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Abstract: One of the most severe and devastating cancer is pancreatic cancer. Pancreatic ductal
adenocarcinoma (PDAC) is one of the major pancreatic exocrine cancer with a poor prognosis and
growing prevalence. It is the most deadly disease, with an overall five-year survival rate of 6%
to 10%. According to various reports, it has been demonstrated that pancreatic cancer stem cells
(PCSCs) are the main factor responsible for the tumor development, proliferation, resistance to
anti-cancer drugs, and recurrence of tumors after surgery. PCSCs have encouraged new therapeutic
methods to be explored that can specifically target cancer cells. Furthermore, stem cells, especially
mesenchymal stem cells (MSCs), are known as influential anti-cancer agents as they function through
anti-inflammatory, paracrine, cytokines, and chemokine′s action. The properties of MSCs, such as
migration to the site of infection and host immune cell activation by its secretome, seem to control the
microenvironment of the pancreatic tumor. MSCs secretome exhibits similar therapeutic advantages
as a conventional cell-based therapy. Moreover, the potential for drug delivery could be enhanced by
engineered MSCs to increase drug bioactivity and absorption at the tumor site. In this review, we
have discussed available therapeutic strategies, treatment hurdles, and the role of different factors
such as PCSCs, cysteine, GPCR, PKM2, signaling pathways, immunotherapy, and NK-based therapy
in pancreatic cancer.

Keywords: pancreatic cancer; pancreatic ductal adenocarcinoma; stem cells; pancreatic cancer
stem cells

1. Introduction

The pancreas is an organ located in the abdomen having both exocrine and endocrine
functions. It plays an essential role in the digestion of food by releasing enzymes from its
exocrine part, maintains blood glucose level by producing two major hormones: glucagon
and insulin secreted from the endocrinal region of the pancreas. Normal healthy cells
become cancerous when a series of changes take place in the DNA sequence, leads the
cell to divide uncontrollably and migrate to adjacent cells. Cancer is the second leading
cause of death worldwide and was accountable for an estimated 9.6 million deaths in 2018
(World Health Organization (WHO), 2018). It is the major public health issue and the main
cause of death in Korea [1], second leading in the United States [2], and one of the leading
causes of death in India [3]. One of the leading causes of cancer mortality and the most
deadly malignant neoplasm is pancreatic cancer [4]. In 2012, around 338,000 individuals
had pancreatic cancer worldwide, making it the eleventh most prevalent cancer. Around
458,918 new pancreatic cancer cases were identified worldwide in 2018, representing
2.5% of all cancers [5]. The American Cancer Society estimated about 57,600 new cases
(30,400 male and 27,200 female) of pancreatic cancer and predicted that 47,050 patients
(24,640 male and 22,410 female) will die of pancreatic cancer in 2020 [2]. In 2019, pancreatic
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cancer was the fourth leading cause of cancer deaths. It has been projected to become the
second leading cause by 2030 [6,7].

Pancreatic cancer arises when cells in the pancreas start to divide uncontrollably and
form a mass. There are different types of cancer cells based on their origin, for example,
carcinoma (cancer of epithelial cells), sarcoma (cancer of mesenchymal cells in blood vessels,
muscles, and other tissues), myeloma/leukemia/lymphoma (blood cell-related cancer),
and adenocarcinoma (cancer of mucus-producing glandular cells). Two main subtypes of
pancreatic cancer have been narrowly classified into exocrine and endocrine. Pancreatic
ductal adenocarcinoma (PDAC) is an exocrine cell tumor mainly of the ductal cells, more
common (>85%) than endocrine cell tumors (<5%) [8]. About 50% of PDACs are detected
when the tumor is locally invasive or metastatic. PDAC has a 5-year survival rate of 6%
(ranges from 2% to 10%) [6,9]. Exocrine cancer is the most common form of pancreatic
cancer, which comprises 95% of all pancreatic cancers [10,11]. Out of all exocrine cancers,
the most common and aggressive form is ductal cancer, i.e., PDAC. It is one of the most
malignant tumors, characterized by uncontrollable growth [9]. Approximately 85% to
90% of pancreatic cancers are PDAC [11]. Recently, researchers have reviewed the current
therapeutic options, dysregulated pathways, tumor microenvironment, and many other
factors associated with PDAC [6,12]. Approximately 60% to 70% of cases emerge from the
head of the pancreas, which comprises the bile duct; these cases are typically diagnosed
earlier than body and tail tumors [13]. Tail and body tumors are linked with a poorer
prognosis [14]. In patients with PDAC, the most common symptoms are abdominal pain,
weight loss, and jaundice [15], whereas the new onset of type 2 diabetes is a less common
symptom [16].

Additionally, studies have shown that PDAC and diabetes are co-related; at the time
of cancer diagnosis, one- to two-thirds of patients with PDAC are diabetic [17]. The key
concern is whether the growth of cancer is susceptible to diabetes or the consequence of
the tumor is diabetes. The five leading behavioral and dietary risks, such as high body
mass index, low consumption of fruit and vegetables, physical inactivity, alcohol, and
tobacco, are responsible for about one-third of cancer deaths [4]. About 8% of pancreatic
cancers occur in families who carry mutations in tumor suppressor genes, including
P16Ink4a/CDKN2A, BRCA2, MLH1, MSH2, STK1, or VHL [18]. In 95% of PDAC cases,
activating mutations in the KRAS oncogene are detected, but agents that can successfully
target this high prevalence change in PDAC are not yet available. Available traditional
strategies: surgery, radiation, and chemotherapy have been widely used, but no significant
improvements have been shown. Overall survival remains poor for metastatic cancer,
with less than 20% of patients surviving after the end of the first year [19]. For the better
treatment of PDAC, alternative treatment approaches are desperately needed. Furthermore,
stem cell therapy, which has shown therapeutic efficacy for solid tumors (breast, prostate,
and lung carcinomas), can be one of the best options to treat PDAC [20]. This review
will assist researchers to better understand the available treatment strategies, treatment
hurdles, and the role of stem cells, mainly MSCs (Mesenchymal stem cells), in pancreatic
cancer, especially in PDAC. Stem cells can be used for regenerative medicine, cancer
stem-cell-targeted treatment, anticancer drug screening applications, and immunotherapy.

2. Treatment Hurdles

Treatment with cytotoxic agents: FOLFIRINOX (a mixture of Leucovorin and other
chemotherapy medicines: Fluorouracil (5FU), Irinotecan and Oxaliplatin]) or Gemcitabine/
Nab-paclitaxel is the current drug therapy for PDAC. In recent decades, these cytotoxic
agents and other approved drugs (e.g., Erlotinib) used to treat PDAC have been shown to
improve survival by a few months [21]. Furthermore, late diagnosis is responsible for a poor
prognosis of PDAC. Due to the prevalence of metastatic spread and the local involvement of
major blood vessels, over 80% of cases are not suitable for surgical resection of tumors [22].
In order to identify the specific characteristics of patients with less than 5 years of survival
in the past 30 years, a Finnish study analyzed PDAC patient records. More than 50% of
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the cases with 5-year survival were incorrectly diagnosed with PDAC; even for those with
the correct diagnosis, only one person with PDAC survived to 11 years [23]. Therefore,
discovering new treatments for PDAC is a major unmet medical need.

