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The polarizability of twisted bilayer graphene, due to the com-
bined effect of electron–hole pairs, plasmons, and acoustic
phonons, is analyzed. The screened Coulomb interaction allows
for the formation of Cooper pairs and superconductivity in a sig-
nificant range of twist angles and fillings. The tendency toward
superconductivity is enhanced by the coupling between longi-
tudinal phonons and electron–hole pairs. Scattering processes
involving large momentum transfers, Umklapp processes, play a
crucial role in the formation of Cooper pairs. The magnitude of
the superconducting gap changes among the different pockets of
the Fermi surface.

graphene | superconductivity | twisted

Twisted bilayer graphene (TBG) shows a complex phase dia-
gram which combines superconducting and insulating phases

(1, 2) and resembles strongly correlated materials previously
encountered in condensed matter physics (3–6). On the other
hand, superconductivity seems more prevalent in TBG (7–11),
while in other strongly correlated materials magnetic phases are
dominant.

The pairing interaction responsible for superconductivity in
TBG has been intensively studied. Among other possible pairing
mechanisms, the effect of phonons (12–19) (see also ref. 20), the
proximity of the chemical potential to a van Hove singularity in
the density of states (DOS) (21–25) and excitations of insulating
phases (26–28) (see also refs. 29–31), and the role of electronic
screening (32–35) have been considered.

In the following, we analyze how the screened Coulomb inter-
action induces pairing in TBG. The calculation is based on
the Kohn–Luttinger formalism (36) for the study of anisotropic
superconductivity via repulsive interactions. The screening
includes electron–hole pairs (37), plasmons (38), and phonons
(note that acoustic phonons overlap with the electron–hole con-
tinuum in TBG). Our results show that the repulsive Coulomb
interaction, screened by plasmons and electron–hole pairs only,
leads to anisotropic superconductivity, although with critical
temperatures of order Tc ∼ 10−3 to 10−2 K. The inclusion of
phonons in the screening function substantially enhances the
critical temperature, to Tc ∼ 1 to 10 K.

The Model
Electronic Structure and Electron–Electron Interactions. The long-
range Coulomb interaction, projected onto the central bands of
TBG, is described by an energy scale in the range of 20 to 100
meV. As a result, this interaction modifies significantly the shape
and width of the bands of TBG near the first magic angle. The
Hartree potential widens the bands, as it shifts the energies at the
K and M points of the moiré Brillouin zone (BZ) with respect
to those at the Γ point (39–43). The inclusion of the exchange
term in a full Hartree–Fock calculation leads to broken symme-
try phases, with valley and/or spin polarization (44–47), among
other possible phases (see also refs. 47–50).

In the following, we consider the role of long-range charge
fluctuations in the superconducting pairing of TBG. These fluc-
tuations couple to quasiparticles, and also among themselves,

via the long-range Coulomb interactions. In addition, long-range
fluctuations can be induced by longitudinal acoustic phonons
(see below and also ref. 36), so we include these phonons in the
calculation.

We analyze pairing by charge fluctuations using the leading
contributions in perturbation theory, already considered in ref.
36. We describe, however, the charge fluctuations using the ran-
dom phase approximation (RPA) response function, as the large
DOS and the spin and valley multiplicities imply a significant
renormalization of these excitations.

We analyze phases without broken symmetries, where pairing
occurs between electrons in different valleys. This analysis can be
extended to broken symmetry phases where the two valleys are
partially occupied, as expected (45, 51) for fillings ν=±2.

We do not consider here pairing due to optical phonons,
or to acoustic phonons which do not induce long-wavelength
charge fluctuations. We discuss later whether these interactions
enhance, or suppress, the pairing analyzed here.

The self-consistent screening of the long-range interactions,
mediated by the long-wavelength charge excitations, is approxi-
mated by the static response function. The neglect of retardation
effects, imposed by the complexity of the calculation, implies that
pairing is overestimated when the obtained critical temperature
is comparable to the frequencies where the response function
is expected to have significant structure, such as the phonon
frequencies.

