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Multiplexed imaging technologies have made it possible to interrogate complex tissue
microenvironments at sub-cellular resolution within their native spatial context. However, proper
quantification of this complexity requires the ability to easily and accurately segment cells into their
sub-cellular compartments. Within the supervised learning paradigm, deep learning-based
segmentation methods demonstrating human level performance have emerged. However, limited
work has been done in developing such generalist methods within the unsupervised context. Here we
present an easy-to-use unsupervised segmentation (UNSEG) method that achieves deep learning
level performance without requiring any training data via leveraging a Bayesian-like framework, and
nucleus and cell membrane markers. We show that UNSEG is internally consistent and better at
generalizing to the complexity of tissuemorphology than current deep learningmethods, allowing it to
unambiguously identify the cytoplasmic compartment of a cell, and localizemolecules to their correct
sub-cellular compartment. We also introduce a perturbed watershed algorithm for stably and
automatically segmenting a cluster of cell nuclei into individual nuclei that increases the accuracy of
classical watershed. Finally, we demonstrate the efficacy of UNSEG on a high-quality annotated
gastrointestinal tissue dataset we have generated, on publicly available datasets, and in a range of
practical scenarios.

Recent innovations in highly multiplexed immunofluorescence imaging1–15

have substantially increased the range of antigens that can be spatially
profiled in a tissue sample, from 3–5 targets to ~60 (see ref. 16). Segmen-
tation is a required step for quantitatively associating their spatial expres-
sionswith individual cells. Since 2012,whenAlexNet17, a deepconvolutional
neural network (CNN), outperformed other methods in the ImageNet
classification challenge, there has been a paradigm shift towards using
CNN-based deep learning (DL) frameworks18 trained on curated datasets
for cell and nucleus segmentation tasks19–28. Among them,Cellpose25—aDL
methodbasedonaU-Net architecture utilizing gradientflow representation

of cells—and Mesmer26—a DL method based on ResNet50 architecture—
have demonstrated human-level performance in the highly multiplexed
imaging context. However, due to their dependence on stochastic gradient
descent and back-propagation-based optimization during the training step,
it remains difficult to identify the contribution of each neuron to the
eventual segmentation outcome, and as a consequence explain the source of
errors in segmentation when they occur29. As a result, improving perfor-
mance of these black-box DL models requires rewiring the input–output
mapping via training on additional datasets30. However, in complex tissue
samples with considerable heterogeneity and ambiguity in cellular
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organization, it is unclearwhether retraining alonewill consistently improve
results across all samples, or if multiple DL models need to be constructed
and used through a trial and error approach, with the hope that their
performance will optimally generalize. Curation of accurately annotated
datasets of sufficient quality that capture the tissue microenvironment
diversity also remains a critical challenge.

In contrast to DL approaches, most unsupervised cell segmentation
methods31–43 do not require training data, are explainable, and therefore
where needed, can be optimized for individual images. However, to the best
of our knowledge, to date no unsupervised segmentationmethod capable of
approaching DL method performance has been reported in the literature.
Here, we present a new unsupervised segmentation algorithm (UNSEG)
capable of performing sub-cellular segmentation of tissue sample images
with accuracy on par with state-of-the-art DL segmentation approaches
such as Cellpose and Mesmer. UNSEG achieves this performance in two
stages. At the first stage, UNSEG quantifies the intrinsic contrast provided
by any nucleus and cell membrane-specific markers at the local and global
scale, and jointly exploits it to assign each pixel to the nucleus, cell mem-
brane, or the background class. This pixel assignment is implemented with
the help of a Bayesian-like framework that computes a priori distributions
and an image contrast-based likelihood function to estimate the posterior
probabilities of each pixel belonging to the nucleus, cell membrane or
background classes. UNSEG uses the posterior probabilities to assign the
pixel to the correct compartment. At the second stage, it parses the semantic
pixel assignments into topologically consistentnuclei and cells.Towards this
goal UNSEG introduces a perturbed watershed algorithm to correctly
partition anucleus cluster into individual nuclei. Thefinal output ofUNSEG
are nucleus and cell segmentations corresponding to the input image.

