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ABSTRACT
We present deep-ultraviolet Fourier ptychography (DUV-FP) for high-resolution chemical imaging of biological specimens in their native
state without exogenous stains. This approach uses a customized 265-nm DUV LED array for angle-varied illumination, leveraging the unique
DUV absorption properties of biomolecules at this wavelength region. We implemented a robust feature-domain optimization framework to
overcome common challenges in Fourier ptychographic reconstruction, including vignetting, pupil aberrations, stray light problems, inten-
sity variations, and other systematic errors. By using a 0.12 numerical aperture low-resolution objective lens, our DUV-FP prototype can
resolve the 345-nm linewidth on a resolution target, demonstrating at least a four-fold resolution gain compared to the captured raw images.
Testing on various biospecimens demonstrates that DUV-FP significantly enhances absorption-based chemical contrast and reveals detailed
structural and molecular information. To further address the limitations of conventional FP in quantitative phase imaging, we developed a
spatially coded DUV-FP system. This platform enables true quantitative phase imaging of biospecimens with DUV light, overcoming the
non-uniform phase response inherent in traditional microscopy techniques. The demonstrated advancements in high-resolution, label-free
chemical imaging may accelerate developments in digital pathology, potentially enabling rapid, on-site analysis of biopsy samples in clinical
settings.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0227038

I. INTRODUCTION
Histological staining is an essential tool for visualizing cellu-

lar structures and studying biological processes. Traditional imaging
methods heavily rely on exogenous labels and dyes, such as hema-
toxylin and eosin (H&E) staining and fluorescent dyes to provide
contrast and specificity.1,2 While highly informative, these label-
ing techniques have several limitations. The staining process can
disrupt the native cellular environment, potentially altering the
structures and dynamics under investigation.3 Exogenous labels
may also interfere with downstream molecular analyses.4 Further-
more, the chemicals used for staining can be hazardous, and sample
preparation is often laborious and time-consuming.5,6 To overcome
these challenges, there has been increasing interest in developing

label-free imaging modalities capable of visualizing biological spec-
imens in their native, unperturbed state. Various label-free imaging
techniques have been explored, each exploiting different intrinsic
properties of biological samples to generate contrast. For example,
quantitative phase imaging (QPI) utilizes the phase shift of light
passing through a sample to map the optical path length, enabling
visualization of transparent structures without staining.7–10 Raman
spectroscopy and coherent anti-Stokes Raman scattering (CARS)
microscopy leverage the inelastic scattering of light to provide chem-
ical fingerprints of molecules, allowing for label-free identification
of specific compounds.11,12 Autofluorescence imaging captures the
intrinsic fluorescence of endogenous molecules such as NADH and
FAD, providing insights into cellular metabolism.13,14
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Among these label-free approaches, deep ultraviolet (DUV)
microscopy has emerged as a powerful tool for high-contrast imag-
ing of cellular structures. DUV microscopy exploits the intrinsic
absorbance of biomolecules at ultraviolet wavelengths, particularly
nucleic acids and proteins, which exhibit strong absorption in the
DUV range due to their aromatic ring structures.15,16 DUV micro-
scopy enables detailed visualization of cellular components without
the need for exogenous stains. This non-invasive technique allows
for real-time study of living cells and tissues17,18 and has been applied
to various biological samples, including quantification of nucleic
acids and proteins in cells,19,20 label-free hematology analysis,21,22

and rapid histopathological imaging of cancer specimens.23 The
combination of DUV excitation with nonlinear microscopy tech-
niques has further enhanced the capabilities of label-free imaging.
These hybrid approaches leverage the intrinsic contrast provided by
DUV excitation while exploiting the unique advantages of nonlinear
microscopy, such as improved depth penetration and reduced pho-
todamage. Two-photon and three-photon excitation combined with
DUV excitation have been employed to study serotonin distribution
in living cells and tissues24,25 and visualize skin vasculature in living
mice.26

To further enhance the capabilities of DUV microscopy, we
propose integrating it with Fourier ptychography (FP),27 a com-
putational imaging technique that overcomes the resolution limits
of traditional microscopy. In a typical microscopy implementa-
tion, FP captures multiple low-resolution images under different
illumination angles and computationally synthesizes them in the
Fourier domain to reconstruct a high-resolution, wide-field complex
image of the specimen.28–33 In the past years, FP has been suc-
cessfully applied to various imaging applications, including phase
contrast imaging of cells and tissues,30,34–41 digital pathology,42–46

high-throughput cytometry,47 reflection-based metrology,37,48–50

remote sensing,51–57 and x-ray nanoscopy,58,59 among others. Recent
advancements in DUV imaging have also explored its potential in
high-resolution metrology applications. For instance, Park et al.
demonstrated a reflective DUV Fourier ptychographic microscopy
system capable of imaging nanofeatures, showcasing the technique’s
promise for semiconductor device characterization.48