The electronic properties of the model are described by the
continuum model for TBG (52, 53), using the parameters in
ref. 54, ~vF = 5.18 eV Å, {gAA, gAB}= {0.0797 eV, 0.0975 eV}
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(see SI Appendix, section 1 for further details). The difference
between gAA and gAB , as described in ref. 54, accounts for
the inhomogeneous interlayer distance, which is minimum in
the AB/BA regions and maximum in the AA ones, or it can
be seen as a model of a more complete treatment of lattice
relaxation (55).

Electron–Phonon Interactions. We consider as well the electron–
electron interaction mediated by acoustic phonons. The energy
of these phonons, for wavelengths similar to the moiré unit cell,
are of the order of 1 to 4 meV, comparable to the energy of
electron–hole interactions. We focus on longitudinal phonons,
which couple to electrons via the deformation potential,
D ∼ 20 eV. We neglect the interaction between phonons in the
two layers and consider the even superposition of a phonon in
each layer such that the displacements in the two layers have
the same sign. We neglect the odd superposition, which induces
shifts in the chemical potential of the two layers of opposite
sign, so that it does not lead to a net charge accumulation. The
exchange of a phonon leads to an effective, momentum and
frequency dependent interaction between electrons:

Vph
eff (~q ,ω) =

D2|~q |2

ρ(ω2−ω2
~q )

, [1]

where ρ is the mass density, ω~q = vs |~q | is the frequency of a
phonon of momentum ~q , and vs =

√
(λ+ 2 µ)/ρ is the velocity

of sound, λ and µ being the elastic Lamé coefficients. At low
frequencies the electron–phonon coupling, in a single graphene
layer, can be described by a dimensionless parameter which
describes the phonon induced electron–electron interaction: g̃ =
D2/(λ+ 2 µ)× |χ0|, where χ0 is the electronic susceptibility at
zero frequency and momentum (see also ref. 56).

We use λ+ 2 µ≈ 20 eV Å−2 and χ0 =−D(εF )∼ 4×
(WAC )−1≈ 2× 10−2 eV−1 Å−2, whereD(εF ) is the DOS at the
Fermi energy, W ∼ 10 meV is the electron bandwidth, AC ∼ 2×
104 Å2 is the area of the unit cell, and the factor 4 stands for the
spin and valley degeneracy. Then, the dimensionless electron–
phonon interaction is g̃ ≈ 0.4. For a more detailed description of
the phonons in TBG see SI Appendix, section 3.

Polarizability. Including the diagrams in Fig. 1, Top, the full
polarizability of the system can be written as

χ~G,~G′(~q ,ω) =
∑
~G′′

χ0
~G,~G′′(~q ,ω)×

{
δ~G′′,~G′ −

[
VC (~q + ~G ′′)+

+ Vph
eff (~q + ~G ′′,ω)

]
χ0
~G′′,~G′(~q ,ω)

}
−1
~G′′,~G′

, [2]

where χ0
~G,~G
′′ (~q ,ω) is the bare electronic polarizability (the bub-

ble diagram in Fig. 1), VC (~q) = 2πe2 tanh (dg |~q |)/(ε|~q |) is the
Coulomb potential, dg is the distance of the sample from a metal-
lic gate, ε is the screening from the external environment, and the
vectors ~G ’s are reciprocal lattice vectors. We use dg = 40 nm and
ε= 10. The susceptibility in Eq. 2 is a matrix with entries labeled
by reciprocal lattice vectors.

