
functions of CVs of both neurons were paralleled to each other.

each other to control the postsynaptic firing times; further,
this competition was introduced by scaling the synaptic
efficacy using hard boundary conditions. This model bal-
anced the excitation of Poisson inputs 10 Hz and 40 Hz, so
that for 10 Hz more synapses approach to the higher limit
of synaptic efficacy and for higher inputs more synapses
remained in lower limits. However, once the system reached
stability it was hardly disturbed by the presynaptic firing
frequency. Therefore, the stability that the system reached
is moderately stronger than in our case. Although our
model also exhibited similar characteristics at Poisson inputs
10 Hz and 40 Hz, no boundary conditions were defined

to achieve this stability. Furthermore, compared to their
moderately strong equilibrium discussed in terms of synaptic
efficacy, internal dynamics of our neurons were continuously
fluctuating around the equilibrium allowing neurons to
remain dynamically active even at the equilibrium as similar
to many natural systems.

The model proposed in this research is a computa-
tional model to investigate the internal dynamics of neural
networks when STDP, Hebbian plasticity and short-term
plasticity, are interacting with each other. The model itself
has few drawbacks; mainly the neural network of our model
has spent around 150 bins to show the adjustment to external
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Figure 9: Distribution of the CV at each synapse at Poisson inputs with mean firing rate 40 Hz. Each subfigure in the figure depicts the
distribution of the CV at the given synapse of both neuron A and neuron B at Poisson inputs mean firing rate 40 Hz. For example, As shown
in the leftmost subfigure SAB shows the variation of CV of synapses from presynaptic neuron B to postsynaptic neuron A. Similarly, SBA
depicts the distribution of CV of synapses from presynaptic neuron A to postsynaptic neuron B. Moreover, the slopes of the mean release
probability, mI

B and mII
B , were determined using linear regression analysis and give the slope of CV of SBA from bin 1 to 150 and bin 150 to

200, respectively. Similarly, mI
A and mII

A give the CV of SABfrom bin 1 to bin 150 and from 150 to 200, respectively. As depicted in all these
subfigures, at all the synapses when its around 200 bins, the difference of the CVs of neuron A and neuron B was about 0.001 and time
functions of CVs of both neurons were paralleled to each other.

modifications; this is mainly because we selected the median
of the weight distribution as the amount of synaptic potenti-
ated as a response to the pair of presynaptic and postsynaptic
spike (in (30)). This static quantifier is less sensitive to the
sudden changes that occurred in the tail of the distribution
until those changes are visible via many elements of the
distribution. On the other hand, this quantifier effectively
quantifies the distribution of the network into a range where
many elements of the distribution are approximately lying.
Even though mean could also be a good option for such

an indicator, is very sensitive to the sudden changes and
could easily forget the history of the distribution. Therefore
median is better than the mean, but still necessary to look
for an unbiased statistical quantifier to estimate the amount
of potentiated as a response to presynaptic and postsynaptic
spike pair which can represent the history as well as the
sudden changes to the weight distribution effectively. The
other main drawback we see in our approach is the use
of bins to chunk the process at synapses. The size of the
bin might be a possible constraint that also limits the
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Figure 10: Distribution of the median of synaptic weights of
neurons at different mean firing rates. Figure 10 illustrates the
average of the weight medians calculated after both neurons were
stabilized after applying Poisson inputs with mean rate λ. MSAB is
the average of the medians value of all the synapses of postsynaptic
neuron A from presynaptic neuron B, and similarly MSBA is the
average of the medians value of all the synapses of postsynaptic
neuron B to presynaptic neuron A. τ+ = τ− = 20 ms are STDP time
constants for potentiation and depression.

performances of STDP on short-term dynamics. However,
the model proposed in this research successfully balanced the
synaptic excitation of the two neurons in an operational level
without damaging their biological plausibility.
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