The integration of DUV microscopy with FP, which we term
deep-ultraviolet Fourier ptychography (DUV-FP), offers several
unique advantages for label-free bio-imaging. It allows for high-
resolution imaging using low numerical aperture (NA) objectives,
overcoming the traditional resolution constraints of DUV micro-
scopy.60 The FP algorithm enables computational correction of aber-
rations inherent in DUV optics, improving image quality without
complex optical components. Moreover, DUV-FP provides quan-
titative phase imaging,35,36 offering additional information about
cellular structures and dynamics. The technique also features an
extended depth of field and digital refocusing capabilities, and when
combined with diffraction tomography, it has the potential for 3D
imaging of thick tissue sections.61–67

Conventional FP reconstructions, however, often suffer from
vignetting, pupil aberrations, stray light problems, LED intensity
variations, LED positional errors, and others.68–72 To address these
issues, we integrate the feature-domain optimization framework42,73

for enhancing the robustness and fidelity of FP reconstruction under
DUV lighting conditions. By formulating the loss function in the

feature domain, where effective image information is extracted by a
designed feature extractor, DUV-FP can bypass the undesired influ-
ence of vignetting effects, stray light, and systematic errors that often
degrade conventional FP reconstructions in the image domain.

Another challenge in conventional FP is the loss of low-
frequency phase information during the reconstruction process.74,75

This issue arises from the non-uniform phase transfer characteris-
tic inherent in microscopy systems, which impedes the conversion
of object wavefields into discernible intensity variations. To tackle
this issue, we incorporate the concept of spatially coded Fourier
ptychography (scFP)75 for developing a spatially coded DUV-FP sys-
tem. In this system, we attach a coded surface to the image sensor
in the FP setup. The spatial modulation of this coded surface72,76

ensures a uniform phase response across the entire synthetic band-
width, improving reconstruction quality and correcting refractive
index underestimation issues prevalent in conventional FP.

In this work, we demonstrate the efficacy and versatility of
DUV-FP through various biological imaging applications. Our
results establish DUV-FP as an enabling tool that opens up new
possibilities for studying biological specimens without the need
for exogenous labels or disruptive sample preparation. This tech-
nique has the potential to accelerate biomedical research by enabling
non-invasive, high-resolution investigation of cellular structures and
processes in their native state. The integration of feature-domain
optimization and spatially coded FP further enhances the capabili-
ties of DUV-FP, ensuring accurate reconstruction of complex wave-
fronts and addressing the challenges associated with quantitative
phase imaging in DUV microscopy.

II. DUV-FP WITH FEATURE-DOMAIN OPTIMIZATION
DUV-FP combines the principles of FP with deep ultraviolet

illumination to achieve enhanced imaging capabilities. As shown in
Fig. 1(a), the DUV-FP system comprises several specialized compo-
nents designed to operate effectively in the deep ultraviolet spec-
trum. The core of the system is a programmable 15 × 15 flat LED
array (Crystal IS KL265-50T-SM-WD) emitting at a central wave-
length of 265 nm. This array serves as the illumination source,
enabling sequential activation of individual LEDs to provide the
angle-varied illumination crucial for the FP technique. The optical
path includes a 5×, 0.12 NA microscope objective lens (Thorlabs
LMU-5X-UVB) built with fused silica. Due to the high costs associ-
ated with DUV optics, we employ a fused silica plano-convex lens
(Thorlabs LA4102-UV) as the tube lens. While this cost-effective
alternative introduces some aberrations compared to a specialized
tube lens, our feature-domain optimization approach allows for
computational correction of these imperfections. This combination
of affordable components and advanced computational techniques
enables high-quality imaging results while maintaining an accessi-
ble system design. Since the DUV light is invisible to the naked
eye, a microscope slide with orange fluorescence particles is used in
Fig. 1(b) to visualize the DUV illumination.

During the imaging process, each LED in the array is sequen-
tially activated, illuminating the sample from a different angle. This
angle-varied illumination is equivalent to shifting the sample’s spec-
trum in the Fourier domain. The low-NA objective lens acts as a
low-pass filter, capturing a small region of this shifted spectrum for
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FIG. 1. Deep-ultraviolet Fourier ptychography (DUV-FP) system and feature-domain optimization framework. (a) Schematic of the DUV-FP optical setup, featuring a 15 ×
15 LED array (265-nm central wavelength) as the illumination source. (b) Visualization of the DUV illumination using a fluorescent microscope slide. (c) Flowchart of the
feature-domain optimization algorithm for DUV-FP. The process includes initialization of the object spectrum and pupil function, spectrum cropping to match LED illumination
angles, feature extraction via gradient maps from both the current object estimate and measurements, calculation of feature-domain error, gradient computation for object
and pupil updates, and iterative optimization until convergence. The final output includes reconstructed intensity and refined pupil function.

each illumination angle. By acquiring images from multiple illumi-
nation angles, DUV-FP effectively expands the system’s synthetic
NA, resulting in a resolution higher than what the objective lens
alone could achieve.