The polarization in Eq. 2 allows us to define the screened
Coulomb interaction:

V scr
~G,~G′(~q ,ω) = ε−1

~G,~G′
(~q ,ω)VC (~q + ~G ′), [3]

with:

ε~G,~G′(~q ,ω) = δ~G,~G′ −VC (~q + ~G)χph
~G,~G′

(~q ,ω), [4]

Fig. 1. (Top) Feynman diagrams included in the screened electron–electron
interaction. Red wavy lines stand for the Coulomb interaction, and straight
black lines stand for the electron–phonon interaction. (Bottom) Momentum
and frequency dependence of the imaginary part of the inverse dielectric
function, −ImTr ε−1

~G,~G′
(~q,ω); see Eq. 4. The calculation is done at the magic

angle, θ= 1.085◦, and at half filling. Due to the flatness of the bands, the
system is metallic, and it has plasmons (Results and Fig. 2B).

where χph
~G,~G′

(~q ,ω)is given by an expression similar to Eq. 2,
except that only the phonon interaction is included, in order to
avoid double counting.

The diagrams which describe the screened interaction are
shown in Fig. 1, Top. A plot of the imaginary part of the screening
function, Eq. 4, is shown in Fig. 1, Bottom. This figure measures
the density of charge density excitations, weighted by their cou-
pling to the electron quasiparticles. The lower horizontal bright
bands show the electron–hole continuum, the bands directly
above them are the plasmons (38), and the faint blue lines give
the renormalized plasmons, broadened by their interaction with
the electron–hole continuum.

The analysis includes Umklapp processes which enter both in
the electron–electron and in the electron–phonon interaction.
The calculation in Fig. 1 describes as well the plasmons of the
system (38). Further results concerning the plasmon spectrum
are reported in SI Appendix, section 2.

Superconducting Pairing via the Screened Coulomb Interaction. We
consider pairing mediated by the screened interaction defined in
Eq. 3. This scheme is a variation of the method described in ref.
36. The polarization diagrams are iterated to infinity, using the
RPA, while other, exchange-like, diagrams are not considered.
The use of the RPA is justified as the spin and valley degeneracy
enhances the contribution of diagrams with closed electron–hole
bubbles over exchange-like diagrams.

The analysis of the pairing can be turned into a self-consistency
condition for the propagator of a Cooper pair, or, alternatively,
for the off-diagonal self-energy which hybridizes electrons and
holes. This self-consistency requirement reduces to an eigen-
value problem near Tc , where the off-diagonal self-energy tends
to zero. In real space and imaginary Matsubara frequencies, this
linear equation is given by Eq. 5:

∆i1i2
αβ (~r1,~r2) =−

∑
iω′

V scr(~r1,~r2, iω− iω′)

×
∫

Ω

d2~r3d
2~r4

∑
i3i4

KBTGi1i3~r1~r3,α

(
iω′
)

×Gi2i4~r2~r4,β

(
−iω′

)
∆i3i4
αβ (~r3,~r4), [5]
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where α,β label the spin/valley flavor, i1, i2, i3, i4 are sublattice
and layer indices, Ω is the area of the system, and the G are the
Green’s functions, which can be written as

Gij~r~r′,α(iω) =
∑
n~k

Φi
n~k ,α

(~r)Φj ,∗
n~k ,α

(~r ′)

i~ω+µ−En~k ,α

, [6]

where n labels the band and ~k the wave vector in the moiré
BZ, En~k ,α is the band dispersion, µ is the chemical potential,
and Φn~k ,α is the Bloch’s eigenfunction corresponding to the
eigenvalue En~k ,α:

Φi
n~k ,α

(~r) =
e i~k·~r
√

Ω

∑
~G

φi
n~k ,α

(~G)e i~G·~r , [7]

where the φ’s are eigenvectors amplitudes, normalized according
to:
∑

~G,i φ
i,∗
n~k ,α

(~G)φi
m~k ,α

(~G) = δnm .
We can sum over the Matsubara frequencies analytically by

considering the static limit of the screened potential in Eq.
5: V scr(~r1,~r2, iω− iω′)'V scr(~r1,~r2, iω= 0). Using this approx-
imation (to be discussed further below) we obtain the following
equation for the order parameter:

∆̃m1m2
αβ (~k) =

∑
n1n2

∑
~q

Γm1m2
n1n2;αβ(~k ,~q)∆̃n1n2

αβ (~q), [8]

where ∆̃m1m2
αβ (~k) defines the amplitude for the pairing between

the bands m1 and m2, and the kernel Γ is given by

Γm1m2
n1n2;αβ(~k ,~q)=

− 1

Ω

∑
~G1
~G1
′

∑
~G2
~G2
′

∑
i1i2

V scr
~G1−~G′1,~G2−~G′2

(
~k −~q

)
×

×φi1,∗
m1
~k ,α

(~G1)φi2,∗
m2−~k ,β

(
~G ′2

)
φi1
n1~q,α

(
~G ′1

)
φi2
n2−~q,β(~G2)×

×

√√√√ f
(
−Em2−~k ,β +µ

)
− f

(
Em1

~k ,α−µ
)

Em2−~k ,β +Em1
~k ,α− 2 µ

×

×

√
f (−En2−~q,β +µ)− f (En1~q,α−µ)

En2−~q,β +En1~q,α− 2 µ
, [9]

where f (E) is the Fermi–Dirac distribution function. The
detailed derivation of the Eqs. 8 and 9 is given in SI Appendix,
section 4.

The condition for the onset of superconductivity is that the
kernel Γ has an eigenvalue equal to 1. This defines the critical
temperature, Tc , as the one at which the largest eigenvalue of Γ
is equal to 1.

As the Hamiltonian of the TBG does not depend on the spin,
we can identify two different kinds of vertices, depending on
whether α and β share the same or opposite valley indices. These
two vertices describe intravalley or intervalley superconductivity.
As we argue in SI Appendix, section 4, the superconductivity is
generally favored in the intervalley channel, and consequently
we focus on that case in the following study.

Note, finally, that the potential V scr
~G,~G′

(~q) is repulsive. The
attractive phonon-induced electron–electron interaction enters
only in the screening function, and it is smaller than the Coulomb
potential, except for Umklapp processes characterized by large
reciprocal lattice vectors, ~G . These terms are suppressed by the
low electron polarizability at these wavevectors.

We neglect pairing due to the bare electron–phonon coupling.
The dimensionless constant which describes approximately the
phonon induced electron–electron interaction, g ≈ 0.4, implies
weak-medium interaction, partially because only phonons of
wavelength comparable to the moiré period can induce
pairing.

A simple approximation which allows us to perform ana-
lytically the inversion of the dielectric matrix and to isolate
diagonal and off diagonal Umklapp terms is given in SI Appendix,
section 6.

Results
Results for the critical temperature for different angles and fill-
ings are shown in Fig. 2A. The calculations take into account
the Hartree potential, but not the exchange term. Note that, at
the magic angle, θ= 1.085◦, and at half filling, when the Hartree
potential vanishes, the system is metallic, with three pockets at
the Fermi surface (see Fig. 2B). Note that the exchange poten-
tial, not considered here, leads to a gap at half filling (45–47).
This gap is of order ∼20 to 40 meV, that is, much larger than
the value of Tc calculated here. Hence, it seems likely that the
insulating phase will prevail at half filling and close to a magic
angle.

The value of Tc approximately follows the DOS at the Fermi
level. As function of filling, the regions near van Hove singular-
ities, which are displaced by the Hartree potential (40), give the
maxima of Tc .

The results of Fig. 3 show that TBG is superconducting also
in the absence of electron–phonon coupling. The critical tem-
perature is of order Tc ∼ 10−2 K. Similar results, although with
somewhat smaller values for the critical temperature, have been
obtained in ref. 28.

BA

Fig. 2. (A) Values of the critical temperature as a function of filling for various angles (in our definition, −4≤ n≤+4, and n = 0 denotes the charge
neutrality point). (B) Bands and DOS for the magical angle θ= 1.085◦ and different fillings. The horizontal lines mark the position of the Fermi energy.
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Fig. 3. Superconducting critical temperature with (red curve) and with-
out (black curve) the electron–phonon contribution to the screening of
the interaction. The calculation is at the magic angle, θ= 1.085◦. Note the
logarithmic scale.