We have curated a labeled gastrointestinal tissue (GIT) dataset com-
prising of diverse images of gastrointestinal tissue to benchmark UNSEG
performance. We anticipate that this dataset will also be useful to DL
researchers and the broader research community and help ameliorate the
shortage in annotated imaging datasets30. We have also tested UNSEG
performance on public datasets, with images drawn from diverse tissue
typesanddiseases beyond the gastrointestinal system, that have been labeled
with different nucleus and cell membranemarkers and acquired at different
magnifications and resolutions. In addition, we also demonstrate applic-
ability of UNSEG in a variety of real-world cases that include, weakly
expressing markers, non-specific markers, different nucleus markers, and
multiplexed ion beam imaging (MIBI). In the context of these diverse sce-
narios, we also discuss how quantification of segmentation accuracy can
potentially be biased depending on the nature of deviation of segmentation
mask from the ground truth. Finally, we note that since UNSEG does not
require any training data to segment tissue images, it can be used to generate
high-quality segmentation of unlabeled tissue images, which is majority of
the data in real-world settings, as optimized initial estimates for improving
DL models within unsupervised and semi-supervised settings. UNSEG,
therefore, is an easy-to-use method for unsupervised sub-cellular segmen-
tation of images of complex tissue samples that does not require extensive
setup and performs on par with state-of-the-art DLmethods. It also has the
potential to improve the state-of-the-art in deep learning.

Results
UNSEG principle and design
Segmenting cells and nuclei in 2D images of tissue samples is challenging
because of their complex morphology, ambiguous overlaps, and hetero-
geneity in the spatial distribution of nucleus and cell membrane markers
within each cell. In the morphological context, although cells and their
nuclei exhibit an overall convex topology, they locally deviate from it to
varying degrees depending on cell types, and particularly in tumors with
irregularly shaped cancer cells. In addition,many cells in a tissue-dependent
manner are clumped in clusters where their shape and overlap is difficult to
parse. Cells in tissues also exhibit uneven intra-cellular distribution of

marker expression.Together, these degrees of complexitymake it difficult to
consistently segment cells and nuclei using unsupervised segmentation
approaches such as classical watershed31,32,38, shape and intensity
prior36,37,39–41, and tracking of diffused gradient flow33,34, which have pri-
marily been developed for segmenting cells in culture that lack tissue
associated heterogeneity related to cellular morphology, expression, and
overlap. UNSEG framework overcomes these limitations by jointly
exploiting the expression-based topology and distribution of markers spe-
cific to nuclei and cellmembranes (Fig. 1). Suchmarkers are also used in the
supervised context of DL methods, such as Cellpose and Mesmer.

UNSEGcombines a priori probability of each image pixel belonging to
a nucleus or cell membrane (Fig. 1a) with a contrast-based likelihood
function (Fig. 1b), to compute a posteriori semantic segmentation of image
pixels into nucleus and cell membrane (Fig. 1c). UNSEG performs this
segmentationboth at the global level of the entire image, andat the local level
in a neighborhood around each pixel (Fig. 1c). The local segmentation
captures the local heterogeneity in nucleus and cellular morphology, while
the global segmentation ensures that the overall topological structure of the
nuclei and cell membranes is preserved across the entire image. The final
step of UNSEG utilizes these local and global nucleus and cell semantic
masks to obtain instance segmentation of individual nuclei (Fig. 1d) and
cells (Fig. 1e). This step includespartitioningnucleus clusters into individual
nuclei based on convexity analysis, perturbed watershed and its ancillary
functionwe refer toas virtual cuts.The latter twoare brieflydescribedbelow.
The details of each step are described in “Methods”.