In the DUV-FP setup, the nth LED element emits an inci-
dent wave that can be approximated by a tilted plane wave
eikxnxeikyny with a wavevector of ( kxn, kyn). The complex object
O(x, y) interacts with this tilted plane wave, generating an exit
field O(x, y) ⋅ eikxnxeikyny. The objective lens of the system then per-
forms a Fourier transform of this field: F{O(x, y) ⋅ eikxnxeikyny}
= Ô(kx − kxn, ky − kyn). The resulting spectrum is low-passed filtered
by the pupil aperture P(kx, ky)with a cutoff frequency of NA ⋅ 2π/λ,
where λ is the illumination wavelength. The tube lens performs an
inverse Fourier transform of the filtered spectrum and generates a
filtered wave field φn(x, y) at the detector plane. The resulting inten-
sity image In(x, y) is then captured by the detector. The forward
imaging model of the DUV-FP can be described as27,72

In(x, y) = ∣φn(x, y)∣2 = ∣F −1{P(kx, ky) ⋅ Ô(kx − kxn, ky − kyn)}∣
2
.
(1)

We can rewrite the imaging model in the following vectorized form:

In = ∣φn∣2 = ∣F −1(PMn FO)∣2. (2)

For a complex-valued object O(x, y) of dimensions A × A in Eq. (1),
the vectorized form O in Eq. (2) is a column vector with A2 elements.

F and F −1 in Eq. (2) represent the Fourier transform matrix and its
inverse, respectively. Mn in Eq. (2) is a spectrum selection matrix for
the nth LED element. It has a dimension of B2 × A2 with binary val-
ues to extract the Fourier spectrum corresponding to the nth LED
element, as shown in the “Crop spectrum” panel in Fig. 1(c). Given
our resolution enhancement factor of 4, the pupil function P is a
diagonal matrix of dimension B2 × B2 (B = A/4), with the diagonal
elements corresponding to actual pupil function values in Eq. (1).
The resulting vectorized wave field at the detector plane φn and the
captured intensity In in Eq. (2) are column vectors of dimension
B2. In the actual reconstruction process, there is no need to explic-
itly compute the matrices in Eq. (2); instead, they can be treated as
operators acting on the images.

Figure 1(c) illustrates the flowchart for the feature-domain
optimization framework, which can enhance the robustness and
fidelity of FP reconstruction under DUV lighting conditions. The
key distinction between this framework and traditional FP recov-
ery lies in the transformation of the reconstruction process from the
spatial domain to the feature domain.42,73 This approach effectively
mitigates the influence of vignetting, background stray light, and
other errors that cause intensity distribution discrepancies. With the
vectorized form in Eq. (2), we can define the feature-domain loss
function as follows:

Loss(O, P) =
N

∑
n=1
∣∇
√

In −∇∣φn∣∣ , (3)
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where ∇ represents the first-order gradient of the image, and ∣⋅ ⋅ ⋅∣
denotes ℓ1 norm. To efficiently leverage the information from the
captured data, a mini-batch strategy is employed, with the index n
ranging from 1 to N to facilitate stochastic optimization. The loss
function in Eq. (3) quantifies the feature domain error by comparing
the gradients of the measured amplitude, ∇

√
In, with the gradients

of the amplitudes of the predicted light wave at the detector plane,
∇∣φn∣. For the reconstruction process, we aim to find a revision to
the complex object and the pupil function that reduces this error.
The reconstruction algorithm proceeds by calculating the gradients
of the loss function with respect to the sample O and pupil function
P, as given by the following equations:42

∂Loss
∂O

= F †
N

∑
n=1

MT
n P†F(Diag[∇T sign (∇

√
In −∇∣φn∣)]

φn

∣φn∣
),

(4)

∂Loss
∂P

=
N

∑
n=1
(Mn FO)†F(Diag[∇T sign (∇

√
In −∇∣φn∣)]

φn

∣φn∣
),

(5)

where † denotes the conjugate transpose. These gradients guide
the iterative updates to O and P, which are performed using the
RMSProp optimizer,77 a variant of stochastic gradient descent that
adaptively adjusts learning rates based on the historical gradi-
ent magnitudes. Our algorithm is considered converged when the
change in the cost function falls below a threshold of 0.1%. Alterna-
tively, like other common Fourier ptychographic implementations,
we can simply iterate the process for a predefined number of loops,
typically around 10–20. Upon convergence, the algorithm yields
high-quality reconstructions of the sample’s complex value and the
refined pupil function, effectively overcoming limitations associated
with traditional image-domain phase retrieval methods.

