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Abstract. Should we build our own phylogenetic trees based on gene sequence data, or can
we simply use available synthesis phylogenies? This is a fundamental question that any study
involving a phylogenetic framework must face at the beginning of the project. Building a phy-
logeny from gene sequence data (purpose-built phylogeny) requires more effort, expertise, and
cost than subsetting an already available phylogeny (synthesis-based phylogeny). However, we
still lack a comparison of how these two approaches to building phylogenetic trees influence
common community phylogenetic analyses such as comparing community phylogenetic diver-
sity and estimating trait phylogenetic signal. Here, we generated three purpose-built phyloge-
nies and their corresponding synthesis-based trees (two from Phylomatic and one from the
Open Tree of Life, OTL). We simulated 1,000 communities and 12,000 continuous traits along
each purpose-built phylogeny. We then compared the effects of different trees on estimates of
phylogenetic diversity (alpha and beta) and phylogenetic signal (Pagel’s k and Blomberg’s K).
Synthesis-based phylogenies generally yielded higher estimates of phylogenetic diversity when
compared to purpose-built phylogenies. However, resulting measures of phylogenetic diversity
from both types of phylogenies were highly correlated (Spearman’s q > 0.8 in most cases).
Mean pairwise distance (both alpha and beta) is the index that is most robust to the differences
in tree construction that we tested. Measures of phylogenetic diversity based on the OTL
showed the highest correlation with measures based on the purpose-built phylogenies. Trait
phylogenetic signal estimated with synthesis-based phylogenies, especially from the OTL, was
also highly correlated with estimates of Blomberg’s K or close to Pagel’s k from purpose-built
phylogenies when traits were simulated under Brownian motion. For commonly employed
community phylogenetic analyses, our results justify taking advantage of recently developed
and continuously improving synthesis trees, especially the Open Tree of Life.

Key words: alpha diversity; beta diversity; community phylogenetic structure; open tree of life;
phylogenetic diversity; phylogenetic signal; trait.

INTRODUCTION

Phylogenies describe the evolutionary history of spe-
cies and provide important tools to study ecological and
evolutionary questions (Baum and Smith 2012).
Recently, phylogenies have been used to understand pat-
terns of community assembly better. The phylogenetic
structure of ecological communities can lend insight into
the processes by which local communities assemble from
regional species pools (Webb et al. 2002). For example,
if closely related species are more likely to co-occur in
the same habitats, we might suspect that these species

share traits that allow them to have a positive growth
rate under the environmental conditions in these habi-
tats. To test whether closely related species are more or
less likely to co-occur, one common approach is to calcu-
late the phylogenetic diversity of communities and then
compare the observed phylogenetic diversity with those
expected by chance through different null models. There
is a growing body of literature using this community
phylogenetic approach, documenting the phylogenetic
structure of ecological communities across taxa and
scales (Webb et al. 2002, Cavender-Bares et al. 2006,
Helmus et al. 2007, Vamosi et al. 2009, Cardillo 2011,
Smith et al. 2014, Li et al. 2017, Marx et al. 2017). To
complementing analyses of phylogenetic community
structure, phylogenetic signals of ecologically important
traits may also be tested (Cavender-Bares and Reich
2012, Li et al. 2017); traits that have strong phylogenetic
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signal (i.e., closely related species have more similar trait
values than expected by chance) can then provide
insights into potential causes of the observed phyloge-
netic community structure (Webb et al. 2002, Cavender-
Bares et al. 2009, Vamosi et al. 2009). Therefore,
comparing community phylogenetic diversity and
estimating trait phylogenetic signals are two key compo-
nents of community phylogenetic analyses.
As an important facet of biodiversity, phylogenetic

diversity (Faith 1992) also plays a crucial role in conser-
vation biology by complementing more traditional taxo-
nomic measures of biodiversity (e.g., species richness).
For example, two communities can have the same num-
ber of species but differ drastically in their phylogenetic
diversity depending on relatedness of the constituent
species. The community with higher phylogenetic diver-
sity, representing taxa more distantly related to each
other, is expected to be more stable and productive given
its greater evolutionary potential to adapt to changing
environmental conditions (Forest et al. 2007, Maherali
and Klironomos 2007, Lavergne et al. 2010). Therefore,
all else being equal, a community with higher phyloge-
netic diversity should have higher conservation priority.
The information gained from community phylogenetic

analyses is only as good as the species composition data
and the phylogenies from which they are generated. In
this manuscript, we explore how methods of tree genera-
tion affect phylogenetic diversity metrics and phyloge-
netic signal tests. Generally, ecologists and evolutionary
biologists use two common approaches to build phyloge-
nies for community phylogenetic analyses. The first
approach is for a researcher to generate his/her own phy-
logenies for a set of target species based on gene
sequence data. We refer to such phylogenies as purpose-
built phylogenies. The second approach is to derive phy-
logenies based on available synthesis trees, such as the
Open Tree of Life (https://tree.opentreeoflife.org/open
tree), or classifications, such as the Angiosperm Phy-
logeny Group (APG IV et al. 2016), by pruning or
sampling, respectively, from the resource so that the phy-
logeny contains only the target species. We refer to such
phylogenies as synthesis-based phylogenies. To a certain
extent, one can argue that a synthesis tree could be a
purpose-built tree for a larger set of species, but the
sources for deriving the synthesis-based trees vary in
scope, methodology, assumptions, and content (see
Materials and Methods for further description of source
trees for synthesis-based phylogenies). From a research-
er’s perspective, a purpose-built phylogeny is a major
undertaking but offers potential to utilize taxonomic
and phylogenetic expertise often needed in order to suc-
cessfully construct trees. Synthesis trees, as compilations
of peer-reviewed phylogenetic hypotheses, offer an
immediately available, but typically less customizable
output to researchers. We thus use these two terms (pur-
pose-built and synthesis-based) to categorize the under-
lying methods and researcher cost–benefits to obtain
phylogenies.