3. Stem Cells

There are various stem cell therapies based on natural killer cells, activated T cells,
and dendritic cells, which are extremely effective in treating cancer. Stem cells can be
isolated from the embryonic (Embryonic stem cells: ESCs) and adult (Mesenchymal stem
cells: MSCs) tissues, but their properties are different. Stem cells are known as influential
anti-cancer agents as they function through anti-inflammatory, paracrine, cytokines, and
chemokine′s action and are proficient in regulating the tumor microenvironment. Stem cells
have shown tremendous promise as therapeutic options for the next generation. In 2019,
Chopra et al. reviewed the stem cell-based clinical trials, where different types of stem cells
are used for the treatment of various cancers [24]. Around 544 clinical trials are currently
enlisting patients (above 500 for hematopoietic stem cells and 12 for MSCs) for stem cell
therapy to cure various cancers. Outcome measures, improved overall survival period, the
accomplishment of complete or partial cancer-free status, and minimized serious negative
effects have been evaluated in these studies. Until now, few studies have been performed
on pancreatic cancer (particularly for PDAC) based on stem cell therapy. Merely four
experiments using hematopoietic stem cells have been registered on clinicaltrials.gov,
while none were registered with MSCs [24]. MSCs have unique immunomodulatory,
inflammatory properties, homing capacity, and migration capability; consequently, they
can migrate to the site of infection or inflammation [25,26]. Immunomodulatory factors,
iNOS, IDO, TGF-β, LIF, PGE-2, and many others are secreted by MSCs to inhibit T cell
proliferation [27,28]. Such factors can modulate the microenvironment of the tumor cells
(Figure 1). In 2009, Cousin et al. investigated the capability of human adipose derived
MSCs to cure PDAC in mice models and a cell line. They suggested that MSCs induce
cell cycle inhibition at the G1 stage and downregulation of cyclin D1 and CDK4 that lead
to cell death [29]. Furthermore, umbilical cord MSCs ability to reduce murine pancreatic
cancer cell growth was tested using a mouse peritoneal model, which consequently caused
a proliferation decline and caused cell death [30]. Another study has targeted PDAC using
oral MSCs [31]. The above discussed studies suggested MSCs as a promising therapy for
targeting PDAC and other pancreatic cancer. A generally activated pathway believed to be
involved in PDAC pathogenesis is the WNT signaling pathway. The WNT pathway has
been controlled by MSCs through the upregulation of dickkop-related protein 1 expression
that further disturbs the cell cycle in tumors [32]. In prostate and colon tumor cells, MSCs
have also been shown to promote fibroblast cell proliferation and angiogenesis. Therefore,
when interacting with tumor cells, MSCs tend to act as a double edge sword [33].

3.1. Cancer Stem Cells

Cancer stem cells (CSCs) are mainly responsible for metastasis, recurrence of tumors,
and resistance to anti-cancer drugs in pancreatic cancer, including PDAC [34]. The first
existence of CSCs was reported in 1997 [35]. Proper understanding of pancreatic cancer
stem cells (PCSCs) is a promising way to develop new opportunities for prevention and
prognosis; PCSCs prompted new therapeutic methods to be explored that can specifically
target cancer cells. CSCs are an unusual cancer cell population capable of self-renewal and
division [36]. Cancer cells are found in a special niche comprised of a hypoxic/necrotic
microenvironment comprising fibroblasts, perivascular cells, endothelial, and immune,
along with extracellular matrix elements, growth factors, and cytokines (Figure 2). The plas-
ticity of CSCs is another important factor that plays a major role in tumor progression and
therapeutic resistance, as they have an increased ability to adapt to challenges or reprogram
their metabolism and presented by drug therapy and the tumor microenvironment [36,37].
CSCs shift their microenvironment by attaining intermediate metabolic phenotypes and
shifts their metabolism from oxidative phosphorylation to glycolysis. The main factors

clinicaltrials.gov
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and signaling pathways which are necessary for self-renewal, resistance to available strate-
gies, and epithelial to mesenchymal transition (EMT) consist of WNT/β-catenin, Notch,
and Sonic Hedgehog (SHH). PCSCs are highly resistant and can withstand traditional
therapies that interfere with the complete eradication of cancerous cells [38]. Interestingly,
PCSCs co-exist with other components of the tumor microenvironment, and to improve
the understanding of PCSCs biology, it is essential to understand the correlation between
these factors and PCSCs [34]. Chemo-resistance, together with metastatic potential, are
the main clinical hallmarks of PCSCs. Metabolic inactivation and efflux of the drug from
the cells as well as dysregulation/mutations in the drug targets, are responsible for the
chemo-resistance of CSCs [38,39].

3.2. Potential Approaches Targeting PCSCs

Formulation of anti-cancer drugs to target associated proteins and pathways, thus
improving chemotherapeutic efficacy [40]. Destruction of PCSCs should be able to avoid
further tumor growth [41]. Prospective approaches are discussed below to target PCSCs.
Anti-cancerous and non-cancer related drugs are listed in Table 1, whereas some drugs are
used in combination (Table 2).
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Figure 2. Pancreatic ductal adenocarcinoma microenvironment. Normal/healthy pancreas: pancreatic ducts and acinar
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Table 1. List of Food and Drug Administration (FDA) approved drugs and their potential effects on pancreatic cancer stem cells.

Drug Structure Pathway inVolved Mechanism of Action Accession Number References

Salinomycin
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Drug Structure Pathway inVolved Mechanism of Action Accession Number References
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Multi-targeted receptor tyrosine
kinase (RTK) inhibitor

Inhibits cellular signaling by
targeting multiple RTKs DB01268 [66]



Biomedicines 2021, 9, 178 13 of 33

Table 2. Drug combinations used in pancreatic cancer.

Drug Accession Number Function Mechanism of Action

FOLFIRINOX

FOL: Folinic acid/Leucovorin DB00650 Antidote Enhances the effects of
5-fluorouracil

F: Fluorouracil DB00544 Pyrimidine analog and
antimetabolite Inhibit DNA synthesis

IRIN: Irinotecan/Camptosar DB00762 Topoisomerase inhibitor Prevents DNA from uncoiling
and duplicating

OX: Oxaliplatin/Eloxatin DB00526 Platinum-based
antineoplastic agent Inhibits DNA repair and synthesis

GEMCITABINE-
OXALIPLATIN

Gemcitabine DB00441 Antineoplastic anti-metabolite Inhibits thymidylate synthetase

Oxaliplatin DB00526 Platinum-based
antineoplastic agent Inhibits DNA repair and synthesis

GEMCITABINE-CISPLATIN

Gemcitabine DB00441 Antineoplastic anti-metabolite Inhibits thymidylate Synthetase

Cisplatin DB00515 Antineoplastic Alkylating agents

OFF

O: Oxaliplatin DB00526 Platinum-based
antineoplastic agent Inhibits DNA repair and synthesis