III. IMAGING PERFORMANCE OF DUV-FP
To evaluate the capabilities of our DUV-FP system, we con-

ducted a performance analysis using a USAF resolution target.
This standardized target enables precise quantification of resolution
improvements and facilitates direct comparison with other com-
mon state-of-the-art reconstruction algorithms. Our experimental
setup consisted of a 15 × 15 DUV LED array positioned ∼75 mm
from the sample, creating a maximum synthetic NA of ∼0.5. For

FIG. 2. Imaging performance characterization using a USAF resolution target. (a1) The raw image captured under illumination from the central LED element. (a2) A zoomed-
in view of the region marked by the white square in (a1), showing the resolvable features of the target. One can resolve the 1.74-μm linewidth of group 8, element 2
element. (b1)–(b4) Zoomed-in views of the recovered high-resolution images using different reconstruction algorithms: (b1) ePIE, (b2) qNewton, (b3) ADMM, and (b4) the
feature-domain framework. (c1)–(c4) Corresponding recovered pupil functions for each reconstruction algorithm. (d1)–(d4) Intensity line traces along the red lines indicated in
(b1)–(b4), demonstrating the resolution improvement achieved by each method. The feature-domain framework in (d4) exhibits the best resolution, resolving features down
to group 10, element 4, with a 345-nm linewidth. The theoretical resolution of reconstruction corresponds to ∼330 nm linewidth on the target. The demonstrated resolution is
in good agreement with the theoretical value.
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image acquisition, we sequentially activated LEDs corresponding
to brightfield illumination, then skipped every other LED element
for darkfield illumination. This approach resulted in the capture of
∼120 images. While it is possible to further reduce the number of
acquisitions, our primary focus in this work was to demonstrate
the superior label-free imaging contrast achievable with DUV-FP.
Future directions for optimizing imaging speed and quality include
exploring ring-format LED arrangements, angling the LED element
toward the sample, developing adaptive illumination strategies, and
investigating multiplexed illumination techniques.78–82

It is important to note that the spectral bandwidth of our
DUV LED source, ∼15 nm, can affect image quality and resolu-
tion. This bandwidth introduces a degree of temporal incoherence,
potentially causing slight blurring in the raw images. However,
our feature-domain optimization framework demonstrates inherent
robustness to such issues. Future improvements could involve mod-
eling the blurring effect using multiple coherent states,83,84 more
accurately accounting for the imaging system’s partial coherence,
and potentially enhancing resolution and image quality.

Figure 2(a1) presents the raw image obtained under illumi-
nation from the central LED, with a magnified view in Fig. 2(a2),
where we can resolve the 1.74-μm linewidth on group 8, element
2. To benchmark the feature-domain framework in DUV-FP, we
compared its performance against other common FP recovery meth-
ods, namely extended ptychographical iterative engine (ePIE),85,86

quasi-Newton (qNewton),80 and alternating direction method of
multipliers (ADMMs).87 Figures 2(b1)–2(b4) showcase the recon-
structed images from each method, while Figs. 2(c1)–2(c4) display
their corresponding recovered pupil functions. Quantitative anal-
ysis of the reconstruction quality was performed by generating
intensity line traces for group 10 of the recovered target images

[Figs. 2(d1)–2(d4)]. This analysis reveals the performance of the
feature-domain optimization framework that accurately resolves
features down to group 10, element 4, corresponding to a linewidth
of 345 nm. The apparent underperformance of the conventional
image-domain methods can be attributed to their sensitivity to
systematic errors, such as residual aberrations and misalignments
in our setup. In particular, recovering the correct pupil aberra-
tion using image-domain methods is challenging. In contrast, our
feature-domain approach demonstrates robust handling of com-
plex aberrations and systematic errors inherent in DUV microscopy.
This performance highlights the method’s resilience to experimental
imperfections that may more severely affect image-domain methods
under similar conditions.

IV. LABEL-FREE CHEMICAL IMAGING
The use of 265 nm illumination in our DUV-FP system is

particularly advantageous for imaging biological samples, as it coin-
cides with the absorption peak of nucleic acids, enhancing contrast
and resolution of nuclear features. To demonstrate the potential of
DUV-FP for quantitative, label-free chemical imaging of biological
samples, we applied our system to three distinct specimen types:
unstained HeLa cells, unstained blood smears, and unstained pathol-
ogy sections. This diverse selection showcases the versatility and
effectiveness of DUV-FP across various biological contexts.