Generating a purpose-built tree requires more effort,
expertise, and cost than subsetting a well-developed
phylogeny or sampling from a classification. Generally,
purpose-built trees are constructed by using newly gener-
ated sequence data and then combining those data with
data already available on GenBank, although in many
cases the researcher may simply use what is in GenBank.
The first step requires gathering tissue for taxa of interest
either from field or museum collections, extracting DNA
from these tissue samples, and then identifying, amplify-
ing, and sequencing appropriate loci. The gene regions
selected are typically based on the taxa of interest and
discipline-accepted standards. Resulting sequences are
aligned in programs such as MUSCLE (Edgar 2004).
Sequences are also commonly sourced entirely or as an
addition to sequence data already in databases like Gen-
Bank with the help of computational pipelines such as
PHLAWD (Smith et al. 2009). Appropriate models of
evolution for phylogenetic estimation are determined
using programs like PartitionFinder (Lanfear et al. 2012)
such that each gene region in a set of concatenated
sequences can be treated separately. The most appropriate
models of nucleotide evolution are used to estimate phy-
logenies in maximum likelihood (ML) and/or Bayesian
inference (BI) frameworks in programs like RAxML (Sta-
matakis 2014), MrBayes (Ronquist and Huelsenbeck
2003), and BEAST (Drummond and Rambaut 2007).
Depending on the desired application, it may be neces-
sary to impose topological constraints to ease phyloge-
netic inference or fossil constraints to scale branch
lengths to time. Statistics for clade support are calculated
using bootstrap or jack-knifing techniques in an ML
framework, and posterior probabilities in BI. Despite the
fact that multiple software programs are available to help
automate these processes (e.g., phyloGenerator [Pearse
and Purvis 2013], SUPERSMART [Antonelli et al.
2017]), many decisions at different steps must be made
based on expert knowledge (e.g., Which genes to select?
How to select models? Which software program to use?
How to estimate divergence time?).
Because of the effort, expertise, and cost required to

generate purpose-built phylogenies, many community
phylogenetic studies use a second approach: deriving
phylogenies from available synthesis trees. Over the past
few decades, tremendous advances in computational
tools and increasingly available genetic sequence data
have led to vastly improved phylogenies for plants
(Zanne et al. 2014), birds (Jetz et al. 2012), fishes
(Rabosky et al. 2013), and mammals (Bininda-Emonds
et al. 2007, Fritz et al. 2009). Such advances in phyloge-
netics have facilitated the synthesis of all available infor-
mation to make a comprehensive tree of life on Earth
(Hinchliff et al. 2015). With these available synthesis
trees and software programs such as Phylomatic (Webb
and Donoghue 2005), ecologists can derive phylogenies
for the species or communities they are interested in with
less effort and limited cost. When different studies use
the same synthesis tree to derive their phylogenies, their
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phylogenetic diversity results are comparable. Impor-
tantly, this may not be the case if they use purpose-built
phylogenies. In addition, these approaches may avoid
some issues when generating phylogenies from sequence
data such as taxon sampling effects (Park et al. 2018).
However, the tractability of phylogenies based on syn-
thesis trees often comes with the cost of decreased reso-
lution (e.g., increase in polytomies) of the resulting
phylogenies compared with purpose-built ones; such
trees also have taxonomic gaps, which are often filled
using existing classifications to become comprehensive.
Previous studies have demonstrated that most phylo-

genetic diversity (Swenson 2009, Patrick and Stevens
2014, Boyle and Adamowicz 2015) and phylogenetic sig-
nal (Molina-Venegas and Rodriguez 2017) metrics are
robust to terminal polytomies. These studies, however,
used simulated phylogenies or compared different poste-
rior purpose-built phylogenies. Therefore, they provided
little practical advice about selecting between purpose-
built and synthesis-based phylogenies for ecological
studies. In this study, we compared phylogenetic diver-
sity and phylogenetic signal metrics calculated from pur-
pose-built phylogenies and corresponding phylogenies
derived from three commonly used sources. It is impor-
tant to note that we do not treat the purpose-built phylo-
genies as a gold standard, and we recognize that
sampling bias of both taxa and genes, combined with
variation introduced through the tree-building process
(e.g., tree reconstruction methods, assessment of
support, etc.), can compromise the accuracy of purpose-
built phylogenies. However, these issues—and others—
apply also to the source trees used for synthesis-based
phylogenies, although perhaps at different scales. Our
aim here is to quantify the influence of the two tree con-
struction techniques on measures of phylogenetic diver-
sity and phylogenetic signal that are commonly
employed in the rapidly growing field of community phy-
logenetics.

MATERIALS AND METHODS

Purpose-built phylogenies

We collected three “purpose-built” phylogenies from
published sources. The first purpose-built phylogeny is
for 540 plant taxa in the globally critically imperiled pine
rockland ecosystem in South Florida, USA (Trotta et al.
2018). The second phylogeny consists of 1,064 alpine
plant taxa in France (Marx et al. 2017). The third pur-
pose-built phylogeny has 1,548 plant species with distri-
butions in Florida, USA (Allen et al. 2019). All three
phylogenies were estimated from sequence data and were
time-calibrated (i.e., chronograms). When using time-
calibrated phylogenies, phylogenetic diversity measures
the amount of evolution in time units, and this is the
measure we focus on here. For details regarding the phy-
logenetic tree building processes employed, see
Appendix S1: Section S1.

