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The processes of embryonic development that rely on epithelial-mesenchymal transition
(EMT) for the implantation of trophoblast cells are co-opted by tumors, reflecting their
inherent uncontrolled characteristics and leading to invasion and metastasis. Although
tumorigenesis and embryogenesis have similar EMT characteristics, trophoblasts have
been shown to exhibit “physiological metastasis” or be “pseudo-malignant,” resulting
in different outcomes. The gene co-expression network is the basis of embryonic
development and tumorigenesis. We hypothesize that if the gene co-expression network
in tumors is “off-track” from that in villi, it is more likely to develop into malignant
tumors and have a worse prognosis, and we proposed the “off-track theory” for the
first time. In this study, we examined gene co-expression networks in villi and multiple
solid tumors. Through network functional enrichment analyses, we found that most
tumors and villi exhibited a significantly enriched EMT, but the genes that performed this
function were not identical. Then, we identified the “off-track genes” in the EMT-related
gene interaction network using the “off-track theory,” and through survival analysis, we
discovered that the risk score of “off-track genes” was associated with poor survival
of cancer patients. Our study indicated that villi development is a reliable and strictly
regulated model that can illuminate the trajectory of human cancer development and
that the gene co-expression networks in tumor development are “off-track” from those
in villi. These “off-track genes” may have a substantial impact on tumor development
and could reveal novel prognostic biomarkers.
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INTRODUCTION

Cancer is a complex disease with various pathologic properties
(Machnik et al., 2019), and cancer incidence and mortality have
been increasing, making cancer the leading cause of death and
a major public health problem worldwide (Chen et al., 2016;
Siegel et al., 2018). Although multiple forms of treatment exist for
cancers, such as surgery, chemotherapy, radiotherapy, targeted
therapy, and so on, the prognosis of patients with cancer is still
poor, and cancer still poses a serious threat to human health and
affects the quality of life of patients (Kovar et al., 2016; Gigic
et al., 2018). In addition, there is a strong heterogeneity in tumor
tissues, and the genome is extremely unstable (Burrell et al., 2013;
Troiani et al., 2014). Therefore, a model similar to the biological
behavior and molecular characteristics of tumor cells but without
heterogeneity is urgently needed to study tumors.

Tumorigenesis and placental villi development have many
similar biological behaviors, especially during the early stage
of pregnancy (Strickland and Richards, 1992; Holtan et al.,
2009; Perry et al., 2009). The epithelial-mesenchymal transition
(EMT) plays an important role in embryonic development and
cancer progression (Chaffer et al., 2016; Simeone et al., 2019).
The EMT is a fundamental cell biological process that plays
a critical role in embryogenesis, which was reactivated during
cancer progression and enhances the metastatic phenotype.
Implantation of trophoblast cells of the placenta into the
decidual and muscular layers of the uterus is the sine qua
non of a successful pregnancy, and trophoblast cells promote
implantation through EMT, which results in loss of cell-to-
cell contact inhibition (Holtan et al., 2009). EMT of tumor
cells in cancer progression possibly generates the different
cell types of the tumor stroma, such as cancer-associated
myofibroblasts. EMT contributes to new tumor cell properties
required for invasiveness and vascular intravasation during
metastasis (Moustakas and Heldin, 2010).

The processes of implantation during placental development
that rely on EMT are co-opted by tumors, reflecting their
inherent uncontrolled characteristic, which leads to invasion and
metastasis (Hay, 2005; Huber et al., 2005; Jean Paul and Sleeman,
2006). However, tumorigenesis and placental development have
different outcomes. Placental development is a physiological
process; the placenta is an important organ used to nourish the
fetus during pregnancy, and the EMT process is strictly regulated.
However, tumorigenesis is a pathological process, and the EMT
process is not regulated by the host. Disequilibrium is the key
feature of cancer occurrence and development (Hanahan and
Weinberg, 2011; Macklin et al., 2017). In addition, the gene
regulatory network induces the expression of other target genes
via the protein products of differentially expressed genes, which
is the basis of many biological processes, such as embryonic
development and tumorigenesis (Singh et al., 2018). During the
process of placental development, a strong correlation exists
between different genes, suggesting that all biological functions
could be modulated through the precise regulation of gene
networks (An et al., 2015). However, during the process of tumor
progression, close gene regulation relationships are abolished,
and the correlations between genes responsible for normal

placental development are disrupted. Based on this principle,
we proposed the “off-track theory” for the first time. Such “off-
track genes” are likely to promote the progression of cancer and
may also predict the prognosis of cancer patients. Therefore, we
deemed that in placental villi development and tumorigenesis,
the gene regulatory networks are altered, resulting in gene co-
expression disorders and different outcomes. In summary, when
the gene co-expression network in tumors is “off-track” from
that in villi development, cells are more likely to develop into
malignant tumors, or have a worse prognosis.