We first recovered wide-field, high-resolution images of
unstained HeLa cells. Figure 3(a) presents the reconstructed inten-
sity image, showcasing the technique’s ability to visualize detailed
morphological information without the need for exogenous contrast
agents. Notably, the DUV-FP reconstructions reveal well-defined
nuclear boundaries, which are barely discernible in conventional

FIG. 3. High-resolution reconstruction of unstained HeLa cells using DUV-FP. (a) Reconstructed intensity image of the HeLa cells. (b1) and (c1) The zoomed-in views of the
recovered high-resolution image. (b2) and (c2) The corresponding conventional light microscope images of the same regions. (b3) and (c3) Contrast comparisons between
the line traces in the DUV-FP recovered images and the conventional light microscope images. The DUV-FP images exhibit significant contrast enhancement thanks to the
intrinsic absorption of biomolecules at the DUV wavelength region.
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light microscope images using a regular 20×, 0.75 NA objective lens.
The high contrast of nuclear features can be attributed to the strong
absorption of 265 nm light by nucleic acids, resulting in a substan-
tial difference in optical density between nuclear and cytoplasmic
regions. Zoomed-in views of two regions of interest further illustrate
the superior contrast achieved by DUV-FP, as shown in Figs. 3(b1)
and 3(c1). In contrast, Figs. 3(b2) and 3(c2) depict images captured
by a conventional visible light microscope, where little contrast is
observed in the unstained sample.

To quantify the imaging performance, we compared the con-
trast of line traces drawn across nuclear features in the DUV-FP
reconstructions and the conventional light microscope images. The
contrast was calculated using the following equation:

Contrast = Imax − Imin

Imax + Imin
. (6)

In the region of Fig. 3(b1), the DUV-FP reconstruction achieved
a contrast of 0.91, significantly higher than the 0.08 contrast of
the conventional microscope image in Fig. 3(b3). Similarly, in the
region of Fig. 3(c1), the DUV-FP reconstruction yielded a con-
trast of 0.99, surpassing the 0.08 contrast of the conventional
microscope image in Fig. 3(c3). These results underscore the supe-
rior contrast-enhancing capabilities of DUV-FP, particularly for
visualizing nuclear structures in unstained biological samples.

We next applied DUV-FP to imaging unstained fish blood
smears, which are particularly interesting due to the presence of
nuclei in fish red blood cells.88 Figure 4(a) presents the reconstructed
intensity image, showcasing a dense distribution of fish red blood
cells, each containing a distinct nucleus. Detailed analysis of two
regions of interest is presented in Figs. 4(b1) and 4(c1), enabling

clear visualization of nuclear features within individual cells. In con-
trast, corresponding conventional visible light microscope images
[Figs. 4(b2) and 4(c2)] fail to provide sufficient resolution and con-
trast to discern these details. To quantitatively assess the nuclear
features, we employed a dynamic threshold segmentation algo-
rithm to precisely delineate the nuclei in the DUV-FP reconstructed
images. The segmentation results in Figs. 4(b1) and 4(c1) demon-
strate the algorithm’s ability to accurately extract nuclear boundaries
in the presence of varying contrast. This segmentation enables the
quantification of nuclear size, shape, and chromatin distribution,
which are essential parameters for understanding the functional and
developmental aspects of fish red blood cells.

The superior contrast achieved by DUV-FP is also evident in
this experiment when comparing line traces across nuclear features
in the reconstructed images and their conventional light microscope
counterparts. Figure 4(b3) presents the intensity profiles along a line
crossing a nucleus in Fig. 4(b1) with the DUV-FP reconstruction
yielding a contrast of 0.81, substantially higher than the 0.07 con-
trast observed in the corresponding conventional light microscope
image. Similarly, Fig. 4(c3) demonstrates the enhanced contrast of
0.67, surpassing the 0.05 contrast obtained from the conventional
light microscope image of the same region. These results under-
score the remarkable contrast enhancement provided by DUV-FP,
which is crucial for the detailed analysis of nuclear morphology and
chromatin distribution within unstained live cells.

We also applied our technique to the imaging of unstained
pathology sections. Figure 5 showcases the application of DUV-
FP for high-resolution, label-free imaging of two distinct unstained
pathology sections (skin tissue sections). The reconstructed inten-
sity images are displayed in Figs. 5(a1) and 5(b1), revealing fine

FIG. 4. High-resolution reconstruction of an unstained blood smear using DUV-FP. (a) Reconstructed intensity image of the fish blood cells. (b1) and (c1) The zoomed-in
views of the recovered high-resolution image with automatic cell nuclear segmentation, demonstrating the technique’s precision in delineating nuclear boundaries. (b2) and
(c2) The corresponding conventional light microscope images of the same regions. (b3) and (c3) Contrast comparison between the line traces in the DUV-FP recovered
images and the conventional light microscope images.
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FIG. 5. High-resolution reconstruction of an unstained pathology section using DUV-FP. (a1) and (b1) The reconstructed intensity images of two different pathology sections.
(a2) and (b2) The zoomed-in views of the intensity images (a1) and (b1). (a3) and (b3) The corresponding conventional light microscope images of the same regions as (a2)
and (b2). (a4) and (b4) Contrast comparison between the intensity line traces in the DUV-FP recovered images and the conventional light microscope images.