Perturbed watershed. Classical watershed-based segmentation44,45

identifies individual nuclei in a cluster aswatersheds, with eachwatershed
basin representing a nucleus in the cluster. However, heterogeneity in the
spatial distribution of nucleus marker can make it difficult to uniquely
identify the individual basins. Cellpose overcomes this problem in the
supervised context by developing a gradient flow field representation of
each nucleus whose ground truth is annotated by a human user25. This
representation provided a stable and unique representation of nucleus
basins. In the unsupervised context, we have developed a perturbed
watershed approach (Fig. 2 and “Methods”), where the initial watershed-
based segmentation (Fig. 2i) of the nucleus cluster into individual nuclei
is perturbed (Fig. 2j–m) based on an adaptive distance-transform esti-
mate (Fig. 2h) computed from the global nucleus cluster (Fig. 2d), and
local topology of the cell membrane network (Fig. 2e). Nuclei that are
correctly segmented remain stable to the perturbations, while spuriously
segmented nuclei collapse to a point-like object with area not exceeding a
few pixels. When applied recursively, perturbed watershed partitions the
nucleus cluster into individual nuclei. An example of a two-nuclei cluster
is shown in Fig. 2. Initial watershed partitions the cluster into three nuclei
(Fig. 2i), one of which shrinks to a point object on perturbation of the
watershed seed point. The perturbation is performed in four directions:
up, down, left, and right. In this example, the unstable nucleus collapsed
for three of those perturbations (up, down, and left), indicating that the
seed point is unstable and the corresponding segmentation is a spurious
nucleus. Therefore, it is removed and the correct watershed-based seg-
mentation (Fig. 2n) is obtained using the two remaining stable seed
points and the original distance transform (Fig. 2g). We note that the
perturbed watershed algorithm does not make any assumptions specific
to the fluorescence-based imaging modality. It is, in fact, agnostic to the
imagingmodality and can be used to improve classical watershed results,
wherever the latter method is applicable.

Virtual cuts. In some cases, mostly when cell membrane marker is not
present, the initial watershed segmentation step might undersegment the
cluster. For such cases, we have developed the virtual cutsmethod that utilizes
non-convex topology of the cluster to identify nuclei centroids that act as seed
points for thewatershed algorithm. See “Methods” for implementationdetails.

https://doi.org/10.1038/s42003-024-06714-4 Article

Communications Biology |          (2024) 7:1062 2

www.nature.com/commsbio


New dataset for benchmarking segmentation performance
Aspart of ourUNSEGdevelopment, we have curated 75 tiff images of tissue
sections fromeight organs of the extended human gastrointestinal system—
appendix, colon, esophagus, gallbladder, liver, pancreas, small intestine, and
stomach. The immunofluorescence images were acquired via imaging of
formalin-fixed paraffin-embedded (FFPE) tissue sections labeled using
Hoechst and fluorescent-dye-conjugated Na+K+ATPase as respective
markers for cell nuclei and membranes (see “Methods”). The image
dimensions are 1000 × 1000. The images were acquired using a 0.95
numerical-aperture objectivewith 40×magnification, and have a pixel pitch
of 0.16 μm/pixel. Our gastrointestinal tissue (GIT) dataset includes images
of normal tissues as well as tissues related to chronic inflammation, cancer
precursor lesions, and cancer. These images capture a wide range of
tissue organization from samples with sparsely located cells to those with
very high cell density. Figure 3 shows 12 representative images from theGIT
dataset.

Expert pathologists independently annotated the75 images resulting in
ground truth with 16,201 nuclei and 16,217 cells. These annotations were
performed manually, without any algorithmic aid, to truly reflect human
performance. The detailed description of the dataset is presented in Sup-
plementary Table 1 and Supplementary Fig. 1, while the nuclei and cell
annotations of 12 representative images are shown in Supplementary Fig. 2.
To annotate nuclei and cells in the 75 images, we developed Cellthon—a
Python-basedgraphical user interface for annotating cells and their nuclei in
tissue images.

We used the GIT dataset to benchmark UNSEG performance.
Moreover, we anticipate that this dataset will also serve as a resource for
researchers requiring annotated datasets for future algorithm development
and testing30.