In this study, we utilized RNA sequencing data combined
with RNA transcriptome data of multiple solid tumors from
The Cancer Genome Atlas (TCGA) to construct gene co-
expression networks for chorionic villi and multiple solid
tumors, respectively. Then, according to the “off-track theory,”
we identified “off-track genes” from the EMT-related gene co-
expression networks and then screened “off-track genes” that
were highly expressed in cancers. Afterward, we performed a
survival analysis to assess whether these “off-track genes” could
predict the prognosis of cancer patients.

Our research indicated that placental villi development is
a reliable and strictly regulated model. The villi development
model could produce new insights for the understanding
of tumors and provide new methods for cancer research.
Additionally, through the different co-expression relationships
between physiological and pathological states, we found new
biomarkers which may be helpful for the treatment and post-
treatment monitoring of cancers.

MATERIALS AND METHODS

Patients, Tissue Samples, and TCGA
RNA Sequence Data Curation
Tissue samples of developing villi were obtained from Beijing
Shijitan Hospital between March 2015 and August 2016. The
samples included 15 chorionic villus samples at 6 to 10 weeks
of gestation (3 samples at each time point) and 6 leaf chorionic
samples from postpartum placental tissue representing the
mature placenta. The detailed information regarding those
samples is presented in Supplementary Table S1. The inclusion

TABLE 1 | The sample numbers of these 11 types of tumors.

Tumor Stage I/WHO IStage II/WHO IIStage III/WHO IIIStage IV/WHO IVNA Normal

BLCA 2 130 140 134 2 19

BRCA 181 620 250 20 22 112

COAD 44 108 79 39 9 41

EAC 12 23 29 5 20 11

ESCC 7 55 27 4 2 11

GBMLGG 0 515 0 152 0 5

HNSC 27 74 81 266 72 44

LUAD 269 120 80 25 8 59

LUSC 244 162 84 7 4 51

READ 12 26 33 13 9 10

STAD 52 121 165 37 13 35
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criteria for the pregnant women have been described previously
(Zhang et al., 2017). All donors signed informed consent
forms. This study was reviewed and approved by the Ethics
Committee of the National Cancer Center/Cancer Hospital,
Chinese Academy of Medical Sciences, and Peking Union
Medical College.

For TCGA datasets, RNA sequencing data of bladder
urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA),
colon adenocarcinoma (COAD), rectum adenocarcinoma
(READ), esophageal adenocarcinoma (EAC), lung
adenocarcinoma (LUAD), stomach adenocarcinoma (STAD),

glioma (GBMLGG), head and neck squamous cell carcinoma
(HNSC), esophageal squamous cell carcinoma (ESCC), and
lung squamous cell carcinoma (LUSC) and the corresponding
clinical information were downloaded through the R package
“TCGA2STAT.” Detailed information on these 11 types of
tumors is shown in Table 1.

We also collected datasets from the Gene Expression
Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA) for
validation, including 3 independent sets of COAD (GSE14333,
GSE12945, and GSE17536), 3 independent sets of LUAD
(GSE30219, GSE13213, and GSE68465), 3 independent sets

FIGURE 1 | Gene co-expression networks of villi and multiple tumors. (A) The gene co-expression networks of villi. (B–L) The gene co-expression networks of
BLCA, BRCA, COAD, READ, EAC, GBMLGG, HNSC, LUAD, STAD, ESCC, and LUSC, respectively. The edge weight indicates the statistical significance of the
gene co-expression relationship, the edge color indicates the direction of the association (positive shown in yellow; negative shown in blue), and the node size
indicates the node degree.
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TABLE 2 | The p-value enriched by EMT in villi and 11 cancers.