morphological details that were previously unresolvable with stan-
dard light microscopy. Closer inspection within these sections in
Figs. 5(a2) and 5(b2) highlights the high-resolution intensity images
recovered through DUV-FP. For comparative analysis, Figs. 5(a3)
and 5(b3) show the corresponding conventional light microscope
images of the regions, which are captured by a 20×, 0.75 NA objec-
tive lens. These conventional microscope images serve as a baseline,
illustrating the limitations in image contrast of light microscopy
when imaging unstained tissue sections. The DUV-FP images show
a remarkable improvement in contrast, as demonstrated by the con-
trast values calculated from line traces across the images. Specifically,
the DUV-FP image of the first section, shown in Fig. 5(a2), achieves
a contrast value of 0.55, whereas the corresponding microscope
image in Fig. 5(a3) yields a significantly lower contrast of 0.03. Sim-
ilarly, the second section’s DUV-FP image, presented in Fig. 5(b2),
exhibits a contrast value of 0.66, compared to 0.07 for the micro-
scope image shown in Fig. 5(b3). These results highlight the superior
contrast-enhancing capabilities of DUV-FP in visualizing unstained
pathology sections.

The high-resolution, label-free imaging capability of DUV-
FP holds great promise for various clinical applications, particu-
larly in the context of rapid, intraoperative pathology consultation.
By enabling the visualization of cellular and subcellular details in
unstained tissue sections, DUV-FP could potentially accelerate the
diagnostic process and guide surgical decision-making in real time.
The enhanced contrast and resolution provided by DUV-FP may
also facilitate the detection of subtle morphological abnormalities
that might be missed with conventional microscopy techniques,
ultimately improving the accuracy and reliability of pathological
assessment.

In the current study, we employed a low-NA objective lens
for image acquisition to demonstrate the resolution enhancement
capability of DUV-FP. Looking ahead, the implementation of DUV-
FP with a high-NA objective lens offers the potential to further
push the boundaries of resolution. By combining the synthetic aper-
ture approach of FP with a high NA objective, it may be possible
to achieve an effective NA of up to ∼2,32,89,90 potentially enabling
unprecedented levels of detail in label-free biological imaging. This
advancement could open new avenues for studying subcellular
structures and dynamics at nanoscale resolution, further expanding
the utility of DUV-FP in both research and clinical settings.

V. QUANTITATIVE PHASE IMAGING WITH SPATIALLY
CODED DUV-FP

Conventional FP faces challenges in recovering accurate quan-
titative phase information, particularly for low spatial frequencies.
This limitation stems from the non-uniform phase transfer charac-
teristic inherent in microscopy systems. When imaging a specimen
with any linear phase ramp, which corresponds to a single spatial fre-
quency in Fourier space, conventional FP and other common phase
retrieval approaches produce intensity images with constant values
across different illumination angles.75 The phase transfer function
(PTF) of conventional FP is essentially zero for any given spatial fre-
quency of phase or a combination thereof. This means that phase
information at certain spatial frequencies is permanently lost dur-
ing data acquisition and cannot be recovered post-measurement.
As a result, conventional FP struggles to provide true quantitative
phase imaging, particularly for slowly varying phase objects or large,
contiguous structures.
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To address these limitations, we can integrate the concept
of coded ptychography76,91 with DUV-FP, termed spatially coded
DUV-FP, to enable quantitative phase imaging with a uniform
phase response. This is accomplished through the spatial modu-
lation introduced by a coded surface on top of the image sensor,
which effectively converts object phase information into detectable
intensity variations and enables the recovery of low-frequency phase
information that is typically lost in conventional Fourier ptychog-
raphy.75 There is no specific frequency relationship between the
coded surface and the sample’s frequencies in this implemen-
tation. The coded surface in our setup primarily functions to
encode the wavefront rather than to shift high-resolution informa-
tion to a low-resolution passband, as is the case in lensless coded
ptychography.76,91 The resolution limit in our system is still deter-
mined by the incident angle of illumination and the NA of the
objective lens. The coded surface helps to ensure a uniform phase
response across the synthetic bandwidth, enabling accurate quanti-
tative phase imaging but does not directly alter the system’s reso-
lution limit. To characterize the transmission profile of the coded
layer, we performed a calibration experiment using a blood smear
sample as the object. By translating the blood smear to 1521 locations
and capturing the corresponding measurements, we pre-calibrated
the complex modulation profile of the coded layer. These pre-
calibrated modulation profiles serve as the initial guess of the coded
layer in the feature-domain Fourier ptychographic reconstruction
process.