UNSEG benchmarking using GIT and publicly available datasets
We used GIT and publicly available datasets to benchmark the segmenta-
tion performance of UNSEGwith respect to Cellpose andMesmer, the two
state-of-the-art DL methods that have consistently demonstrated good
performance in segmenting immunofluorescence imaging data particularly
in the context of highly multiplexed imaging25,26. To perform the compar-
ison with Cellpose, we used Cellpose version 2.1.0. In this version, we chose
nuclei and TN2 models from the Cellpose “model zoo” to respectively
segment nuclei and cells. Our choice was based on them giving the best
segmentation results for theGIT dataset in comparison to all other Cellpose
models. We used Cellpose size calibration procedure to estimate the cell
diameter for each of the 75 images in our dataset. We also chose Mesmer
model, DeepCell 0.12.6, and set the model parameter image_mpp to the
pixel pitch inmicrons per pixel for our imaging dataset. Benchmarking was
performed by computing the F1 score (Eq. (7)) as a function of intersection
over union (IoU) threshold46. The IoU threshold metric quantifies the
degree of overlap between algorithm prediction and the annotated ground
truth. It is bounded between 0 and 1, with one indicating perfect overlap. By
computing the F1 score over the IoU range, we obtain the F1 accuracy curve
for each method (see “Methods” for more details).

Fig. 1 | UNSEG framework. Input is a two-channel image comprising of nucleus
(channel 1) and cell membrane (channel 2) marker expressions. a A priori spatial
probability distributions of nucleus and cell membrane marker expressions.
b Likelihood map of a pixel to belong to the nucleus or cell membrane, quantified
through the visual contrast function, which mimics human perception. c A pos-
teriori local and global semantic segmentation masks respectively capturing local

morphological heterogeneity and global nucleus and cell membrane topology.
d Instance segmentation of nuclei from semantic segmentation masks. e Instance
segmentation of cells based on individual segmented nuclei and semantic masks.
Nucleus and cell segmentation results of (d, e) form the UNSEG output. See
“Methods” for more details.
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Figure 4a shows UNSEG, Cellpose, and Mesmer segmentation results
applied to four representative examples from our 75 image GIT dataset.
Visual comparison shows similar performance between the different
methods. One difference between UNSEG and the other two methods is
that, although, UNSEG does implement boundary smoothing, it does not
enforce strict shape constraints. As a consequence, the shape of UNSEG-
based nucleus and cell segmentation ismore irregular but alsomore realistic
and less synthetic appearing than Cellpose and Mesmer.

TheF1 curves for the four examples (Fig. 4b) demonstrate thatUNSEG
performance is similar to that of theDLmethods trained on about amillion
cells. The ground truth annotations for these four examples are shown in
Supplementary Fig. 2.

The similarity in their performance on the four example images gen-
eralizes to the entire GIT dataset. The results are shown in Fig. 5. The first
row depicts the median F1 curves corresponding to nucleus and cell seg-
mentation by the threemethods. The curves indicate that the threemethods
have similar segmentation performance. For cell segmentation, the median
UNSEG performance is slightly below the other two methods, which is
partly due to the conservative nature of UNSEG cell segmentation in
resolving cell boundary ambiguity in cases where the tissue section capture
partial cell membranes without their respective nuclei. In these cases,

UNSEG does not always include their segmentation masks in the final
results. (Also see, “F1 score and accuracy” section below.)Nevertheless, if we
look at the pairwise 95% F1 confidence interval comparison between
UNSEG performance, with Cellpose and Mesmer—the second and third
rows of Fig. 5 respectively—we clearly see their almost complete overlap,
indicating their overall similar performance. A more detailed version of
Fig. 5 is presented in Supplementary Fig. 3. We note that we used the same
UNSEGparameters to segment all 75 images in theGIT dataset and did not
optimize them for every image, despite this ability being a strength of
UNSEG and would have boosted its performance. The rationale for
eschewing this adjustment was to demonstrate that our probabilistic rein-
terpretation of the two-channel image through a Bayesian lens provides
UNSEG with robustness and performance stability, and prevents it from
being brittle and requiring continuous adjustment. We additionally note
that this is unlike our characterization of Cellpose performance, where we
adjusted its size parameter for every image. Therefore, our performance
curves are biased towards Cellpose. The UNSEG parameter values we used
for GIT dataset are listed in Supplementary Table 2 and discussed in
“Methods”.