Commonly available phylogenies

For each of the three purpose-built phylogenies, we
generated four phylogenies based on different sources.
The first two were generated using Phylomatic v4.2
(Webb and Donoghue 2005) using two different back-
bone trees: R20120829 (APG III 2009) and zanne2014
(Zanne et al. 2014). We call the first phylogeny tree_apg
and the second one tree_zanne. The phylogeny tree_-
zanne has branch lengths because the backbone tree
zanne2014 was inferred from seven gene regions for
>32k plant species and was time calibrated using “con-
gruification” (Eastman et al. 2013). In contrast, the phy-
logeny tree_apg has no branch lengths and is based, not
on the result of a phylogenetic analysis per se, but on a
series of phylogenetic analyses as summarized by the
Angiosperm Phylogeny Group III (2009). The APG clas-
sification is now updated as APG IV (2016), but Phylo-
matic uses APG III (and the differences between APG
III and APG IV are small). To add branch lengths, we
used the bladj algorithm in Phylocom (Webb et al. 2008)
to convert the tree to a chronogram using a set of the
minimum node ages given by Wikstr€om et al. (2001).
The third phylogeny was derived from the Open Tree

of Life (Hinchliff et al. 2015), a recent comprehensive
phylogeny for ~2.3 million named species of life, includ-
ing all eukaryotes, Archaea, and Bacteria. This phy-
logeny, which we call tree_otl, is a supertree constructed
from available source trees, with missing species added
based on taxonomy; this resulting tree therefore contains
many polytomies and does not include branch lengths.
To calculate branch lengths, we first identified descen-
dants for each of the internal nodes in tree_otl and then
searched for their divergence time in the TimeTree of
Life database (Kumar et al. 2017). The TimeTree data-
base was compiled based on 3,163 studies and 97,085
species (as of 10 October 2017). For a pair of species
included in this database, we extracted their average
divergence time from all previous studies. Using the
divergence date of internal nodes from the TimeTree
database, we then determined branch lengths of tree_otl
using Phylocom (Webb et al. 2008) and its bladj func-
tion. Recently, an updated phylogeny with branch
lengths for seed plants based on the Open Tree of Life
was published (Smith and Brown 2018); however, we did
not use this seed plant phylogeny as a source because it
contains only seed plants, and our purpose-built phylo-
genies also contain other clades of vascular plants.
The fourth phylogeny was a random coalescent phy-

logeny generated using the rcoal function from the R
package ape (Paradis et al. 2004). The random tree was
then scaled to have a root age that was the average root
age of tree_apg, tree_zanne, and tree_otl. Results based
on the random phylogeny should not correlate with
those based on other phylogenies.
Not every species from the purpose-built phylogenies

was found in all of the synthesis phylogenies. For the pine
rockland phylogeny, 514 out of 540 species (95.2%) were
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found in all phylogenies. For the alpine plant phylogeny,
994 out of 1,064 species (93.4%) were found in all phylo-
genies. For the Florida flora phylogeny, 1,472 out of
1,548 species (95.1%) were found in all phylogenies.
Therefore, we pruned the purpose-built phylogenies to
have the same species as their corresponding synthesis
tree. In practice, one could insert species that were miss-
ing from the derived phylogeny as polytomies in the same
genus, so that all species could be included in the analysis.

Generation of community assemblages

For each purpose-built phylogeny, we simulated 1,000
presence/absence site-by-species matrices. Each matrix
has 30 sites, with species within each site randomly
selected from the phylogeny tips representing the species
pool. We fixed species richness of each site to be 50 to
remove any effects of species richness on the phyloge-
netic diversity measures. Without setting all sites to have
the same number of species, results based on different
phylogenies will correlate with each other. For example,
it is likely that results from tree_random will be
highly correlated with results from other phylogenies
(Appendix S1: Fig. S1). This is because most phyloge-
netic diversity metrics correlate with species richness,
which, in turn, will lead to correlations among them and
confound the comparisons of effects of phylogeny per se
on the measurement of phylogenetic diversity. Removing
the constraint of using the same species richness does
not affect our results and conclusions (Appendix S1:
Figs. S1, S2). In our current setting, the maximum total
number of species across 30 sites is 30 9 50 = 1,500,
which is similar to the number of tips in the largest pur-
pose-built phylogeny in our study. We selected species
from the species pool randomly because previous studies
demonstrated that different approaches to species selec-
tion give similar results (Swenson 2009).

Phylogenetic diversity measurements

For each site-by-species matrix, we calculated alpha
and beta phylogenetic diversity for each of the phyloge-
nies using indices that are commonly used in community
phylogenetic studies. For phylogenetic alpha diversity,
we used Faith’s PD (PD), mean pairwise distance
(MPD), and mean pairwise distance between the closest
relatives (MNTD). PD calculates the sum of the branch
lengths of all species present in an assemblage (Faith
1992). We did not include the root of the phylogeny when
calculating PD. MPD calculates the average pairwise dis-
tance between all species, and MNTD calculates the
average pairwise distance between the closest relatives in
an assemblage (Webb et al. 2002). We selected these
three metrics for phylogenetic alpha diversity among the
myriad of metrics available because they are most com-
monly used and represent different but complementary
information about phylogenetic structure of communi-
ties (Miller et al. 2017, Tucker et al. 2017).