The spatially coded DUV-FP reconstruction algorithm, illus-
trated in Fig. 6, extends our feature-domain optimization frame-
work to incorporate the coded surface modulation. The process
begins with the initialization of the object spectrum and pupil func-
tion. Subsequently, the algorithm crops the spectrum based on the
LED positions, simulating the angle-varied illumination character-
istic of FP. A key innovation in spatially coded DUV-FP is the
coded surface modulation step. After the cropped spectrum passes
through the pupil function, the resulting exit wavefront is mod-
ulated by the coded surface, introducing a spatially coded phase
and amplitude modulation. This step is crucial for converting phase
information into detectable intensity variations, enabling the recov-
ery of low-frequency phase content typically lost in conventional
FP. The algorithm then extracts features from both the forward
model predictions and the actual measurements. We use gradient
maps as features, which effectively capture structural information
while being less sensitive to global intensity variations. This feature
extraction step is pivotal in mitigating the effects of vignetting, back-
ground stray light, and other systematic errors that often plague
conventional FP reconstructions. The core of the optimization lies
in minimizing the feature-domain error between the predicted and
measured data. This error drives the calculation of gradients with
respect to the object, coded surface, and pupil function. These gra-
dients guide the iterative updates of these parameters, progressively
refining the reconstruction. The algorithm iterates through this pro-
cess until convergence, producing high-fidelity reconstructions of

FIG. 6. Extending the feature-domain optimization framework for spatially coded DUV-FP. The algorithm flow includes (1) initialization of spectrum and pupil function,
(2) spectrum cropping based on LED positions, (3) coded surface modulation of the exit wavefront, (4) gradient map generation from both current object estimate and
measurements, (5) calculation of feature-domain error, and (6) gradient update for object, coded surface, and pupil. The final output includes the reconstructed intensity and
phase of the sample, refined pupil function, and updated coded surface profile. This framework enables high-fidelity reconstruction by leveraging spatially coded detection
and feature-domain optimization, addressing limitations in conventional FP for quantitative phase imaging.
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the sample’s intensity and phase, along with refined estimates of the
pupil function and coded surface profile (also refer to the Appendix).

The effectiveness of spatially coded FP for quantitative phase
imaging has been previously demonstrated,75 providing compre-

hensive evidence of the technique’s ability to achieve a uni-
form phase response and accurate QPI across a wide range of
spatial frequencies. However, in the DUV region, there are no
commercially available quantitative phase targets, as conventional

FIG. 7. Comparison of phase reconstructions for HeLa cells using spatially coded DUV-FP and conventional DUV-FP. (a) and (e) Phase maps of two HeLa cell samples,
with the left half reconstructed by spatially coded DUV-FP and the right half by conventional DUV-FP. The scales for phase are different for the two approaches. Quantitative
contrast comparison can be found in line traces. (b)–(d) and (f)–(h) Zoomed-in views of selected regions of interest from (a) and (e), showing phase reconstructions by
spatially coded DUV-FP (b1)–(h1) and conventional DUV-FP (b2)–(h2). (b3)–(h3) Quantitative comparison of phase profiles along the indicated line traces (red for spatially
coded DUV-FP, blue for conventional DUV-FP), demonstrating the superior phase contrast and resolution achieved by spatially coded DUV-FP.
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phase targets are made on regular glass slides, which are opaque
under DUV light illumination. To demonstrate the effectiveness of
spatially coded DUV-FP, we performed a phase imaging experiment
on HeLa cells. Figure 7 presents the recovered phase maps of two
HeLa cell sections, with each image split to directly compare recon-
structions from conventional DUV-FP and spatially coded DUV-FP.
The spatially coded DUV-FP method consistently produces phase
maps with superior contrast and detail, revealing slowly varying
phase features across all examined regions. Figures 7(b)–7(d) and
7(f)–7(h) provide zoomed-in views of selected regions of interest,
allowing for a more detailed comparison between the two methods.
The spatially coded DUV-FP reconstructions in Figs. 7(b1)–7(h1)
show significantly enhanced phase contrast compared to conven-
tional DUV-FP in Figs. 7(b2)–7(h2), particularly in resolving intra-
cellular structures and cell boundaries. Analysis of phase profiles in
Figs. 7(b3)–7(h3) corroborates these visual observations. The red
lines represent spatially coded DUV-FP, while the blue lines show
conventional DUV-FP results. Across all regions, spatially coded
DUV-FP consistently achieves higher phase shifts with slow-varying
phase profiles. These results underscore the potential of spatially
coded DUV-FP for enhancing label-free, high-resolution studies of
cellular morphology.

VI. DISCUSSION AND CONCLUSION
The development of label-free imaging techniques has long

been a crucial goal in biological and medical research, driven by
the need to visualize specimens in their native state without the
potential disruptions caused by stains or fluorescent markers. Our
work addresses the limitations of conventional microscopy methods
through the DUV-FP approach. DUV-FP combines the principles of
FP with deep ultraviolet illumination, leveraging a feature-domain
optimization framework to overcome challenges such as vignetting
and systematic errors that have historically plagued FP reconstruc-
tions. This approach enables high-resolution, high-contrast imaging
of unstained biological samples, as demonstrated in our results with
HeLa cells, blood smears, and pathology sections. The significant
improvements in contrast and resolution compared to conventional
microscopy underscore the potential of DUV-FP in revealing fine
cellular structures without the need for staining.