F: Fluorouracil DB00544 Antineoplastic antimetabolite Inhibition of the formation of
thymidylate from uracil

F: Folinic Acid/Leucovorin DB00650 Antidote Enhances the effects of
5-fluorouracil

4. Signaling Pathways Involved in PCSCs

Different signaling pathways: PI3K/AKT [67,68], JNK [69], MEK/ERK [70], nuclear
factor kappaB (NF-κB) [71], TGF-β [72], WNT [73,74], and Hedgehog [75,76] are known to
crosstalk with Notch signaling pathway or with each other in the progression of pancreatic
CSCs [77–79], because of their crucial role in production and differentiation of pancreatic
cells [80,81]. It is therefore believed that the interaction between these signaling pathways
and Notch signaling pathway can play an important role in the development of pancreatic
tumors [78]. In CSCs and the EMT process of pancreatic cancer, signaling pathways
are altered and are involved in CSC self-renewal, tumor formation, metastasis, invasion,
and resistance to chemo-radiation [82]. There are various studies in which researchers
have investigated new treatment strategies to control these pathways in order to cure
cancer [77,83].

4.1. Notch Signaling Pathway

Notch signaling is one of the conserved signaling pathways accountable for cell-to-cell
direct contact. The pathway of notch signaling is associated with pancreatic cell′s survival,
proliferation, apoptosis, development, differentiation, and can promote EMT. It is essential
for various aspects of cancer biology: angiogenesis, CSCs, and tumor immunity [84]. Notch
signaling pathways have been shown to promote vascular endothelial growth factor (VEGF)
and cellular migration in pancreatic cancer cells by activating NF-κB [85]. The Notch path-
ways consist of five canonical ligands (Delta-like ligand 1 (DLL1), DLL3 and DLL4, and
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Jagged1 and 2) and four single-pass transmembrane receptors (Notch1 to Notch4) [86,87].
Different ligands and receptors of Notch are expressed by various types of tumor. Notch
signaling causes pancreatic Nestin+ precursor cells accumulation and extend the ductal
epithelium. Notch is associated with pancreatic cancer cell development by retaining
epithelial cells in a progenitor state. Tumor cells exhibit Notch signaling over-expression,
high Notch-1, and Notch-2 levels, while a poor expression of Notch signaling related
factors is exhibited by the normal pancreas. Midkine is a heparin binding growth factor,
interacts with Notch2 in chemo-resistant PDAC, leads to increased expression of EMT and
Notch pathway markers [88]. Studies of prostate cancer have shown increased marker
expression of EMT and Notch1, including vimentin, N-cadherin, ZEB1 (Zinc-finger E-box
binding homeobox), NF-κB, and PDGF-D in tumor cells [89]. In particular, two members
of the Notch signaling pathway are involved in pancreatic cell development and carcino-
genesis [90]. Few studies have shown increased Notch2 expression in PDAC rather than
Notch1; Notch1 is activated during early pancreatic development, while Notch2 is mainly
concerned with the branching of the ductal epithelium [91]. Furthermore, researchers have
identified Notch1 and Notch2 as the main determinant in pancreatic carcinogenesis [92,93].
Overexpression of Notch2 and Jagged1 has been shown in gemcitabine resistant pancreatic
cancer cells, whereas Notch1 is a crucial downstream mediator of Kirsten rat sarcoma viral
oncogene homology (KRAS), and control tumor sphere formation of pancreatic cells [94,95].
In pancreatic cancer, the oncogenic KRAS mutation is the main factor, provides irreversible
protein KRAS induction, and functions as a signaling molecule to trigger different transcrip-
tion factors and intracellular signaling pathways related to cell proliferation, differentiation,
migration, and survival [96]. High expression of Notch-1 and Jagged-1 has been associated
with poor prognosis and patient survival in primary breast cancers [97]. DLL4 ligand
overexpression in pancreatic cancer cells stimulates OCT4 and NANOG (pluripotency
markers) expression, thereby increasing the number of CSCs [98]. Notch pathway acti-
vation is mainly responsible for the resistance of PCSCs to chemotherapy, yet the precise
mechanism behind this remains poorly understood [95,99]. However, several pieces of
evidence have shown that the Notch signaling pathway plays an important role in the
development of pancreatic cancer, like supporting KRAS, and for the transformation of
normal cells to tumor stem cells [90]. The Notch signaling pathway is triggered by several
enzyme complexes, including γ-secretase complexes following Notch-ligand interaction
and three consecutive proteolytic cleavages [84]. Notch1 inhibition induces increased
the rate of apoptosis, migration, and intrusive properties of pancreatic cancer cells with
γ-secretase inhibitors [100]. In 2018, Song et al. performed an experiment to evaluate the
expression and possible therapeutic importance of Notch ligands and receptors in human
PDAC [101]. The increased expression of Notch1 and 3 in PDAC tissues was observed,
suggesting that both of these receptors may play an important role in the development of
pancreatic cancer, and researchers have therefore referred to these receptors as oncogenes.
On the other hand, the level of Notch 2 and 4 receptor and Notch ligands (DLL-1, 3, and
4) has been found to be decreased and increased, respectively [101]. Furthermore, Notch
signaling pathway inhibition in the treatment of pancreatic cancer can be very attractive
since there is no evidence disagreeing that Notch signaling plays a crucial role in pancreatic
cell development, and addressing Notch as a remedy for pancreatic cancer might inhibit
CSCs resistance to chemotherapy [102,103].

4.2. Hedgehog Signaling Pathway

The hedgehog signaling pathway is associated with the development, proliferation,
and differentiation of embryonic cells [104] and also regulates healthy and malignant stem
cells [105]. Researchers have shown that the Hedgehog pathway normally dormant in
adult organs while remains active in cancer cells, where extracellular matrix production,
myofibroblast differentiation, and stromal hyperplasia can be increased, allowing the EMT
process in cancer cells [75,106,107]. The activation of the Canonical Hedgehog signaling
pathway is represented by the Hh ligands′ (Sonic (SHH), Indian (IHH), and Desert (DHH))
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interaction with the receptor Patched1 [108,109]. In 70% of pancreatic cancer tissue, over-
expression of SHH suggests that Hedgehog signaling may be responsible for pancreatic
cancer [110]. PANC-1 (pancreatic cancer cell line) studies have shown that smoothened
suppression inhibits Hedgehog signaling, which can reverse EMT and induces apoptosis by
inhibition of PI3K/AKT, and prevents pancreatic cancer cell invasion [111]. The hedgehog
signaling pathway is a crucial objective for the development of chemotherapy [112]. The
progression of many forms of cancer, including pancreatic cancer, is characterized by abnor-
mal Hedgehog signaling pathway activity [113]. The survival of CSCs has been impaired by
targeting Notch and Hedgehog signaling together, which indicates that these two pathways
should be targeted at once in order to successfully eradicate certain forms of cancer [114].
Schreck et al. found that Notch suppresses Hedgehog directly by Gli1 transcription inhibi-
tion mediated by Hes1 [115]. Gli1 and Gli2 components of the Hedgehog are positively
capable of controlling Hes1 regardless of the Notch pathway [116]. Concomitantly targeting
both pathways could be more efficient in curing cancer. Notch pathway′s downregulation
contributes to the inhibition of pancreatic cell growth and apoptosis, while the inhibition
of Hedgehog leads to advancement in drug delivery to tumors [117]. The cancer stem
cell maintenance, tumor-stroma cross-talk, and chemo-resistance could also be affected by
interactions between Hedgehog and other signaling pathways. Mohelnikova et al. did not
found any strong correlation between Hedgehog expression profile and KRAS mutation
status in PDAC patients [118], regardless of previous PDAC studies [119]. Taxoid involve-
ment with a dysregulated Hedgehog signaling pathway in patients with PDAC could have
significant therapeutic benefits. New-generation taxoids can abrogate the overexpression
of Hedgehog in pancreatic cancer [118]. Molecular interaction between WNT/β-catenin,
Notch, TGF-β, and hedgehog indicates that during oncogenesis, two or more pathways
crosstalk with each other. Thus in order to target different signaling pathways at once, a
combination of novel inhibitors and traditional anti-tumor therapy are required to increase
the effectiveness.