Tissue type p-value

villi.early 0.00000

BLCA 0.00000

BRCA 0.00000

COAD 0.00272

ECA 0.01548

ESCC 0.00001

GBMLGG 0.00083

HNSC 0.00002

LUAD 0.00000

LUSC 0.26326

READ 0.00000

STAD 0.00000

of GBMLGG (GSE109857, GSE16011, and CGGA), and their
corresponding clinical information. All of the datasets were
downloaded and analyzed directly.

RNA-Seq and Analysis
Total RNA was isolated from frozen chorionic villus and
mature placenta tissues with TRIzol reagent (Thermo Fisher,
United States) according to the manufacturer’s instructions.
A complementary DNA library was prepared, and sequencing
was performed according to the Illumina standard protocol by
Beijing Novel Bioinformatics Co., Ltd.1 Raw reads from the RNA-
seq libraries were trimmed to remove the adaptor sequence, reads
with adaptor contaminants, and low-quality reads. The indexes of
the reference genome were built using Salmon, and the paired-
end clean reads were aligned to the reference genome using
UCSC version hg19. The transcripts per million (TPM) value of
each gene was calculated based on the gene read counts mapped
to that gene. The raw sequence data of villus tissues reported in
this paper have been deposited in the Genome Sequence Archive
(Genomics, Proteomics & Bioinformatics 2017) in the Beijing
Institute of Genomics (BIG) Data Center (Nucleic Acids Res
2018), BIG, Chinese Academy of Sciences, under the accession
number HRA000050.

1https://en.novogene.com/

FIGURE 2 | UpSet plot of the intersection of EMT-related genes between villi and cancers. The transverse bar graph at the bottom left shows the number of
EMT-related genes in each set. The black points in the dot matrix at the bottom left and in the bar graph at the top indicate genes included in the correlation set. The
bars above represent the number of genes corresponding to each intersection.
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Construction of Gene Co-expression
Networks and Enrichment Analysis
For chorionic villus and multiple cancer datasets, we used the
“MatrixEQTL” package in R to compute all pairwise associations
of gene expression levels and to estimate false discovery rates
(FDRs; Shabalin, 2012). To increase the computational speed,
FDRs were only reported for interactions achieving a raw p-value
less than 0.001, and in subsequent analyses the self-interactions
were removed from the co-expression networks.

For chorionic villus and multiple cancer gene co-expression
interactions, we selected the 10,000 most significant co-
expression relationships to build the networks and perform
enrichment analysis. We used the “iGraph” package to compute
each node’s degree (Netzer et al., 2011) and the “RedeR” package
to visualize the networks (Castro, 2012). Functional enrichment
analyses of networks were performed with the Spatial Analysis of
Network Associations (SANTA) package using custom gene sets
(Cornish and Markowetz, 2014), including 50 hallmark gene sets
from the Molecular Signatures Database (MSigDB).

Identification of “Off-Track Genes”
Villi development and cancer progression exhibit many similar
biological behaviors but have distinct outcomes. For the first time,

we proposed the “off-track theory” to explore the genes that are
out of balance in cancers.

First, genes related to EMT were assessed in villi and tumors.
We supposed that Pearson’s correlation coefficient of a gene-pair
(gene A, B) in the villi is x, and that of the gene-pair in cancer
is y. Then, we projected this onto a coordinate axis as a point (x,
y). When the correlation coefficients were equal, the point was
projected on the line y = x in the coordinate axis. When a point
(x, y) deviated from the line y = x, this indicated that the gene
interaction was more “off-track” in cancer progression than in the
normal physiological process, resulting in a larger contribution to
the synergistic disorder. We defined genes with a distance from
the point (x, y) to the line y = x greater than 1 as “off-track
genes.”

To further identify genes related to the prognosis of cancer
patients among “off-track genes,” we used Student’s t-test to
screen for genes that are highly expressed in cancers.

Survival Analysis
To explore the genes that could predict the prognosis of cancer
patients, a risk factor score was calculated to assess the survival of
patients. In brief, we used a univariate Cox regression analysis to
evaluate the association between survival time and the expression
levels of those genes. A mathematical formula was constructed to

FIGURE 3 | Identified “off-track genes” in villi and tumors. In the biological process of EMT, the interaction between gene pairs in villi and a specific type of cancer
was projected on the coordinate axes. The black dotted line in the figure represents the line y = x, and a distance of 1 from this line is shown by the red dotted line.
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predict survival (Li et al., 2016), and the risk score of each patient
was calculated as follows:

Risk_Score =
n∑

i=1

βi ∗ expression
(
genes

)
βi represents the regression coefficient of each gene expression
value. All patients in the datasets were thus assigned to high-
risk and low-risk groups using the median risk score as the
cut-off point. The Kaplan-Meier method was used to estimate
the overall survival (OS) time for the two subgroups, and
differences in survival time were analyzed using the log-rank test
(R package “survival”).