The applications of DUV-FP span a wide range of biomed-
ical research and clinical diagnostics. For instance, the high-
contrast imaging of nuclear structures without staining offers
new possibilities for studying chromatin organization and nuclear
dynamics. In pathology, this technique could revolutionize clinical
practice by enabling rapid, intraoperative consultation without time-
consuming staining procedures, potentially improving patient out-
comes through faster and more informed decision-making during
surgeries.

Looking ahead, several avenues for further development and
application of DUV-FP warrant exploration. Advancing the tech-
nique to achieve even higher resolution could expand its utility in
digital pathology and hematology analysis. This optimization may
involve exploring DUV illumination with larger incident angles
and advanced computational methods, such as neural network-
based image reconstruction92–95 and virtual staining,14,96 to further
enhance image quality, processing speed, and imaging workflow.

Another area for improvement is processing speed. In our cur-
rent implementation, not yet optimized for parallel computation,
the feature-domain approach typically requires 2–5 times longer
processing time than conventional ePIE methods. Graphics process-
ing unit (GPU) acceleration is a promising avenue to address this,
as the parallel processing capabilities of GPUs are well-suited to
compute a batch of gradients in our algorithm. We anticipate that
a well-optimized GPU implementation could significantly reduce
computation time. Another important aspect for future research
is the investigation and mitigation of potential photodamage from
deep ultraviolet exposure, particularly for live-cell applications.
Developing strategies to minimize photodamage, such as pulsed illu-
mination or the use of protective antioxidants, will be interesting
for establishing safe imaging protocols and extending the applicabil-
ity of DUV-FP to long-term live-cell imaging.97 Beyond biological
applications, DUV-FP could have significant applications in foren-
sic science. For example, it can be combined with ptychographic
endoscopy83 to image regions that are difficult to reach. The high-
resolution and label-free nature of DUV illumination could aid in
the detection and analysis of minute traces of biological or chemical
evidence.
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APPENDIX: FORWARD MODEL AND
FEATURE-DOMAIN LOSS FUNCTION FOR SPATIALLY
CODED DUV-FP

Spatially coded DUV-FP incorporates a coded layer on the
image sensor. The distance between the coded layer and the image
sensor is d2. This coded layer is crucial for recovering low-frequency
information, which is often lost in conventional FP techniques.
Assuming the distance between the sample O and the coded surface
profile C is d1, we can express the forward model as

In = ∣φn∣2 = ∣F †D2 FCF †D1PMn FO∣
2
, (A1)

where F and F † represent the Fourier transform and its inverse,
while Mn denotes the selection matrix for the nth LED illumination
out of a total of N LEDs, determined by the frequency domain coor-
dinates corresponding to each LED element. φn represents the n-th
exit wavefront inferred by the forward model for the nth LED. D1
and D2 represent the free space propagation operation that prop-
agates the wavefront backward by distances d1 and d2, respectively.
This forward model illustrates the physical process of spatially coded
DUV-FP: the spectrum selected by different selection matrices is
low-pass filtered by the pupil function, and the resulting wavefront
is propagated to the coded surface. After interacting with the coded
surface, it is then propagated to the sensor plane to generate the
intensity measurement.

The feature-domain loss function for spatially coded DUV-FP
can be defined as

Loss(O, P, C) =
N

∑
n=1
∣∇
√

In −∇∣φn∣∣. (A2)

Here, ∇ represents the first-order gradient of the image. This loss
function quantifies the feature domain error by comparing the gra-
dients of the measured amplitude, ∇

√
In, with the gradients of the

amplitudes of the predicted exit wavefronts,∇∣φn∣.
To update the sample O, pupil function P, and coded surface

profile C using the RMSProp optimizer, we need to calculate their
respective gradients,

∂Loss
∂O

= F †
N

∑
n=1

MT
n P†D†

1 FC†F †D†
2 F

× (Diag[∇T sign (∇
√

In −∇∣φn∣)]
φn

∣φn∣
), (A3)

∂Loss
∂P

=
N

∑
n=1
(Mn FO)†D†

1 FC†F †D†
2 F

× (Diag[∇T sign (∇
√

In −∇∣φn∣)]
φn

∣φn∣
), (A4)

∂Loss
∂C

=
N

∑
n=1
(F †D1PMn FO)

†
F †D†

2 F

× (Diag[∇T sign (∇
√

In −∇∣φn∣)]
φn

∣φn∣
). (A5)

With these gradients, the RMSProp optimizer will continue to iter-
atively optimize the sample O, pupil function P, and coded layer
profile C until convergence, ultimately providing the final recon-
structions of these unknowns. Figure 8 shows the recovered coded
surface profile on the detector.

FIG. 8. Recovered complex modulation profile of the coded surface C. (a1) The recovered amplitude modulation profile. (a2) The recovered phase modulation profile.
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