4.3. WNT Signaling Pathway

A significant embryonic signaling pathway for the morphogenesis, proliferation,
and differentiation of various tissues, including the pancreas, is the WNT signaling path-
way [120]. The WNT signaling consists of three main pathways: the canonical WNT path-
way, non-canonical planar-cell polarity, and the non-canonical WNT calcium pathway [121].
Essentially, suppression of WNT signaling, along with Notch and Hedgehog signaling
pathways, has led to the expansion of agents capable of inhibiting tumor invasiveness,
metastasis, and carcinogenesis. In several forms of cancers, the WNT/β-catenin pathway
regulates the self-renewal, proliferation, apoptosis, migration, and differentiation of stem
cells [122]. Chemo-resistance in pancreatic cancer is also correlated with the impairment
of the WNT/β-catenin pathway [122]. Liu et al. suggested that initiated β-catenin may
increase self-renewal capability, reduces differentiation rate, and develop epithelial can-
cers [123]. A common characteristic of several kinds of pancreatic cancer is the activation
of WNT signaling. In unusual tumor forms: acinar cell carcinoma, strong pseudo-papillary
neoplasm, and pancreatoblastoma; mutation in canonical WNT/β-catenin components
are generally observed [124]. WNT signaling is frequently triggered in PDAC, regard-
less of the lack of the normal phenomenon of mutations in pathway components. Sano
et al. demonstrated that the activation of non-canonical signaling pathways contributes
to the development of tumors [125]. CYR61 expression is triggered by activation of the
WNT/β-catenin pathway, and CYR61 in response stimulates WNT/β-catenin signaling
(feedback mechanism). Thus, disruption of this process represents a potential opportunity
for therapeutic treatment [125]. WNT signaling influences many aspects of pancreatic
biology, and its activity are constantly increased during pancreatic carcinogenesis. In
pancreatic cancer, activated WNT target genes and accumulation of β-catenin have been
observed [126]. Both Notch and WNT signaling pathways are important pathways that
control stem cell differentiation and proliferation [127]. The Notch signaling pathway
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encourages pancreatic lineage commitment and pancreatic progenitor cell differentiation,
whereas WNT signaling controls the stem cell state [128,129]. The Notch pathway is regu-
lated by WNT signaling through the negative influence of WNT on the activity of GSK3-β
mediated by Dishevelled-2. WNT and Notch signaling pathways seem to be interconnected;
the Notch pathway functions as a negative controller β-catenin dependent pathway both
in pancreas development and oncogenesis [73].

5. Epithelial to Mesenchymal Transition

The EMT seems to be a major factor in various natural biological processes, such as
wound healing, embryogenesis, and cancer development. Evidence suggests that abnormal
initiation of the EMT and developmental program leads to tumor initiation, metastasis,
invasion, and therapeutic resistance [94,130]. EMT is a greatly harmonized process noticed
when more or less epithelial features are lost by epithelial cells and embark on attaining
mesenchymal cell characteristics, which is a crucial step during embryogenesis [131]. By
stimulating multiple EMT transcription factors such as Twist, ZEB, Snail, and Slug; TGF-β,
WNT, Notch, and Hedgehog signaling facilitated the conversion of epithelial cells into
mesenchymal cells. In several cancer types, specific EMT signaling pathways such as
Notch have been observed to be dysregulated, and activation of these signaling is often
associated with poor clinical outcomes [132]. Dysregulation of TGF-β and Notch pathways
of EMT plays an essential role in cancer and cardiovascular diseases [133]. WNT pathway
in EMT regulates the levels of GSK3-β, β-catenin, Snail, and other processes linked with
tumor progression [134]. It has been shown that EMT plays a key role in cancer cell
resistance to traditional chemotherapeutics, including gemcitabine, vincristine, oxaliplatin,
and taxol [135]. Gemcitabine resistant PCSCs showed mesenchymal morphology with
activation of Alpha-SMA, Nestin, vimentin, and fibronectin and downregulation of β-
catenin and E-cadherin [132]. The above-discussed studies have proven that dysregulation
of different signaling pathways involved in EMT is crucial in tumor progression.

6. Role of Epigenetics

The complex interaction between genomic, epigenomic, and signaling pathway al-
terations affect PDAC growth and progression [136]. It has been shown that the EMT
leads to the malignant phenotype in PCSCs. Extensive research regarding genetics and
patterns of genome-wide expression suggests that genetic alterations are important for the
initiation and early development of PDAC. Epigenomic studies, however, have shown
that epigenetic changes in cancer cells and tumor suppressor genes have affected tumor
growth [137]. Epigenetic modifications are legacy modifications of DNA or chromatin
structures that affect gene expression without altering the sequence of DNA [138]. Antago-
nism between stemness inhibiting micro-RNAs and ZEB1 has been shown to contribute to
the EMT process for PCSCs [139]. Schmalhofer et al. have shown that ZEB1 promotes the
EMT process by controlling the related protein binding domains such as the p300-P/CAF
binding domain, Smad interaction domain, and C-terminal-binding protein interaction
domain [140]. Moreover, ZEB1 stimulates EMT by blocking E-cadherin [141]. Moreover,
Zhang et al. demonstrated the link between ZEB1 and epigenetic regulation of EMT [142].
The ZEB1 promotes the epigenetic silencing of E-cadherin through the incorporation of
various E-cadherin promoter chromatin enzymes such as histone deacetylases, DNA methyl-
transferase, and ubiquitin ligase [142]. The drug resistance of PCSCs has also been shown to
be associated with ZEB1 [143]. ZEB1 plays a crucial role in EMT during tumor carcinogene-
sis [144]. However, the clinical efficacy of ZEB1 for solid human tumors remains uncertain.
In order to determine the prognostic importance of ZEB1 in patients with solid tumors,
Chen et al. conducted a meta-analysis to determine the prognostic importance of ZEB1 in
patients with solid tumors [144]. The elevated ZEB1 expression indicates poor survival in
solid tumor patients. This study suggested that ZEB1 could be a possible biomarker and
potential therapeutic target for prognosis in solid human tumors [144].
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7. Role of G Protein-Coupled Receptor in Pancreatic Cancer