Furthermore, we also benchmarked the segmentation performance of
UNSEG with respect to Cellpose and Mesmer using publicly available,

Fig. 2 | Perturbed watershed method. a Input image fragment with two abutting
nuclei. b–e The posterior global and local masks of the input image from which the
global nucleus cluster mask and local cell membrane mask are extracted for
downstream perturbed watershed analysis. f Global nucleus cluster mask with cuts
corresponding to the local cell membrane mask. g Distance transform of this
modified global nucleus cluster mask. h Adaptive distance-transform estimate

obtained by thresholding the distance transform by davr (see “Methods”). i Initial
(unperturbed) watershed segmentation. j–m Perturbed watershed segmentation
computed after shifting all markers from their unperturbed positions to the left
(Δx =− ⌊davr⌋), right (Δx = ⌊davr⌋), up (Δy = ⌊davr⌋), and down (Δy =− ⌊davr⌋) on
⌊davr⌋ = 5 pixels, respectively. nOutput segmentation of two-nuclei cluster based on
the perturbed watershed.
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multiplexed imaging tissue datasets acquired using CODEX, Vectra, and
Zeiss imagingplatforms47,48. Supplementary Figs. 4–6, respectively, show the
cell segmentation performance of UNSEG, Cellpose, and Mesmer on
CODEX, Vectra, and Zeiss datasets. The Codex dataset comprises of ten
400 × 400 images of lymph nodes and tonsils. For our benchmarking, we
chose CD20 and CD45RO as cell membrane markers to demonstrate the
ability of UNSEG to work with different cell membrane markers. These
images were acquired using an objective with 20× magnification, and
imaging sensor with pixel pitch of 0.3774 μm/pixel47,48. Supplementary
Fig. 4a depicts an example image of lymph node from the CODEX dataset,
along with its ground truth cell annotation, the cell segmentation predicted
by UNSEG, Cellpose, andMesmer, and their corresponding F1 score-based
performance curves. Due to the high cell density, lymph node samples are
typically difficult to segment. This example provides a clear visual and
quantitative demonstration of UNSEG performing segmentation on par
with Cellpose and Mesmer. Supplementary Fig. 4b further shows that the
quality UNSEG performance extends to the entire CODEX dataset.

Similarly, Supplementary Figs. 5 and 6 compare the performance of
UNSEGcell segmentationwith that of Cellpose andMesmer for Vectra and
Zeiss datasets47,48, respectively. TheVectradataset includes 131 tissue images
of size 400 × 400 from a range of pathologic diseases that include lung
adenocarcinoma, extramammary Paget disease, pancreatic ductal adeno-
carcinoma, lung small cell carcinoma, colon adenocarcinoma, Hodgkin
lymphoma, breast ductal carcinoma, serous ovarian carcinoma, squamous
cell carcinoma, Merkel cell carcinoma, and squamous mucosa. The Zeiss

dataset consists of nineteen tissue images of size 800 × 800, acquired from
tissue sections of cutaneous T-cell lymphoma, pancreatic adenocarcinoma,
basal cell carcinoma, and melanoma. Both Vectra and Zeiss datasets were
acquired using 20× magnification objectives however pixel pitches of ima-
ging sensors were 0.5 μm/pixel and 0.325 μm/pixel respectively47,48.
Although, UNSEG performs stable and high-quality segmentation, faith-
fully capturing cell shapes, its F1 score-based performance is upper bounded
byCellpose andMesmer. This is partly due to the tendency of the annotated
ground truth to have on average smaller cell size, when compared to Cell-
pose and Mesmer estimates, which tends to favor their F1 scores (also see,
“F1 score and accuracy” section below).We found this tobe particularly true
forVectra dataset. For this dataset, it was also difficult to find cellmembrane
markers that were appropriately imaged across the different images. We,
therefore, utilized pan-cytokeratin, a cytoplasmic marker for cell segmen-
tation. Since, UNSEG has been developed for utilizing nucleus and cell
membrane marker for unsupervised segmentation, and not nucleus and
cytoplasm marker, we did expect reduced performance. However, the
quality of UNSEG segmentation remained remarkably robust, despite the
expected reduction in UNSEG F1 score values.