For phylogenetic beta diversity, we applied UniFrac
(Unif), interassemblage MPD (MPD_beta), interassem-
blage MNTD (MNTD_beta), and phylogenetic commu-
nity dissimilarity (PCD) to all possible unique
combinations of assemblage pairs. Unif is derived from
the Jaccard dissimilarity index and calculates the total
branch length unique to each assemblage relative to the
total branch length of all species in a pair of assemblages
(Lozupone and Knight 2005). Therefore, it measures the
fraction of evolutionary history unique to each assem-
blage. MPD_beta and MNTD_beta were derived from
MPD and MNTD, respectively, but instead of comparing
species within the same assemblage, they compare species
from two different assemblages (Webb et al. 2008). PCD
measures pairwise phylogenetic dissimilarity between
assemblages by asking how much of the variance of values
of a hypothetical trait among species in one assemblage
can be predicted by the values of species from another.
PCD is independent of species richness of the pair of
assemblages and has relatively higher statistical power
than other common metrics (Ives and Helmus 2010).
As PD and MNTD are both correlated with species

richness (Miller et al. 2017), null models that retain spe-
cies composition while randomly shuffling tips of the
phylogeny are commonly used to standardize phyloge-
netic diversity results. Despite the fact that MPD is inde-
pendent of species richness, its variance changes relative
to species richness (Miller et al. 2017). Therefore, null
models are also frequently applied to MPD. Using the
null model, standardized effect size (SES) for each met-

ric can be calculated as SES ¼ Xobs�mean Xnullð Þ
sdðXnullÞ

, where

Xobs is the observed value, and Xnull are the n values cal-
culated based on null models. Recently, analytic solu-
tions for the SES of phylogenetic alpha diversity metrics
were developed (Tsirogiannis and Sandel 2016). The
analytic solutions eliminate the need for computation-
ally expensive simulations used to calculate SES values,
especially for studies in high-diversity systems. In our
simulations, because all sites have the same species rich-
ness, we expected that the SES values based on the ana-
lytic solutions would have the identical results as the
observed phylogenetic diversity values for the statistical
analyses we conducted (correlation and linear mixed
models, see the Statistical Analyses section below). Our
simulations confirmed this expectation (Appendix S1:
Fig. S3–S6). No analytic solutions for the SES of Unif,
MNTD_beta, and PCD are available. However, the pair-
wise beta diversity metrics share the same core formula
with their corresponding alpha diversity metrics. We
thus expect that the results based on SES of these beta
diversity metrics will be the same as those based on the
observed diversity values in our simulations. Given the
similarity in results between raw and standardized phy-
logenetic alpha diversity measures and the large compu-
tational burden of calculating SES for phylogenetic beta
diversity metrics, we did not include the results for SES
in this study.
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Traits simulation and phylogenetic signal

For each purpose-built phylogeny, we simulated con-
tinuous traits with two common models of evolution:
Brownian motion (BM) and Ornstein-Uhlenbeck (OU).
For both evolution models, we set the rate of trait diver-
gence (sigma, r2, a scaling term) to one of three values:
0.2, 0.75, and 1.5. For the OU model, we further varied
the strength of selection (alpha, a) to be one of three val-
ues: 0.05, 0.5, and 1. Note that if alpha = 0, the OU
model becomes the BM model. We simulated 12 (3
r2 9 4 a levels) continuous traits for each purpose-built
phylogeny. For each simulated trait, we then estimated
its phylogenetic signal with all five phylogenies using
Pagel’s lambda (k) (Pagel 1999) and Blomberg’s K
(Blomberg et al. 2003)—two methods that are most
widely used in ecology. Both k and K have expected val-
ues of 1 if a trait evolved along the phylogeny under a
BM evolution model. We repeated this process 1,000
times, resulting in 180,000 estimates of phylogenetic sig-
nal (3 data sets 9 3 sigma 9 4 alpha 9 5 phyloge-
nies 9 1,000 replicates). For traits that were simulated
under the BM model (i.e., alpha = 0), we expected that
the average values of both estimated k and K to be 1
when tested with the purpose-built phylogenies.
For traits that were simulated under strong OU models
(alpha = 0.5 and 1 here), we expected the average values
of both estimated k and K to approach zero (i.e., weak
signal), regardless of which phylogeny we used. Note
that K can approach, but will never be, zero by defini-
tion. In addition, we examined the type I error rates (i.e.,
false positive) in estimating k and K for all phylogenies
by randomly reshuffling trait values that were simulated
under the BM model with r2 = 0.2, resulting in another
15,000 estimates of phylogenetic signal (3 data sets 9 5
phylogenies 9 1,000 replicates).

Statistical analyses

We have three primary goals. First, we want to test
the correlation between phylogenetic diversity values
calculated from purpose-built phylogenies and those
calculated from synthesis-based phylogenies. For this
goal, we calculated the average Spearman’s rank-based
measure of the correlation between phylogenetic diver-
sity values from all phylogenies across the 1,000 simula-
tions. We used rank-based correlation because we are
interested in relative, rather than absolute, phylogenetic
diversity.
Second, we want to investigate whether phylogenetic

diversity calculated from synthesis-based phylogenies
over- or underestimates phylogenetic diversity when
compared to purpose-built phylogenies. For this goal,
we used linear mixed models (LMMs) with phyloge-
netic diversity values from the purpose-built phylogeny
as the response variable, the phylogenetic diversity val-
ues from one of the synthesis-based phylogenies as the
predictor, and the simulation dataset as the random

term. We scaled the diversity values to have mean zero
and standard deviation one before fitting the models.
We also forced the regression line through the origin. If
the slope of the regression line is significantly different
from zero, then phylogenetic diversity based on pur-
pose-built phylogenies and synthesis-based phylogenies
is significantly correlated. Furthermore, if the slope is
higher/lower than one, then the phylogenetic diversity
values based on the synthesis-based phylogenies are
lower/higher than those based on the purpose-built
phylogeny. For pairwise beta diversity, because one site
can be compared with all other sites, the beta diversity
values are not independent. To account for this, we
included data sets, site1 within each data set (the first
site in the site pair), and site2 within each site (the other
site in the site pair) as random terms in the LMMs
(cf. Li and Waller 2017).
Third, we want to determine which synthesis-based

phylogeny estimated phylogenetic signal values that are
the closest to those estimated with the purpose-built phy-
logeny. For this question, we mostly relied on data visu-
alization instead of statistical tests because of the large
sample size (n = 1,000). Furthermore, Pagel’s k had very
small variances when estimating with the purpose-built
phylogenies (<10�7 for all simulations under BM); such
small variances led all estimated correlation coefficients
to be around zero. Thus, we only focus on the absolute
differences in the estimated k values between the pur-
pose-built phylogeny and the synthesis-based phyloge-
nies. For Blomberg’s K, we compared estimated values
of tree_purpose with those from other synthesis-based
phylogenies using Spearman’s rank correlations. We
used nonparametric tests for Blomberg’s K because it
has a highly skewed distribution. The workflow of this
study is outlined in Fig. 1. All analyses were conducted
with Rv3.4.3 (RCore Team 2017).