Statistical Analysis
All statistical analyses in this study were performed with R
software. The UpSet plot was generated by the R package
“UpSetR.” All statistical tests were two-sided, and p < 0.05 was
considered significant.

RESULTS

Computation of Gene Co-expression
Relationships in Villi and Tumors and
Functional Enrichment Analyses
For each gene in villi and tumors, we used the Matrix eQTL
engine function in the “MatrixEQTL” package to calculate the
correlation between each row of the two matrices by linear
regression, in other words the associations between pairwise
gene expression levels, and tested its significance with t statistics.
To enable quantitative comparisons of gene co-expression
relationships in villi and cancer, we standardized the number of
edges in each network by constructing networks from the most
significant 10,000 interactions in villi and tumors.

To visualize the gene co-expression networks, we used the
“RedeR” package and limited the analysis to genes with a network
degree greater than ten (Figure 1). To systematically test for
network functional enrichment and to directly compare network
functional enrichment in villi and tumors, we used the SANTA
method to test the association between a query gene set and
a network, enabling the functional annotation of networks. By
determining the association between hallmark gene sets and
networks in villi and cancers, these results demonstrated that the
villi and cancer co-expression networks were enriched for EMT
gene sets, and the p-values of EMT enrichment in villi and 11
cancers are shown in Table 2.

Identification of “Off-Track” and Highly
Expressed Genes in Cancers
The developing placental villi and cancers networks were both
enriched in EMT; in other words, they undergo a similar EMT
process, but the genes that perform this function are not identical
(Figure 2). For example, 49 genes were involved in the EMT
in villi development, 38 genes were involved in BRCA, and 16
EMT-related genes were involved in both processes, accounting

for 32.7% and 42.1% of the EMT genes involved in villi and
BRCA, respectively. Then, according to the “off-track theory,” we
identified the “off-track genes” in multiple cancers (Figure 3).

To further screen genes to assess the prognosis of cancer
patients, we used Student’s t-test to identify differentially
expressed genes in cancers. The genes that were significantly
upregulated and downregulated in multiple cancers are shown in
Table 3.

Prognostic Significance of “Off-Track
Genes” in Cancer Patients
To determine whether these “off-track genes” were related to the
prognosis of cancer patients, we used Kaplan-Meier curves for
the analysis. A log-rank test confirmed that the risk score of
“off-track genes” was significantly related to the OS of cancer
patients, and a higher risk score suggested a poor prognosis
(BLCA, n = 408, p = 0.008; BRCA, n = 1093, p = 0.052;

TABLE 3 | High and low expression of off-track genes in each tumor.