The prospective of G protein-coupled receptors (GPCRs) in pancreatic adenocarci-
noma and GPCR-targeted drugs as potential therapeutics for pancreatic cancer have been
outlined in this section. The largest family of plasma membrane cell surface receptors is
GPCRs (seven trans-membrane domain receptors), with >800 human members: ~400 are en-
doGPCRs that, in contrast to chemosensory GPCRs, respond to endogenous agonists (e.g.,
hormones and neurotransmitters). Being a family of cell surface receptors, EndoGPCRs
are the largest family with targets for approved drugs, providing access from the extracel-
lular environment. Signaling from GPCR affects different aspects of cancer like invasion,
remolding, migration, etc. Functional aspects of GPCR have been established in cancers,
including pancreatic cancer, both in the cells of cancer and tumor microenvironment. A
wide variety of GPCRs are expressed by pancreatic adenocarcinoma tumor cells [145]. As
the GPCRs are the largest drug target family, about 34% of all drugs approved by the
Food and Drug Administration (FDA) targeted 108 members of GPCR [146]. In 2018, the
worldwide sales of these drugs cost approximately 180 billion US dollars [146]. For the
treatment of various diseases, GPCR targeted drugs have been used. GPCRs have been
assessed as targets for about 50% of drugs available on the market due to their primary
involvement in signaling pathways linked to many diseases, i.e., metabolic, immunological,
mental, cardiovascular, sensory, inflammatory, and cancers. As GPCR play an important
role in controlling signaling pathways involved in cancer, they are used as biomarkers
for the early prognosis, and only a few receptors are represented by GPCR [147]. This is
primarily due to drug resistance; receptor desensitization has been observed in experiments
utilizing long and short-term exposure to GPCR-targeting drugs [147,148]. In order to
develop new GPCR based therapy, more research is required on the downstream regu-
lators and pharmaceutical potential of GPCRs, which can efficiently control cancer cell
pathways. Additionally, most cancer forms, including PDAC, female sex is related to
poor prevalence and better therapeutic results. The underlying mechanism behind this
sex-based incidence was unclear. Regardless of the fact that PDAC lacks basic nuclear
estrogen receptors, Natale et al. believed that estrogen signaling could be responsible for
sex-based incidence [149]. They have used synthetic agonist G-1 (small molecule) that
activates G protein-coupled estrogen receptor (GPER), which have been used to inhibit
PDAC by GPER estrogen receptors present on tumor cells. Subsequently, it contributed to
PDAC proliferation inhibition, reduced PDL-1 (programmed death ligand-1), c-Myc, and
increased immunogenicity of the cells [149]. Researchers found that the G-1 contributes to
inhibition of melanoma, suggesting that GPER agonists could be helpful against a large
range of cancers (cancers of the lung, adrenal gland, bone, colon, and skin etc.) with the
exception of sex hormone related cancers [149,150].

8. Role of Cysteine in Pancreatic Cancer

Another approach for PDAC is to target essential biological processes involved, es-
pecially in PDAC cells. Depletion of cysteine causes ferroptosis (programmed cell death
dependent on iron and characterized by the accumulation of lipid peroxides) of pancre-
atic cancer cells [151]. Ferroptosis is a type of programmed cell death induced by the
disastrous production of reactive oxygen species (ROS). In several tumor types, lipid ROS
production is increased by oncogenic signaling pathways and is counterbalanced by amino
acid cysteine derived metabolites; exogenous cysteine is imported by cystine/glutamate
transporter (Xc- system). The Xc- system inhibition has been shown to promote ferroptosis
in many cancer cell lines; therefore, in pancreatic cancer, cysteine is required to inhibit
ferroptosis [152]. PDAC cells circumvent the consequences of increased ROS production,
which can be caused by mutational activation of KRAS, as one example by upregulating
metabolic processes that yield cysteine-derived metabolites, such as glutathione, that re-
duce ROS levels. Hypothesizing that cysteine import would be a key to the survival of
PDAC cells, Badgley et al. performed in vitro experiments using human PDAC cell lines,
which confirmed that PDAC cells depend on cysteine import. Specifically, PDAC cells
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deprived of cysteine by various means (including inhibition of the cysteine importer system
Xc- underwent ferroptosis [153]. In the PDAC mouse model, deletion of the gene encoding
a subunit of system Xc- (Slc7a11) in established tumors substantially increased median sur-
vival and even caused complete tumor regression in one mouse. Tumors in which Slc7a11
was deleted exhibited microscopic characteristics abnormal for PDAC tumors, including
large lipid droplets and structurally defective mitochondria, and had increased expression
of ferroptosis-related genes. Interestingly, although previous work found that cysteine′s
role in ferroptosis was related to the synthesis of glutathione, inhibition of glutathione
biosynthesis alone in human PDAC cell lines did not increase lipid ROS levels or cause
ferroptosis. Instead, a reduction in levels of coenzyme A, also synthesized from cysteine,
cooperated with glutathione loss to induce ferroptosis [153]. Notably, in a mouse model
of PDAC, treatment with cystinase, which degrades cysteine, caused tumor stabilization
or regression in all mice. Tumors from these mice exhibited the characteristic signs of
ferroptosis observed with the Xc– system (Slc7a11) deletion, including abnormally large
lipid droplets and mitochondrial aberrations. Collectively, these results provide further
evidence that PDAC is dependent on cysteine metabolism to prevent ROS-induced fer-
roptosis and suggest that cysteine depletion may be a useful clinical strategy [153]. As
cysteine import is related to the pancreatic cancer cell′s survival, researchers proposed that
cancer growth can be inhibited by selectively targeting cysteine. Researchers observed
that cystine starvation leads to the reduction of glutathione in cells, and vitamin E can be
used to revive cysteine starvation-induced cell death, thus suggesting the role of induced
oxidative cell death in this case [154]. Cysteine is required for glutathione production inside
the cancer cell, which it uses as a defense [153]. Chemotherapy used without sulfasalazine
(Xc– system inhibitor) is ineffective in PDAC. Sulfasalazine, an old cheap off-patent drug,
is used alongside artesunate and intravenous vitamin C, which at a high dose, produces
hydrogen peroxide free radicals, a cocktail that is also combined with iron to effectively
induce ferroptosis. Researchers have demonstrated that cysteinase, a new drug compound,
can starve pancreatic cells of cysteine supply, causing ferroptosis [153].