A discussion about the effect of the external screen-
ing on superconductivity is provided in SI Appendix, sec-
tion 7. Remarkably, our results predict that superconduc-
tivity becomes more robust upon increasing the exter-
nal screening, in good agreement with recent experimental
findings (57).

In order to check if the superconductivity found here is related
to the complexity of the wavefunctions of TBG (see, for instance,
refs. 58–62), or it is a consequence of an enhanced DOS, we have
performed calculations using the parameters in Fig. 2, including
the electron–phonon coupling, neglecting the contribution from
Umklapp processes. We obtain very low critical temperatures, of
order Tc ∼ 10−4 K.

A comprehensive analysis of the role of Umklapp processes
in the pairing is beyond the scope of this work. An estimate of
their relevance can be inferred from the lowest order (zero and
one bubble diagrams) in Fig. 1. Let us assume that the number
of relevant reciprocal lattice vectors ~G is nG (including ~G = 0).
For a momentum transferred ~q , there are nG direct interactions,
defined by the bare interaction vC

~G+~q
. There are n2

G second-
order diagrams, of order vC

~G+~q
vC
~G′+~q

χ~G,~G′(~q). These diagrams
are attractive, as χ~G,~G′(~q)< 0. Hence, the combination of first-
and second-order processes lead to an attractive interaction for

nG� 1 and |~q | ∼ |~G|.
The relevance of Umklapp processes shows that, besides a

large DOS, the nontrivial nature of the wave functions is crucial
for the appearance of superconductivity.∗

The absolute value and the phase of the order parameter
projected onto the valence band throughout the BZ are shown
in Fig. 4. For a filling n = 0 the width of the pair of bands
is . 1 meV, and all the states in the central bands contribute
to the pairing. The phase of the order parameter shows a
change of sign, although lack of numerical accuracy prevents
a precise determination of the symmetry, which seems close
to p-wave. For n =−2, the order parameter is mostly local-
ized in the vicinity of the two Fermi surfaces. The system
resembles a two-gap superconductor, with generalized s-wave
symmetry.

The number of pockets and detailed shape of the Fermi sur-
face are highly dependent on the parameters of the model.

*The quantum metric associated to the wavefunctions in the Brillouin zone also affects
the rigidity of the superconducting phase, and, as a result, it modifies the critical
temperature (see refs. 63–65).

A robust feature of our results, however, is the lack of sign
changes of the order parameter along the Fermi surfaces, irre-
spective of their shape. A purely repulsive interaction favors
sign changes, as in the p-wave pairing in 3He or the d-wave
pairing in the cuprates. We ascribe this effect to the fact that
the screened interaction shows sizable attractive regions, as
mentioned previously.

The calculations leading to the order parameter shown in Fig.
4 have been done assuming pairing between an electron in one
valley with momentum ~k and another electron in the other val-
ley, with momentum −~k (see SI Appendix, section 4). Hence,
the order parameter is compatible with spin singlet and spin
triplet pairing, as the antisymmetry is ensured by using the right
combination of the spin and valley components (66, 67).

Further results about the symmetry of the order parameter are
reported in SI Appendix, section 8.

The approximate analysis of the pairing potential in SI
Appendix, section 6 suggests that Umklapp processes favor pair-
ing near the edges of the BZ and reduce it near its center, the
Γ point. The role of Umklapp processes is further analyzed in
SI Appendix, section 9.

Discussion
Main Results. The work presented here addresses two main
topics:

• An analysis of the excitations of TBG. The calculations
describe electron–hole pairs, plasmons, and acoustic phonons.
For simplicity, we have only included longitudinal phonons,
although the calculations can easily be extended to transverse
acoustic (15) and to optical phonons (13). Intravalley phonons
can be expected to increase further the superconducting pair-
ing. The effect of intervalley optical phonons (13, 20) will
enhance or suppress the pairing depending on whether the
paired electrons are in a spin singlet/valley triplet or in a spin
triplet/valley singlet combination.