Tumor High-expression genes Low-expression genes

BLCA MMP14, COL5A2, CTHRC1,
VCAN

ACTA2, DCN, FERMT2, FMOD,
ITGA5, LUM, MMP2, MYL9,
TAGLN, TPM1

BRCA CDH11, COL12A1, COL1A1,
COL1A2, COL3A1, COL5A2,
COL8A2, CTHRC1, LUM,
MMP14

DCN, ECM2, FERMT2

COAD CALU, COL1A1, COL1A2,
COL3A1, COL4A1, COL4A2,
COL5A2, CTHRC1, LUM,
MMP14, MMP2, PLOD1, VCAN

FERMT2, TPM1, EMP3, VIM,
ACTA2, DCN, IGFBP4, MGP,
MYL9, TAGLN, SNAI2, PMP22,
FBLN2

READ CALU, COL1A1, COL1A2,
COL3A1, COL4A1, COL5A2,
CTHRC1, MMP14, MMP2,
VCAN

ACTA2, CALD1, DCN, FBLN2,
FERMT2, MGP, MYL9, PMP22,
TAGLN, TPM1, VIM

EAC COL1A1, COL3A1, COL4A1,
COL5A2, CTHRC1, MMP14

NA

ESCC COL1A1, COL1A2, COL3A1,
COL5A2, CTHRC1, LUM,
MMP14, VCAN

NA

GBMLGG ACTA2, COL1A1, COL1A2,
COL3A1, COL5A2, COL6A2,
ITGB1, LUM, MMP14, PLOD1,
SNAI2, TAGLN, VIM

NA

HNSC MMP2, COL1A1, COL1A2,
COL3A1, COL5A2, COL6A2,
CTHRC1, LUM, MMP14,
PCOLCE, VCAN

TPM1

LUAD COL1A1, COL1A2, COL3A1,
COL5A2, LUM, MMP2

ACTA2, DCN

PRAD CTHRC1 ACTA2, COL4A1, COL4A2,
COL6A2, DCN, EMP3,
FERMT2, IGFBP4, ITGA5,
LUM, MATN2, MMP14, MMP2,
MYL9, PMP22, TAGLN, TPM1,
VIM

STAD COL1A2, COL3A1, COL5A2,
CTHRC1, LUM, MMP14,
MMP2

CALD1, FERMT2, TPM1,
ACTA2, TAGLN, SFRP1, MYL9,
MYLK, DCN, FLNA
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FIGURE 4 | The representative survival curve and forest plot of “off-track gene” risk scores for multiple cancers. (A–B) The survival curves and the gene expression
intensity in the low risk group as well as in the high risk group of LUAD patients in TCGA datasets. *P < 0.05, **P < 0.01, ***P < 0.001, and no stars for genes
whose p-value is > 0.05. Box plots compare the difference of gene expression between risk groups using a t-test. (C–D) The survival curves and the gene
expression intensity in the low risk group as well as in the high risk group of STAD patients in TCGA datasets. *P < 0.05, **P < 0.01, ***P < 0.001, and no stars for
genes whose p-value is > 0.05. Box plots compare the difference of gene expression between risk groups using a t-test. (E) Forest plot of “off-track genes” using
data from multiple cancer cohorts in TCGA using a univariate cox repression model. The forest plot shows the HR, 95% confidence interval, and p-value for each
type of cancer.

COAD, n = 279, p = 0.012; EAC, n = 89, p = 0.016; ESCC,
n = 95, p = 0.184; GBMLGG, n = 421, p = 1.70e–29; HNSC,
n = 520, p = 0.004; LUAD, n = 502, p = 4.28e–04; READ,
n = 93, p = 0.039; and STAD, n = 388, p = 0.026). These
survival curves and differences in their gene expression of
representative respiratory and digestive tract tumors are shown
in Figures 4A–D. To further assess the impact of “off-track
genes” on cancer patients’ survival, we performed univariate and
multivariate Cox regressions; the results demonstrated that high
risk scores for these genes increased the risk of death in cancer
patients, and these off-track genes were independent prognostic
factors in cancers except BLCA. In addition, high risk scores for
these genes in ESCC were not related to patient survival. The
results of the Cox proportional hazards regression analysis of
clinical characteristics (including age, gender, and tumor stages)
are presented in Supplementary Tables S2–S11, and the results
of univariate Cox regression of the “off-track gene” risk scores are
shown in Figure 4E.

We also used certain independent cancer datasets to validate
the prognostic value of these “off-track genes.” The survival
analysis results revealed that the risk scores of “off-track genes”
were significantly correlated with cancer patient survival, such as

in the COAD datasets (GSE14333, n = 196, p = 0.017; GSE12945,
n = 29, p = 0.012; and GSE17536, n = 177, p = 0.006), LUAD
datasets (GSE30219, n = 85, p = 0.020; GSE13213, n = 117,
p = 0.002; and GSE68465, n = 443, p = 0.012), and GBMLGG
datasets (GSE109857, n = 225, p = 1.167e-15; GSE16011, n = 284,
p = 4.320e-13; and CGGA, n = 325, p = 6.430e-28). These survival
curves are shown in Figure 5.

DISCUSSION

Increasing evidences support the atavistic theory of cancer, that
is, the biological origin of cancer can be found in the early
transitional phase from unicellularity to multicellularity (Bussey
et al., 2017; Trigos et al., 2017). Tumorigenesis and placental
villi development exhibit many similar biological behaviors, but
their outcomes are different. Gene co-expression networks are
the basis of embryonic development and tumorigenesis (Singh
et al., 2017), and the gene regulatory network in tumors becomes
disrupted (Bussey et al., 2017).