RESULTS

Alpha diversity

Phylogenetic alpha diversity (PD, MPD, and MNTD)
values calculated with different phylogenies (tree_pur-
pose, tree_apg, tree_zanne, and tree_otl) were highly cor-
related. The median Spearman’s correlation of the 1,000
simulations was larger than 0.63 across all comparisons
(P < 0.05 for all simulations and comparisons; Fig. 2).
In most cases, the median Spearman’s correlation was
larger than 0.85, especially for PD and MPD. Therefore,
PD and MPD were more robust to varying the source of
the phylogeny than MNTD. Across all comparisons,
diversity values based on tree_otl showed the highest
correlations with those based on tree_purpose, with an
average correlation across all comparisons of 0.902. As
expected, diversity values based on the random phy-
logeny tree_random were not correlated with diversity
values based on other phylogenies, with median Spear-
man’s correlations close to zero (Fig. 2).
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The slopes of linear mixed models (LMM) were all <1
(Table 1), suggesting that diversity values based on syn-
thesis-based phylogenies generally were higher than the
diversity values based on the purpose-built phylogenies.
The PD metrics based on the Open Tree of Life phy-
logeny (tree_otl) had estimates closest to those calcu-
lated from the purpose-built phylogenies (Table 1).

Beta diversity

The phylogenetic beta diversity results (Unif, MPD_-
beta, MNTD_beta, and PCD) show a similar pattern to
the alpha diversity results. Beta diversity of community
pairs based on different phylogenies was also highly cor-
related, with the median Spearman’s correlation from
the 1,000 simulations >0.69 across all comparisons

(Fig. 3). Overall, phylogenetic beta diversity is more sen-
sitive to the source of the phylogeny than alpha diversity.
MPD_beta is the most robust beta diversity metric to
the source of the phylogeny, followed by MNTD_beta,
Unif, and PCD. Again, PD metrics based on tree_otl
showed the highest correlation with metrics based on the
purpose-built tree, followed by tree_zanne and tree_apg.
Beta diversity values based on tree_random did not cor-
relate with values based on any other phylogeny.
The slopes of LMMs were generally less than one

(Table 2), suggesting that beta diversity values based on
synthesis-based phylogenies also were higher than the
diversity values based on the purpose-built phylogenies.
However, slopes for MPD_beta values based on tree_otl
were all greater than one, suggesting that MPD_beta
values based on tree_otl were lower than those

Three data sets: 
Pine Rockland (540 species); 

Alpine (1064 species); 
Florida (1548 species)

Purpose-built
phylogeny

APG-based
phylogeny

Zanne-based
phylogeny

OTL-based
phylogeny

Random
phylogeny

( )

Compare and contrast 
diversity and phylogenetic signal values

1,000 simulated communities
using species list 

(30 sites × 50 species)  

12,000 simulated continuous traits
along purpose-built phylogeny
(3 σ2 × 4 α × 1,000 replicates)

Unif

MPD_beta

MNTD_beta

PCD

PD
MPD

MNTD

α: β:

Phylogenetic signal:
λ , K

Unif

MPD_beta

MNTD_beta

PCD

PD
MPD

MNTD

α: β:

Phylogenetic signal:
λ , K

Unif

MPD_beta

MNTD_beta

PCD

PD
MPD

MNTD

α: β:

Phylogenetic signal:
λ , K

Unif

MPD_beta

MNTD_beta

PCD

PD
MPD

MNTD

α: β:

Phylogenetic signal:
λ , K

Unif

MPD_beta

MNTD_beta

PCD

PD
MPD

MNTD

α: β:

Phylogenetic signal:
λ , K

FIG. 1. Workflow to assess effects of commonly used synthesis phylogenies on community phylogenetic diversity and trait phy-
logenetic signal estimations. Boxes with light yellow background are related to community phylogenetic diversity; boxes with light
blue background are related to trait phylogenetic signal. APG, Angiosperm Phylogeny Group; OTL, Open Tree of Life; PD, Faith’s
phylogenetic diversity; MPD, mean pairwise distance; MNTD, mean nearest taxon distance; Unif, Unifraction; PCD, phylogenetic
community dissimilarity; k, Pagel’s lambda; K, Blomberg’s K.
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FIG. 2. Median correlations of phylogenetic alpha diversity values based on different phylogenies.

TABLE 1. Slopes based on linear mixed models (LMMs).