Applicability of UNSEG to different practical scenarios
We also tested UNSEG performance in multiple different practical
scenarios.
1. Weakly expressing cellmembranemarker:We identified a tissue image

of human skin with dermatofibrosarcoma acquired from a publicly

Fig. 3 | Gastrointestinal tissue (GIT) dataset. Twelve representative tissue images
from the GIT dataset drawn from different organs of the human gastrointestinal
system with different pathobiology. Blue and red colors, respectively, indicate
nucleus (Hoechst) and cell membrane (Na+K+ATPase) marker expressions. The

dimensions of each image are 1000 × 1000 pixels. The images were acquired using
microscope with 0.95 NA, 40× objective and imaging sensor with a pixel pitch of
0.16 μm/pixel.
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available CODEX dataset13, which is a different dataset from the one
discussed above. This image has weakly expressing Na+K+ATPase as
the cell membrane marker. Hoechst is the nucleus marker. The image
size is 1440 × 1440 pixels. It was acquired using an objective with a 20×
magnification and a sensor with a pixel pitch of 0.377 μm/pixel. As
shown in Supplementary Fig. 7, UNSEG demonstrates stable and
robust segmentationperformancewith aweakly expressingmembrane
marker. As this dataset lacked annotations, we did not compute the F1
curve but as the figure demonstrates, a visual, qualitative assessment of
UNSEG segmentation compares favorably withCellpose andMesmer.

2. Using a non-specific cell membrane marker to segment cells: In
Supplementary Fig. 5, using the Vectra dataset, we demonstrated that
UNSEG is robust to using cytoplasmic markers for cell segmentation.

To further test the wide applicability of UNSEG, we replaced weakly
expressing Na+K+ATPase with Hyaluronan, which cannot only
localize to the cell membrane but also to the cytoplasm and the
extracellular matrix. We used Hoechst as the nucleus marker.
Supplementary Fig. 8 shows that UNSEG performs high-quality
nucleus and cell segmentation, which also compares favorably with
generalist methods like Cellpose and Mesmer.

3. DRAQ5 as the nucleus marker: We next switched Hoechst with
DRAQ5 as the marker for the nucleus, while keeping Hyaluronan as
the cell membrane marker. Supplementary Fig. 9, show that UNSEG
continues to provide high-quality segmentation.

4. Applying UNSEG to multiplexed ion beam imaging (MIBI): We also
tested UNSEG sub-cellular segmentation performance on nuclei and

Fig. 4 | Comparison of UNSEG, Cellpose, and Mesmer on four example images
from the GIT dataset. a Columns respectively correspond to appendix, esophagus,
gallbladder, and small intestine tissue images. Rows show nucleus (white boundary)
and cell (green boundary) segmentation results for the four examples using UNSEG,
Cellpose and Mesmer, respectively. b The two rows, respectively, show nucleus and

cell segmentation accuracy of UNSEG, Cellpose, andMesmer. Accuracy ismeasured
using number of segmented objects (see insets) and F1 score curves plotted as a
function of IoU threshold between the segmented and annotated labels for nuclei
and cells, respectively.
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cells in a placental tissue image acquired using MIBI, an alternative
multiplexed imaging technology6,8. The image was downloaded from
the Human BioMolecular Atlas Program (HuBMAP) database.49 The
image size is 2048 × 2048, with pixel pitch of 0.391 μm/pixel. Due to
lack of clearly identified annotation, Supplementary Fig. 10 does not
show the F1 curves, but does provide a visual comparison of UNSEG,
Cellpose and Mesmer performance. As before, UNSEG performance
continues to be at par with deep learning methods.