9. Role of Pyruvate Kinase M2

Under aerobic and anaerobic environments, differentiated cells prefer oxidative phos-
phorylation and anaerobic glycolysis, respectively [155]. In comparison, even in the pres-
ence of oxygen (the Warburg effect), proliferative tissue and cancer cells appear to intake
a large quantity of glucose to generate lactate through glycolysis. The Warburg effect
is mediated by the pyruvate kinase M2 (PKM2) isoform [156]. Conversion of phospho-
enol-pyruvate and adenosine diphosphate into pyruvate and adenosine triphosphate is
catalyzed by pyruvate kinases. There are four isoforms of Pyruvate kinase (L, R, M1, and
M2: PKL is present in the liver, PKR is expressed by red blood cells, PKM1 present in
most differentiated tissues, and PKM2 expressed in embryonic and cancer cells [156,157].
PKM2 is highly expressed in different forms of human cancer, including pancreatic can-
cer [158,159]. As earlier discussed, PDAC cells change their metabolism from mitochondrial
to glycolysis, which fuels the plasma membrane calcium pump (PMCA), ultimately pre-
vents Ca2+ induced cell death; PDAC has low survival and few possible treatments [160].

In PDAC cells, glycolytic ATP production inhibition promotes cytotoxic Ca2+ accumu-
lation and cell death, as researchers showed that increased glycolytic rate is important for
fueling the ATP dependent PMCA [161], PMCA′s dependency on glycolytic ATP seems to
be a possible therapeutic option. Identifying the molecular mechanism behind the depen-
dency of PMCA on glycolytic ATP could reveal novel therapeutic goals for the development
of effective drugs. PKM2 is a major glycolytic enzyme-producing oncogenic ATP, especially
over-expressed in pancreatic cancer [162,163]. Furthermore, effective and selective inhibitor
of PKM2 is shikonin, anti-inflammatory, antimicrobial, and anti-cancer effects of shikonin
have been reported [164]. In PDAC, shikonin is a valuable method for investigating the
supply of PKM2-mediated ATP to PMCA. For cell survival, a functional relationship is
important between PMCA and PKM2. Shikonin reduces cell viability, proliferation, PDAC
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migration and induces cell death [160]. Researchers demonstrated that elevated expression
of PKM2 is related to poor recovery in human PDAC. The PKM2 downregulation leads
to lower intracellular metabolites level and glycolytic activities [162]. Additionally, vari-
ous cancer properties in pancreatic cancer cells were suppressed by shikonin. Recently,
James et al. performed a study where they have cut off the supply of glycolytic ATP to
the pancreatic cancer cells PMCA; it would be comparatively extra effective in cancer cells
than non-cancerous cells [160]. In metabolic activities, as well as in PDAC cell malignancy,
PKM2 plays a significant role.

10. Repurposed Drugs for CSCs

In this section, we discussed some non-cancer targeted drugs with anti-cancer effects
against CSCs that can be used to treat PDAC. These drugs function through various mecha-
nisms of action, along with the inhibition of certain significant pathways involved in PCSCs.
Antibiotics are among the molecules that display extremely complex biological behaviors
by interacting with the EMT and WNT pathways in breast CSCs [42]. Salinomycin has been
shown to inhibit tumor growth and metastatic spread of PDAC in a genetically modified
mouse model [165]. Nigericin has been shown to inhibit EMT, increase the expression
of E-cadherin, and induce cell cycle arrest of CSCs that contribute to the reduction in
cancer cell invasion and metastasis [43,166]. Furthermore, azithromycin has been shown
to increase the overall survival rate in cancer patients by preventing the development
of tumors in PDAC and other cancers [44]. Moreover, certain anti-malarial agents such
as chloroquine have been shown to have important effects on PCSCs by inhibiting the
Hedgehog pathways and CXCR4 [45]. Aspirin has the potential to be an effective adjuvant
cancer therapy and might be a promising candidate for eradicating PCSCs in PDAC [46].
The phase III trial acknowledged the significant effect of aspirin as an alternative therapy to
avoid disease recurrence [46]. Metformin showed a significant potential for pancreatic can-
cer chemoprevention through decreased PCSC markers and inhibition of the mechanistic
target of rapamycin (mTOR), extracellular signal-regulated kinases (ERK), phosphorylated
extracellular signal-regulated kinases (pErk), and insulin-like growth factor 1 (IGF-1) in a
PDAC mouse model [167]. Another non-cancer related drug, disulfiram, is able to target
PCSCs in PDAC by inhibiting ERK, proteasome, and NF-κB signaling pathway when
used alone or in combination with chemo-radiation [47]. Additionally, a phase II clinical
study showed that the combination of disulfiram and chemotherapy improved survival in
newly diagnosed lung cancer patients [168]. The above discussed studies showed that the
repurposing of existing compounds to target PCSCs could also be a potential approach to
overcome PDAC.

11. Immunotherapy for Pancreatic Cancer

Several targeted strategies, including new stromal modulation, immunotherapeu-
tic approaches, and targeting main signaling pathway effectors, are in progress, along
with the development of novel cytotoxic therapeutic strategies. The stroma encompasses
approximately 90% of the tumor mass, which promotes the progression of fibrosis and im-
munosuppression [169]. In addition to facilitating tumor development, the PDAC stroma
has been shown to attenuate the delivery of antitumor treatments, inactivation of cytotoxic
CD8+ T cells, and increasing the number of immunosuppressive cells [170,171]. During
the progression of the disease, the number of pancreatic stellate cells and PDAC specific
cancer associated fibroblasts increase abundantly [172]. These activated stellate cells pro-
mote tumor growth by reducing the migration of CD8+ T cells to juxtatumoral stromal
compartments [173]. Stellate cells also stimulate T cell anergy and apoptosis induced by
galectin-1, resulting in evasion of immune surveillance by the cancer cells [173,174].

Furthermore, B lymphocytes contribute actively to PDAC fibrogenesis by activation
and differentiation of cancer associated fibroblasts [175]. Minici et al. reviewed the im-
munological mechanisms that promote and inhibit the anti-tumor immunity of B cells. B
cells can restrict tumor growth through phagocytosis by macrophages, facilitating tumor
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killing by NK cells, generating tumor-reactive antibodies, and the priming of CD4+ and
CD8+ T cells [176]. B cells can facilitate tumor growth through the production of autoanti-
bodies and tumor growth factors [176]. Further, targeting particular B cell subtypes can be
beneficial for the treatment of cancer as the activities of Th1, and CD8+ cytolytic T cells can
be directly and indirectly inhibited by regulatory B cells.

Presently, many clinical trials are trying to evaluate the efficiency of immunother-
apeutic approaches in PDAC, including cancer vaccination [177], immune checkpoint
inhibitors [178], monoclonal antibodies, adoptive cell transfer [179], chemo-radiotherapy or
other molecularly focused agents, and combinations with other immunotherapeutic agents
or immune modulators, though none of these studies have demonstrated improvements in
practice. Activating a patient′s T cells is the key basis of cancer immunotherapy in order
to destroy tumor cells. Furthermore, important steps of immunotherapy are defined as
follows: reduction in tumor-specific cells presenting antigen, T cell activation, T cells infil-
tration into tumors, cancer cell recognition by T cells, and cancer cell elimination [180]. Anti-
CTLA-4 (Ipilimumab) and anti-PD-1/anti-PDL-1 (Nivolumab/Pembrolizumab) agents
have shown promising results in the activation of T cells and offer an efficient tumor
immunotherapy strategy [181]. Despite showing Powerful outcomes of some malignancies,
most of them in phase I and II clinical studies have not shown any clinical effectiveness in
PDAC [182]. The immunosuppressive activity of CTL-4 results in the reduction of T effector
cell activation and elevation in the activity of T regulatory cells [183]. The programmed
cell death protein 1 (PD-1) is present largely on T cells, tumor cells, and tumor infiltrating
lymphocytes [6]. The binding of PD-1 (Programmed death-ligand, PDL-1/PDL-2) leads to
a reduction in T cell proliferation and secretion of antitumor cytokines [6].