The results reported here lead to the screening of the deforma-
tion potential and to the renormalization of both the electron–
hole pairs and the phonon dispersion. The electron bands
include the effects of the Hartree potential, but not exchange
contributions.

We find a significant renormalization of the electron–hole con-
tinuum due to plasmons and phonons, and reciprocal changes in
the phonon dispersion.

• We have analyzed superconducting pairing due to the repul-
sive Coulomb interaction screened by the excitations men-
tioned above. We do not consider here the direct, attractive,
electron–phonon interaction, as it can be expected to give
a small correction. Superconductivity is closely linked to the
contribution of Umklapp processes.

Near half filling, where the central bands are narrowest, all
states in the BZ contribute to the order parameter. Away from
half filling, the weight of the order parameter is concentrated
near the Fermi surface.

In most cases, we find that the order parameter has different
weights in different pockets of the Fermi surface. The system
resembles a multigap superconductor, with extended s-wave sym-
metry. The lack of sign changes in the order parameter, common
in superconductivity derived from repulsive interactions, is due
to the fact that Umklapp processes induce attractive terms in the
superconducting kernel, Eq. 9 (see also SI Appendix, section 9).
We have studied Cooper pairs made from electrons in different
valleys. The resulting order parameter is compatible with spin
singlet and with spin triplet pairing.
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B

A

Fig. 4. Absolute value (Left) and phase (Right) of the order parameter projected onto the valence band throughout the BZ at the magic angle, θ= 1.085◦,
and fillings n = 0 (A) and n =−2 (B). The black lines show the Fermi surface.

Other Effects. The work does not attempt to give numerically
accurate predictions of the superconducting critical tempera-
ture, but the analysis is expected to give reasonable order of
magnitude estimates, and to identify trends.

By considering together the role of electron–hole excitations,
plasmons, and phonons in the dielectric function, we obtain val-
ues of Tc of the same order of magnitude as the experimentally
measured ones. The value of Tc follows, approximately, the DOS
at the Fermi surface. The suppression of the phonon contribu-
tion to the screening reduces the values of Tc by about two orders
of magnitude. The neglect of the complexity of the wavefunc-
tions, by leaving out Umklapp processes, reduces Tc by one or
two orders of magnitude more, even including phonons. On the
other hand, the order of magnitude of the critical temperature
does not change when only the central bands are included in the
calculation.

Our analysis does not consider exchange effects. In a fully
symmmetric, metallic phase the exchange term is significantly
smaller than the Hartree potential. The exchange contribution
can lead to broken symmetry phases, where our analysis does
not apply. Near a filling n =±2, however, Hartree–Fock results
(45) and the “cascade” picture of multiple phase transitions (51)
lead to two completely full pairs of bands and two pairs of par-
tially filled bands. If these bands belong to opposite valleys,
our analysis, based on intervalley pairing, should be qualitatively
correct.

For simplicity, we have not included the effect of trans-
verse phonons, which couple to the electrons via a gauge
potential (68, 69) (see also SI Appendix, section 3). The
inclusion of these phonons will increase the tendency toward
superconductivity. The frequency dependence of the phonon
propagator, not considered here, leads to an upper bound
in the value of Tc , which cannot exceed the phonon
frequencies.

Elastic scattering is expected to induce pair breaking, as the
order parameter has different values at different pockets. These
effects will change substantially the superconducting properties
when the elastic mean free path is comparable to the inverse
of the separation between pockets, `el ∼ |∆~k |−1. This estimate
gives a mean free path a few times larger than the moiré wave-
length. If the order parameter has opposite signs in the two
valleys, defects which induce intervalley scattering will lead to
subgap Andreev states.

Data Availability. All study data are included in the article and/or
supporting information.
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