F1 score and accuracy
F1 is a well-established score for assessing segmentation accuracy. It
simultaneously accounts for the proportion of correctly segmented objects
and their pixel-wisematching with ground truth object profiles46. However,
as we show in Supplementary Fig. 11, F1 score is biased depending on how
the estimated segmentation mask deviates from the ground truth. Specifi-
cally, F1 value is higher if the size of the estimated segmentation mask is
larger than the ground truth, as compared to when it is smaller. In fact, as
shown in Supplementary Fig. 11, the former upper bounds the latter. Both
Cellpose and Mesmer, on average, have larger cell segmentation mask
estimates when compared to UNSEG. This is a contributory factor towards
the higher median F1 scores for Cellpose and Mesmer, even when seg-
mentation results from all three methods are reasonable. Supplementary
Fig. 4 exemplifies this point. There, even though cell segmentation results
fromall threemethods are reasonable, UNSEGhas a slightly lower F1 curve,
due to it being conservative in estimating cell size, as is discussed above in the
subsection on UNSEG benchmarking.

UNSEG characteristics and use case
UNSEG employs an integrated approach to segmenting nuclei and cells
that, by design, emphasizes internal consistency between each cell nucleus
and its membrane. As a consequence, UNSEG guarantees that no seg-
mented nucleus can be located beyond the boundaries of its cell. This
drawback is often found in both Cellpose and Mesmer, where nucleus and
cell segmentations are performed independently. Figure 6a depicts a small

intestine tissue section illustrating the internal inconsistency in nucleus and
cell boundaries estimated by Cellpose and Mesmer for a pair of examples
highlighted with dashed boxes. In the case of Cellpose the larger nucleus is
located in two cells, while in Mesmer, for region marked as 1, two cells are
sharing the same nucleus. For regionmarked as 2, in the case of Cellpose the
nucleus extends beyond the boundary of its cell. UNSEG avoids such dis-
crepancies due to its joint segmentation of nuclei and cells. This joint pro-
cessing ensures that UNSEG can unambiguously identify the cytoplasmic
compartment of cells. The internal consistency among sub-cellular com-
partments is of particular importance in biological studies where correct
sub-cellular localization of signaling pathway components is essential to
study intra-cellular signaling. For example, tumor protein P53 can be
sequestered in the cytoplasm, or localized in thenucleus dependingonDNA
damage, and other exogenous and endogenous stresses. However, in
unstressed cells, it is expressed at low levels and localizes in both the cyto-
plasm and the nucleus50. As another example, histone methyltransferase
EZH2 localizes in the nuclei, where it regulates gene expression through its
canonical histone lysinemethyltransferase activity51. Supplementary Fig. 12
depicts an example of such a real use case, where UNSEG is used in a
multiplexed imaging context to segment cells and their nuclei based on
Hoechst and Na+K+ATPase. The UNSEG-based segmentation is used to
localize intra-cellular P53 and EZH2 expression in a region of healthy colon
tissuewith densely located cells (see “Methods”). The internal consistency of
UNSEG segmentation ensures that the user is correctly able to evaluate P53
expression in the nucleus and the cytoplasm, while ensuring that the
canonical activity of EZH2 in the healthy tissue is not associated with the
cytoplasm.

As briefly mentioned earlier, UNSEG does not impose a strict shape
constraint on the segmented nuclei by allowing them to be locally non-
convex. Consequently, in complex tissue sections it is, on average, better at
preserving true nucleus shape than Cellpose and Mesmer, which either are
usually more rounded, and in regions of the tissue with high cell density,
appear like Voronoi partitions of the tissue region. Figure 6b shows an
example of pancreas tissue with elongated cells that deviate from round

Fig. 5 | Performance comparison of UNSEG, Cellpose, andMesmer for the entire
GIT dataset. First row compares median F1 score performance curves for the three
methods as a function of IoU threshold for nucleus and cell segmentation of images
in theGIT dataset. The insert containsmedian F1 score values at the IoU threshold of

0.5 for three algorithms. The second and third rows, respectively, show pairwise
comparison between UNSEG and Cellpose, and UNSEG and Mesmer. The com-
parison includes median F1 score curves along with their 95% confidence intervals.
Their complete overlap indicates similar performance of all three methods.
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shapes. As can be seen, the ability of UNSEG to combine knowledge of
global tissue architecture and local topology, with a relaxed shape constraint
allows it to better capture elongated nucleusmorphologywhen compared to
Cellpose andMesmer. This ability is highly relevant in the context of the use
case mentioned above, where users, such as cancer biologists are studying
the tumor microenvironment that might include a diversity of cell shapes
associated with cancer, immune, and stromal cell populations.