Index Data set tree_apg tree_zanne tree_otl tree_random

PD Pine (540 sp) 0.843 (0.837, 0.849) 0.917 (0.913, 0.922) 0.971 (0.969, 0.974) �0.001 (�0.013, 0.01)
PD Alpine (1064 sp) 0.854 (0.848, 0.86) 0.915 (0.91, 0.919) 0.937 (0.933, 0.941) �0.022 (�0.034, �0.01)
PD FL (1548 sp) 0.92 (0.916, 0.924) 0.891 (0.886, 0.896) 0.871 (0.865, 0.876) 0.006 (�0.005, 0.018)
MPD Pine (540 sp) 0.891 (0.885, 0.896) 0.972 (0.969, 0.974) 0.996 (0.995, 0.997) 0.047 (0.036, 0.059)
MPD Alpine (1064 sp) 0.957 (0.954, 0.96) 0.997 (0.997, 0.998) 0.941 (0.937, 0.945) 0.004 (�0.008, 0.015)
MPD FL (1548 sp) 0.962 (0.958, 0.965) 0.95 (0.946, 0.953) 0.895 (0.889, 0.9) �0.002 (�0.014, 0.009)
MNTD Pine (540 sp) 0.78 (0.773, 0.788) 0.787 (0.78, 0.794) 0.897 (0.892, 0.902) 0.006 (�0.006, 0.017)
MNTD Alpine (1064 sp) 0.713 (0.705, 0.721) 0.794 (0.787, 0.801) 0.874 (0.869, 0.88) �0.016 (�0.028, �0.004)
MNTD FL (1548 sp) 0.856 (0.85, 0.862) 0.797 (0.79, 0.804) 0.831 (0.824, 0.837) 0.03 (0.018, 0.041)

Notes: PD = Faith’s PD, MPD = mean pairwise distance, MNTD = mean pairwise distance between the closest relatives. Within
the model, the response variable is the phylogenetic alpha diversity values based on the purpose-built phylogeny; the predictor is the
phylogenetic alpha diversity values based on one of the synthesis-based phylogenies (tree_apg, tree_zanne, tree_otl, and tree_ran-
dom). Therefore, slopes less than one indicate that diversity values based on synthesis-based phylogenies were higher than those
based on the purpose-built phylogenies. Numbers within parentheses are the 95% confidence intervals for the slopes.
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calculated from the purpose-built trees. Metrics based
on tree_zanne for the flora of Florida data set were also
lower than those calculated from the purpose-built tree
(Table 2). For the other beta diversity metrics (i.e., Unif,
MNTD_beta, and PCD), tree_otl generally gave results
closer to those based on the purpose-built trees than did
the other synthesis-based phylogenies.

Phylogenetic signal

For all simulated traits, estimated phylogenetic signal
(both Pagel’s k and Blomberg’s K) of tree_random were
all around 0, as expected (Appendix S1: Fig. S7). There-
fore, we excluded those values from the comparisons.
The divergence rate (r2) did not affect the results
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FIG. 3. Median correlations of phylogenetic beta diversity values based on different phylogenies.
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(Appendix S1: Figs. S8, S9). Therefore, we only focus
here on r2 = 0.2.
Estimated Pagel’s k values of tree_otl were the closest

to those of tree_purpose among all three synthesis-based
phylogenies for both the pine rockland and alpine data
sets (Fig. 4) when traits were simulated under BM and
weak OU (alpha = 0.05). For the Florida data set, this is
not the case when traits were simulated under BM. Here,
average estimated Pagel’s k values of tree_apg were
slightly closer to the expected value than tree_otl. How-
ever, tree_apg had much larger variance (Fig. 4) and
lower log likelihood (Appendix S1: Fig. S10) compared
with tree_otl. Therefore, tree_otl had the best fit among
all three synthesis-based phylogenies. The absolute dif-
ferences of average estimated Pagel’s k values between
tree_purpose and tree_otl were small when traits were
simulated under BM (<0.022 in all data sets) or weak
OU (<0.13 in all data sets). Furthermore, estimated
Pagel’s k values of tree_otl were all significantly different
from 0 when traits were simulated under BM and weak
OU (high statistical power; Appendix S1: Table S1).
Together, these results suggest that tree_otl can provide
relatively close estimates of Pagel’s k values, has high
statistical power, and controls type I error well
(Appendix S1: Table S1).
For traits simulated under BM, the average values

(not the median by definition) of estimated Blomberg’s
K of tree_purpose were all about 1, as expected (Fig. 5).
However, the estimated values had large variance (stan-
dard deviation >0.7) and were skewed (Fig. 5). The high
variance allowed us to compare estimated K values
between tree_purpose and the three synthesis-based phy-
logenies statistically. When traits were simulated under
BM, estimated K values of synthesis-based phylogenies
were all significantly different from those estimated with
tree_purpose (except tree_apg for the alpine dataset,

paired Wilcoxon tests). However, their values were
highly correlated with those estimated with tree_purpose
(all Spearman’s q > 0.9, P � 0.001, Fig. 6). When
traits were simulated under weak OU (alpha = 0.05),
estimated K values of tree_otl have the highest Spear-
man’s q (all >0.7) with those of tree_purpose and the
highest statistical power compared to other synthesis-
based phylogenies (Appendix S1: Table S1). Compared
to Pagel’s k, Blomberg’s K has higher statistical power
when traits were simulated under OU (Appendix S1:
Table S1). All phylogenies had good type I error controls
when estimating phylogenetic signal with Blomberg’s K
(Appendix S1: Table S1). Together, these results suggest
that tree_apg can provide relatively close estimates of
Blomberg’s K values when the number of species is
small. When the number of species is large (e.g., >1,500),
both tree_otl and tree_apg work well.

DISCUSSION

We examined how different phylogenies, purpose-built
and synthesis-based, influenced phylogenetic diversity
measures (alpha and beta) and trait phylogenetic signal
commonly used in community phylogenetic analyses. We
found three main results. First, the synthesis-based phy-
logenies generally yield higher estimates of phylogenetic
diversity compared with purpose-built phylogenies. This
is not surprising because synthesis-based phylogenies
generally have higher proportions of polytomies than
purpose-built ones, which, in turn, leads to larger dis-
tances between species within these polytomies. This
result agrees with Boyle and Adamowicz (2015) and
Qian and Zhang (2016) but contradicts Swenson (2009),
who found that phylogenies with more polytomies
underestimated phylogenetic diversity. Second, phyloge-
netic diversity values calculated from synthesis trees were

TABLE 2. Slopes based on linear mixed models (LMMs).