A varied range of clinical trials (Table 3) on pancreatic cancer based on cytotoxic
chemotherapy, vaccine-associated checkpoint inhibitors, immune checkpoint monother-
apy, dual checkpoint combination therapy, and using other inhibitory agents have been
completed or are presently ongoing. These clinical trials followed several therapeutic
techniques:

1. Monotherapy includes the administration of several PD-1(MEDI4736, MPDL3280A,
and pembrolizumab,) and CTL-4 (tremelimumab and ipilimumab) inhibitors and
inhibition of double checkpoints: either by a combination of the above mentioned
inhibitors or with other agents, such as anti-CCR-5 (mogamulizumab) [184].

2. Combination of chemotherapeutic agents and immune checkpoint inhibitors: PD-
1/CTL4 inhibitors leads to the activation of T cell that is efficient for immunotherapy.
When PD-1/CTL4 inhibitors combined with commonly used chemotherapeutic agents
such as Nab-paclitaxel, gemcitabine, carboplatin, and FOLFOX improved overall
survival [47]. Remarkably, therapeutic procedures using a combination of immune
checkpoint inhibitors with radiotherapy or chemotherapy have shown significant
outcomes [185,186].

3. Vaccination therapy is founded on the basis of the distribution of tumor antigens
to antigen presenting cells (APCs), followed by induction of an organized immune
response. Cancer specific DNA mutations produce new antigens, which, in turn,
results in a unique sequence of the peptide. Variety of vaccines for pancreatic cancer
treatment includes whole-cell vaccines, dendritic-cell based vaccines, peptide and
DNA vaccines, telomerase peptide vaccines, Ras peptide vaccines, and survivin-
targeted vaccines [187]; however, regardless of the enhanced immune system, showed
poor clinical results. GVAX is an allogeneic irradiated whole-cell tumor vaccine
genetically modified for the secretion of granulocyte macrophage colony stimulating
factor and promotes cytolytic action against tumors, the most widely studied vaccine
for pancreatic cancer [188]. Furthermore, the clinical studies when GVAX is applied
in combination with 5-Fluorouracil/cyclophosphamide based chemotherapy have
shown the same results regarding disease-free and median survival as that of GVAX
applied alone [189]. On the other hand, when the above mentioned ipilimumab
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(immune checkpoint inhibitor) is applied in combination with GVAX, it leads to better
survival [190].

4. Adoptive T cell immunotherapy is based on the modification of autologous T cells,
which stimulates the immune response against the tumor. The patients receiving
mesothelin-targeting chimeric antigen receptor-T (CAR) cells have shown overexpres-
sion of a membrane antigen in pancreatic cancer, exhibited adequate patience but
unsuccessful in showing good results [191]. Along with mesothelin, other cancer-
associated antigens are being studied alone or in combination with chemotherapy as
potential targets of CAR-T cells based therapy [191].

5. Immune modulating agents that target the microenvironment of the pancreas can
also exert extensive antitumor activity. Anti-CD40 agonistic antibodies used in combi-
nation with gemcitabine in PDAC patients showed significant results [192]. PDAC
patients treated with a CCR2 inhibitor (PF-04136309) exhibited fractional response
and constant tumor when used in combination with FOLFIRINOX [193]. Several
chemokine receptor molecules are under examination in clinical trials against PDAC.
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Table 3. Clinical trials of novel agents for PDAC and other pancreatic cancers.

Pathological Condition Enrolled Patients Intervention National Clinical Trial Number Outcome Measures Phase Status Result

Neoplasms, Pancreas 40 Cancer stem cell vaccine NCT02074046 Determine the safety of
immunization Phase 1/2 Completed

CTLs harvested from
CSC-vaccinated hosts were

capable of killing CSCs
in vitro

Metastatic
pancreatic cancer 98 Gemcitabine, Nab-Paclitaxel,

GDC-0449 NCT01088815 Progression free survival,
safety of combination therapy Phase 2 Completed

Median progression-free
survival and overall survival

were 5.42 months and
9.79 months, respectively

Metastatic pancreatic
adenocarcinoma 139

BBI608 either in combination
with Gemcitabine and

nab-Paclitaxel,
mFOLFIRINOX, FOLFIRI, or

MM-398 with 5-FU
and Leucovorin

NCT02231723 Safety, Adverse effects Phase 1 Completed
Inhibit cancer stemness

pathways, including Nanog,
by targeting stemness kinases.

Metastatic Pancreatic
Ductal Adenocarcinoma 65 MEDI4736 Monotherapy,

Tremelimumab + MEDI4736 NCT02558894
Response Rate, Overall
survival, progression

free survival,
Phase 2 Completed

Monotherapy reflected a
population of patients with

mPDAC who had poor
prognoses and rapidly

progressing disease

PDAC,
Pancreatic Cancer 21 Ipilimumab, Gemcitabine

hydrochloride NCT01473940
Overall survival, progression

free survival, recovery of
tumor immune surveillance

Phase 1 Completed

Median progression-free and
overall survival were

2.78 months and 6.90 months,
respectively.

Second-line, third-line
and Greater Metastatic

Pancreatic Cancer
303

GVAX Pancreas Vaccine,
CRS-207, Chemotherapy,

Cyclophosphamide
NCT02004262 Overall survival and

adverse effects Phase 2 Completed

Median overall survival in the
primary cohort was 3.7, 5.4,

and 4.6 months in arms A, B,
and C, respectively (*)

Pancreatic Neoplasm 22 Monoclonal antibody,
chemotherapy NCT00711191

Overall survival, progression
free survival, and time to

Progression
Phase 1 Completed

Well tolerated and associated
with antitumor activity in
patients with PDAC and

improved overall survival

Pancreatic
Adenocarcinoma

metastatic
10

Melphalan, BCNU, Vitamin
B12, Vitamin C, and

autologous hematopoietic
stem cell

NCT04150042
Response rate in metastatic

lesions, overall survival,
progression free survival

Phase 1 Ongoing NA

Resectable pancreatic
adenocarcinoma 42 HIPEC-Gemcitabine NCT03251365 Morbidity, survival Phase 2/3 Ongoing NA
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Table 3. Cont.