The EMT during placental development is a normal
physiological process that involves a strong correlation between
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FIGURE 5 | Survival curves for cancers. (A) The survival curve of COAD patients in GSE14333, GSE12945, and GSE17536. (B) The survival curve of LUAD patients
in GSE30219, GSE13213, and GSE68465. (C) The survival curve of GBMLGG patients in GSE109857, GSE16011, and CGGA.

genes, suggesting that all biological functions are under the
tightly precise regulation of gene networks. However, during the
process of tumor progression, the close relationship of genes is
disrupted and becomes “off-track” from that in normal placental
development. Therefore, we proposed the “off-track theory” for
the first time. Such “off-track genes” are likely to promote the
progression of cancer and may also predict the prognosis of
cancer patients.

Different gene co-expression networks lead to different
biological outcomes, and this finding has received increased

attention from researchers. However, methods to measure
changes in the network have not been well explored. In this
study, we focused on biological processes involved in the EMT,
considering a recent paper “Guidelines and definitions for
research on epithelial–mesenchymal transition” (Yang et al.,
2020), which authors put forward Consensus Statement about
EMT and suggest use cellular properties together with a set
of molecular markers to define the EMT status. We used 200
EMT related markers from the MSigDB and identified “off-
track genes” in cancer networks using the “off-track theory.”
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First, we used Pearson’s correlation analysis to calculate the
correlation coefficient of pairs of genes that are involved in
the EMT in villi and cancer development. The correlation
coefficient of genes in biological networks can reflect the degree
of biological connection (Teschendorff et al., 2010; Bockmayr
et al., 2013). Then, Pearson’s correlation coefficients of the
EMT-related gene pairs in villi and cancer were projected on
a coordinate axis to identify the gene pairs with a distance
from the line y = x greater than 1. Based on the results, we
identified “off-track genes” in multiple cancers and deemed
that these genes were associated with tumor progression
or the prognosis.

To further evaluate the relationship between “off-track genes”
and the prognosis of patients, we performed a survival analysis.
A high risk score of these genes was significantly associated with
poor prognosis in all forms of adenocarcinoma that we analyzed
as well as GBMLGG and HNSC, but it was not associated with
the prognosis for LUSC and ESCC. There are several reasons that
might explain the different prognostic values. First, endoderm-
derived organ tumors are more closely related to embryonic
development. The endoderm generates the digestive tube and its
accessory organs, the respiratory and pulmonary epithelium, the
thymus and the bladder; in addition, nerve cells also originate
from the endoderm (Solnica-Krezel, 2005). Second, LUSC has
been reported to possibly be derived from basal cells (Sutherland
and Berns, 2010; Terry et al., 2010); it exhibits a stepwise
progression from normal bronchial epithelium to squamous
metaplasia to LUSC, and it has a different development process
than LUAD (Nishisaka et al., 2000). Third, ESCC is caused
by abnormal hyperplasia of esophageal squamous epithelium,
which does not appear during embryonic development (di Pietro
et al., 2018). Fourth, HNSC was the only type of squamous cell
carcinoma associated with a significantly poor prognosis in this
study; however, stage IV patients accounted for 59% of the total
HNSC patients, which may influence the survival results.

The results of this study requires further verification.
First, although we confirmed that the co-expression network
is altered in the cancerous process compared with normal
physiological processes and identified the “off-track genes,” the
network relationships are very complex, and it is difficult to
determine a standard for measuring the changes in network
relationships. Further exploration is urgently needed. Second,
these identified off-track EMT related genes not validated in
tumors in vitro and in vivo. This requires a lot of work,
and it is hard to verify every gene in every cancer, further
studies are planned. Third, the transcriptome represents only
one level of the biological process and cannot fully reflect the
function of the entire biological system. These results should
be combined with other “omics” data, such as proteomics and
methylation data, to conduct an integrated analysis of multi-
omics data to provide more comprehensive information on the
biological system.

The placental villi development model may be a useful tool for
exploring tumorigenesis. Development models are widely used
to study the complex mechanisms of tumorigenesis, and many
important signaling pathways and molecular markers have been
found (Kho et al., 2004; Liu et al., 2006; Kaiser et al., 2007).

Our study indicate that villus development is a reliable and
strictly regulated model that can illuminate the trajectory of
human cancer development, and gene co-expression in disease
states is “off-track” from that in the normal state. The “off-track
genes” may have a substantial impact on tumor development and
reveal novel prognostic biomarkers to assist in cancer treatment
and evaluate the therapeutic effect.
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