Index Data set tree_apg tree_zanne tree_otl tree_random

Unif Pine (540 sp) 0.824 (0.822, 0.826) 0.791 (0.789, 0.793) 0.87 (0.869, 0.872) 0.063 (0.058, 0.067)
Unif Alpine (1064 sp) 0.811 (0.808, 0.813) 0.871 (0.869, 0.873) 0.896 (0.894, 0.897) 0.056 (0.053, 0.06)
Unif FL (1548 sp) 0.871 (0.869, 0.873) 0.791 (0.788, 0.793) 0.814 (0.812, 0.816) 0.071 (0.066, 0.075)
MPD_beta Pine (540 sp) 0.34 (0.337, 0.342) 0.972 (0.969, 0.975) 1.23 (1.225, 1.234) 0.009 (0.007, 0.011)
MPD_beta Alpine (1064 sp) 0.797 (0.794, 0.799) 0.976 (0.976, 0.977) 1.122 (1.117, 1.127) 0.002 (0.001, 0.004)
MPD_beta FL (1548 sp) 0.778 (0.776, 0.781) 1.343 (1.339, 1.347) 1.805 (1.797, 1.813) 0.001 (-0.001, 0.002)
MNTD_beta Pine (540 sp) 0.856 (0.853, 0.859) 0.857 (0.854, 0.86) 0.928 (0.926, 0.93) 0.054 (0.05, 0.058)
MNTD_beta Alpine (1064 sp) 0.896 (0.894, 0.899) 0.952 (0.95, 0.954) 0.942 (0.94, 0.943) 0.046 (0.043, 0.05)
MNTD_beta FL (1548 sp) 0.787 (0.785, 0.789) 0.762 (0.76, 0.764) 0.75 (0.748, 0.752) 0.039 (0.036, 0.043)
PCD Pine (540 sp) 0.857 (0.854, 0.86) 0.828 (0.825, 0.831) 0.872 (0.87, 0.875) 0.089 (0.085, 0.093)
PCD Alpine (1064 sp) 0.827 (0.825, 0.83) 0.912 (0.909, 0.915) 0.907 (0.905, 0.909) 0.059 (0.055, 0.063)
PCD FL (1548 sp) 0.802 (0.799, 0.804) 0.744 (0.741, 0.746) 0.719 (0.716, 0.722) 0.054 (0.05, 0.059)

Notes: Unif = UniFrac, MPD_beta = interassemblage mean pairwise distance, MNTD_beta = interassemblage mean pairwise
distance between the closest relatives, and PCD = phylogenetic community dissimilarity. Within the model, the response variable is
the phylogenetic beta diversity values based on the purpose-built phylogeny; the predictor is the phylogenetic beta diversity values
based on one of the synthesis phylogenies (tree_apg, tree_zanne, tree_otl, and tree_random). Therefore, slopes less than one indicate
that diversity values based on synthesis-based phylogenies were higher than those based on the purpose-built phylogenies. Numbers
within parentheses are the 95% confidence intervals for the slopes.
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highly correlated with those based on purpose-built phy-
logenies, even if the former were higher. These results
hold for both alpha and beta diversity and for phyloge-
nies with different numbers of tips. Third, estimated
Pagel’s k values of tree_otl were very close to expected
values when traits were simulated under BM or weak
OU. Estimated Blomberg’s Kvalues of tree_otl had high
correlation (Spearman’s q > 0.9) with expected values
when traits were simulated under BM. Although our
study focuses on plants, we expect that our results will

generalize to any taxonomic group. Therefore, phyloge-
nies derived from synthesis trees, especially from the
Open Tree of Life, can provide similar results to pur-
pose-built phylogenies while saving effort, time, and cost
when quantifying and comparing phylogenetic diversity
of communities and the phylogenetic signal of traits.
As ecologists and conservation biologists, we mostly

care about the relative diversity among communities
instead of their absolute diversity. For example, for a set
of communities within one region, we may be interested
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in which communities have the highest/lowest phyloge-
netic diversity. The absolute phylogenetic diversity of each
community does not mean much without comparing it to
other communities. Because phylogenetic diversity values
based on different phylogenies are highly correlated with
each other, the information available for community phy-
logenetic questions does not differ much between
approaches. Even though such synthesis-based phyloge-
nies may yield higher absolute phylogenetic diversity for
communities, the relative phylogenetic diversity among

communities will be similar to those calculated from typi-
cally better resolved but more difficult to obtain purpose-
built phylogenies. Based on the information provided by
relative values of phylogenetic diversity, the potential
improved resolution of purpose-built trees for calculating
the absolute phylogenetic diversity values may not be
worth the effort for community phylogenetic questions.
Our finding that phylogenetic diversity metrics are rel-

atively insensitive to the phylogenies from which they are
derived has been supported by other recent studies. For
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example, using simulated fully bifurcating and gradually
unresolved phylogenies, Swenson (2009) found that phy-
logenetic diversity measures are generally robust to the
uncertainty of the phylogenies, especially if the uncer-
tainty is concentrated in recent nodes of the phylogeny.
Using multiple posterior phylogenies of bats, Patrick
and Stevens (2014) rearranged branches across these
phylogenies and also found that phylogenetic diversity