Pathological Condition Enrolled Patients Intervention National Clinical Trial Number Outcome Measures Phase Status Result

PDAC, pancreatic
cancer, metastasis 36 Ascorbic acid, Paclitaxel,

Cisplatin, Gemcitabine NCT03410030 Determination of
preliminary efficacy Phase 1/2 Ongoing NA

Pancreatic Cancer 81

Pembrolizumab, Gemcitabine,
Docetaxel, Nab-paclitaxel,

Vinorelbine, Irinotecan,
Liposomal Doxorubicin

NCT02331251 Determine the recommended
phase 2 dose Phase 1/2 Terminated

The median progression-free
survival and overall survival

was 9.1 and
15.0 months, respectively

Pancreatic Cancer 15

Fludarabine, Anti-mesothelin
chimeric T cell receptor (CAR)
transduced peripheral blood

lymphocytes (PBL),
Cyclophosphamide, Aldesleukin

NCT01583686 Tumor regression response
and adverse effects Phase 1/2 Terminated

MORAb-009 (chimeric
monoclonal antibody) is

well tolerated

Pancreatic
adenocarcinoma 10 Allogeneic hematopoietic

stem cell transplantation NCT02207985 Disease free survival Phase 1/2 Unknown Patients are tumor-free for
9 years after diagnosis

* CTLs: cytotoxic T lymphocytes; Cy/GVAX + CRS-207 (arm A), CRS-207 (arm B), or physician′s choice of single-agent chemotherapy (arm C); HIPEC: Hyperthermic Intraperitoneal Chemotherapy; NA:
Not available.



Biomedicines 2021, 9, 178 24 of 33

12. Natural Killer Cell Therapy

The primary immune cells that attack cancer cells and can be used as a therapeutic
agent against pancreatic cancer are natural killer (NK) cells. NK cells are a heterogeneous
subgroup of immune cells that express a wide variety of activators and inhibitors; hence
they are able to attack and destroy the tumor cells directly without the necessity for major
histocompatibility complex (MHC) specificity. NK cells have developed to counterpart
B cells and T cells in host defense against carcinogens and other pathogens. If any car-
cinogenic mutation takes place, NK cells quickly start destroying neighboring cells. This
feature is unique among immune cells, and their tendency to enhance antibody production,
T cell, and B cell proliferation means NK cells likely play a significant role as anti-cancer
therapy [194]. While tumors can evolve various mechanisms to counterattack endoge-
nous NK cell attacks, in vitro or ex vivo activation, expansion and, genetic modification of
NK cells can intensify their anti-tumor activity and allow resistance to be overwhelmed.
Through specific mechanisms, which depend upon various sets of inhibitory and stimu-
latory receptors, are responsible for the tumor cell recognition via NK cells [194]. Some
studies suggested the importance of NK cells in PDAC and their potential therapeutic
effect [195]. PDAC significantly impair functions of NK cell by downregulating the ability
of cytokines secretion and effector molecules. The tumor microenvironment also plays a
key role in the reduction of NK cells cytotoxicity and stimulates immune suppression by
different pathways. An antibody based NK cell homing protein called NK cell recruiting
protein conjugated antibody (NRP-body) developed by researchers improved the efficiency
of NK-cell based therapy in the treatment of PDAC [196]. The effect of NRP-body on the
penetration of NK cells into primary and metastatic pancreatic cancer has been evaluated
in PDAC murine model. NK-cell infiltration induced by CXCL16 via RhoA activation
through the ERK signaling. NRP-body administration to pancreatic cancer mice model
augmented the penetration of relocated NK cells into tumor cells, and the tumor load
was decreased than that of control. NRP-body treated groups showed overall increased
survival than that of other groups treated with NK cells alone [196]. Increased diffusion of
NK cells into tumor tissues strengthened the response. Thus, for the treatment of pancreatic
cancer, the combination of NRP-body with NK cell therapy is more beneficial than NK cells
used alone.

13. Discussion

We have tried to deliberate nearly all of the most recent updates about several meth-
ods to treat pancreatic cancer, mainly PDAC. Pancreatic cancer, metastasis of tumor at
the early stages and the dearth of efficacious treatment is the main reason behind the
poor survival and the increased cancer death rate. Patients with pancreatic cancer have
severe immune deregulation, marked by the proliferation of immunosuppressive cells and
increased pro-inflammatory cytokines [197]. Various researchers have demonstrated that
the EMT process and CSCs are mainly responsible for chemo-resistance and the metastatic
potential of tumor cells [39,198,199]. CSCs development is based on genetic mutations
in the signaling pathways, which leads to the transformation of undifferentiated and dif-
ferentiated stem cells [200]. Due to the destructive tumor malignancy of PDAC, effective
therapeutic approaches are still required, especially in order to disrupt its tumor microen-
vironment or EMT or to minimize its resistance to therapeutic agents. In the presence or
absence of apparent metastatic disease, targeting molecules that directly facilitate infil-
tration and metastasis should be considered crucial in the treatment of PDAC and other
pancreatic cancer [85,201]. Additionally, immunotherapy can be improved via NK cells as
a result of their increased invasion of pancreatic cancer cells [196]. Conventional therapy
in combination with CSC inhibitors may offer an effective approach for the treatment of
pancreatic cancer [39]. Although the actual mechanism of action behind targeting PCSCs is
poorly understood, stem cells, especially MSCs, can be an ideal candidate for the treatment
of PDAC and pancreatic disorders due to their homing ability, anti-inflammatory, and
immunomodulatory properties [26]. Moreover, PDAC patients treated with hematopoietic
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stem cells after pancreaticoduodenectomy (Whipple procedure) have shown no signs of
disease recurrence (https://clinicaltrials.gov/ct2/show/NCT02207985). MSCs offer a safer
choice to cure PDAC as they do not exhibit immune rejection and teratoma formation [26].
Above mentioned studies suggest that MSCs transplantation will reduce the drug burden,
inhibitor-associated side effects of pharmacotherapy and may prove to be useful for new
drug testing.

14. Conclusions

PDAC remains a destructive disease with a poor survival rate and prognosis. This
is due to the early stage tumor metastasis and the lack of any successful therapy. In the
present review, we have summarized the current therapeutic strategies and the role of
different factors like PCSCs, signaling pathways, and immunotherapy in PDAC. Recent
advances in targeting PCSCs using effective drugs alone or in combination with MSCs
have shown great potential in the treatment of PDAC by preventing CSCs development
and proliferation. Different signaling pathways involved in PDAC are responsible for
drug resistance that advocate the requirement of novel drugs to target these signaling
pathways. Furthermore, sequencing and proteomics analysis is needed to identify the
specific protein targets of signaling pathways involved in PCSCs to eliminate resistance
against chemotherapy. Finally, an improved understanding of PCSCs related signaling
pathways, identification of specific protein targets, and discovery of non-resistant drugs
will guide successful PDAC therapies.
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CSCs Cancer stem cells
EMT Epithelial mesenchymal transition
ESCs Embryonic stem cells
GPCR G protein-coupled receptor
GPER G protein-coupled estrogen receptor
MSCs Mesenchymal stem cells
NK cell Natural killer cells
PCSCs Pancreatic cancer stem cells
PDAC Pancreatic ductal adenocarcinoma
PKM2 Pyruvate kinase M2
PMCA Plasma membrane calcium pump
ROS Reactive oxygen species
SHH Sonic Hedgehog
Xc- Cystine/glutamate transporter
ZEB Zinc-finger E-box binding homeobox
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