measures are robust to the phylogenies from which they
are calculated. More recently, Cadotte (2015) trans-
formed a phylogeny with different evolution models and
found that phylogenetic diversity measures are insensi-
tive to the branch lengths of the phylogeny; getting the
topology right is more important when calculating phy-
logenetic diversity. Qian and Zhang (2016) found similar
phylogenetic diversity values of the angiosperm tree
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flora of North America based on phylogenies derived
from Zanne et al. (2014) and Phylomatic (Webb and
Donoghue 2005). These studies, however, only focused
on alpha diversity. Our study extends the literature by
also examining the effects of phylogenies on beta diver-
sity. We found the same pattern for beta diversity and
alpha diversity. Taken together, a general pattern
emerges: community phylogenetic alpha and beta
diversity metrics are robust to reasonably good modern
phylogenies.
Why are phylogenetic diversity values from purpose-

built and synthesis-based phylogenies highly correlated?
There are two possible reasons. First, both purpose-built
and synthesis phylogenies likely share a similar system-
atic backbone and empirical resources such as genes,
taxonomies, and expert knowledge. This guarantees that
phylogenetic diversity based on these phylogenies will
not be dramatically different. Second, phylogenetic
diversity metrics aggregate (by summing or averaging)
all information into one value for each site, which could
help buffer most uncertainty and further mask most of
the differences between different phylogenies.
Our results for trait phylogenetic signal suggest that

synthesis-based phylogenies can be used as reasonable
proxies for purpose-built phylogenies in estimating phy-
logenetic signal. In our simulations, synthesis-based phy-
logenies can either slightly overestimate (tree_otl),
underestimate (tree_zanne), or produce largely unbiased
estimates (tree_apg) of trait phylogenetic signal when the
phylogeny is small (<1,000 species). However, estimated
values based on synthesis-based phylogenies were either
highly correlated with (Blomberg’s K) or close to
(Pagel’s k) those estimated from the “true” phylogeny
(tree_purpose) under the BM trait evolution model. A
recent study that suggested Pagel’s k is more robust to
polytomies and suboptimal branch-length information
in the phylogeny than Blomberg’s K (Molina-Venegas
and Rodriguez 2017). Furthermore, another previous
study found that Blomberg’s K overestimated phyloge-
netic signal if a phylogeny has a large proportion of
polytomies (Davies et al. 2012). Traits in these studies,
however, were simulated only under the BM model of
evolution. Our simulations of traits under the OU model
of evolution suggested that, compared to Pagel’s k,
Blomberg’s K is more sensitive (more changes in esti-
mated values when alpha changed from 0 to 0.05) and
has higher statistical power in identifying less-than-BM
phylogenetic signal, making it a more sensitive tool to
detect departures from the BM model (M€unkem€uller
et al. 2012). This might be because Blomberg’s K is
more sensitive to the pattern of covariances generated by
the OU model of evolution than is Pagel’s k. Therefore,
our results suggest that both Pagel’s k and Blomberg’s
K should be used in identifying phylogenetic signal given
their own strength and weakness.
Our results should encourage ecologists to increase

the use of phylogenetic analyses in community ecology
studies, given the growing accessibility of synthesis-based

phylogenies and the robustness of phylogenetic diversity
and phylogenetic signal measures based on them. Com-
pared with purpose-built phylogenies, synthesis-based
phylogenies generally have broader taxon sampling cov-
erage, use more fossil calibration points, and reflect up-
to-date taxon classifications. Therefore, we expect syn-
thesis-based phylogenies to be more accurate in terms of
topology and node ages, which some have argued are
more important than branch lengths for phylogenetic
diversity estimation (Cadotte 2015). However, our
results should not discourage the construction of pur-
pose-built phylogenies, which are clearly valuable for
many ecological and evolutionary questions. This is
especially the case for purpose-built trees constructed
from local DNA samples. The sequencing of species in a
given community can yield data for species that have
never been sequenced before. These new sequences can
then be incorporated into synthesis trees, improving
their resolution for future research. Direct sequencing of
samples collected for a community is also important
when the community contains undescribed (Pons et al.
2006) or cryptic species (Hebert et al. 2004). Further-
more, for many taxonomic groups, synthesis trees are
not available or are far too poorly sampled, and con-
structing purpose-built trees is the only approach possi-
ble for community phylogenetic analyses.

CONCLUSION

Community phylogenetics is rapidly becoming an
important component of community ecology, macroe-
cology, and biodiversity conservation (Webb et al. 2002,
Vamosi et al. 2009). For calculations and comparisons
of community phylogenetic diversity and trait phyloge-
netic signal, an important question arises: can we derive
phylogenies from already-available synthesis trees, or
should we generate our own purpose-built phylogenies?
Our results suggest that phylogenies derived from com-
mon synthesis trees yield higher estimates of phyloge-
netic diversity metrics when compared to purpose-built
trees, but values of phylogenetic diversity are highly cor-
related with those of purpose-built trees. Furthermore,
estimated trait phylogenetic signals using synthesis-
based phylogenies were reasonably close to (Pagel’s k)
and had high correlations with (Blomberg’s K) expected
values based on the purpose-built phylogenies. Particu-
larly, the Open Tree of Life, which includes all major
phylogenetic groups (e.g., plants, birds, fishes, mammals,
insects, fungi, Archaea, Bacteria), produced the most
similar values of community phylogenetic diversity and
trait phylogenetic signals when compared to metrics
derived from purpose-built trees. Furthermore, a
recently updated Open Tree of Life phylogeny for seed
plants has branch lengths calculated based on molecular
data (Smith and Brown 2018). With new data and stud-
ies continuously being integrated into synthesis trees
such as the Open Tree of Life, these resources are poised
to continue to improve rapidly. As a result, for common
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community phylogenetic analyses such as comparing
phylogenetic diversity among communities and estimat-
ing trait phylogenetic signal, we recommend taking
advantage of recent well-developed products such as the
Open Tree of Life.
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