Runtime complexity ofUNSEG is a functionof numberof cells andnot
the image size. Specifically, UNSEG runtime complexity scales approxi-
mately linearly with respect to the number of segmented cells in the image.
This translates to linear scaling with respect to image area, if the spatial
distribution of cells is approximately uniform. However, for sparsely
populated imagesUNSEG runtimewill be significantly sub-linear. Figure 6c
shows linear dependence with respect to the number of segmented cells and
the image area, under the assumption of uniform cell distribution. The
results were generated using an acquired colon tissue microarray (TMA)
spotwith approximately uniformcell distribution. The segmentation results
for the whole TMA spot are presented in Supplementary Fig. 13.

Discussion
The importance of segmenting cells and their nuclei has gained renewed
prominence due to the advent of multiplexed imaging technologies that have

significantly enhanced the depth of information that can potentially be
extracted fromsamples in a cell-specificmanner.However, tissue sectionshave
complex cell organizations and unlike computer vision tasks, segmenting
individual cells evenbyhumanexperts is a difficult challenge, resulting in inter-
observer discordance. Such discordance usually grows as the number of cells
requiring annotation grows. This, in turn, affects ground truth quality used to
trainsupervised learningmodels, and isabottleneckforgeneratinghigh-quality
training data. The unsupervised approach provides a complementary para-
digm to segmenting complex tissue images without requiring training data.
Unsupervisedmethods are alsomore adaptable to individual images of varying
complexity. However, to the best of our knowledge, until now no method
within the unsupervised paradigm had demonstrated performance
approaching supervised learning methods, particularly those based on deep
learning. As a consequence, none of its advantages were relevant. UNSEG, for
thefirst time, to the best of our knowledge, demonstrates that unsupervised cell
and nuclei segmentation can achieve accuracy at par with the current state-of-
the-art methods in deep learning. It also introduces the perturbed watershed
algorithm, a standalone algorithm that extends the ability of classicalwatershed
algorithm to correctly segment nucleus clusters. Perturbed watershed is
applicable in all cases where the classical version can be used. Finally, like the
generalist DL methods, UNSEG is not brittle, and is applicable to a range of
tissue types, disease pathologies, nucleus and cell membrane markers, and

Fig. 6 | Characteristics of UNSEG method. a UNSEG demonstrates internal con-
sistency between nucleus and cell boundaries. The dashed box 1 contains two nuclei,
where both Cellpose and Mesmer have mismatch between the boundaries of two
cells and their nuclei. The dashed box 2 contains another cell, where Cellpose has
mismatch between the nucleus and its cell boundaries. b UNSEG is better at

capturing complex shapes of nuclei in comparison to Cellpose and Mesmer, as
exemplified by the arrows indicating examples of nuclei with complex shapes.
c Runtime complexity of UNSEG as a function of number of cells and image area,
assuming uniform cell distribution for the latter.
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multiplexed imaging modalities. It achieves accuracy on par with these
methods, along with the added benefit of guaranteeing segmentation con-
sistency between a cell and its nucleus, and being faithful to their morphology.
These latter benefits can potentially be helpful in accurate sub-cellular locali-
zation of mRNA transcripts in microscopy images generated using well-
established protocols for fluorescence in-situ hybridization52 and its multi-
plexed counterparts53–57 when combined with nucleus and membrane fluor-
escence markers.

Segmentation fundamentally involves learning features and image
representations that help the algorithm identify individual cells and their
nuclei. Deep learningmodels extract these features and representations in a
supervisedmanner. Interestingly, UNSEG performance reveals that there is
intrinsic information latent in the topology of cells and nuclei within the
tissue context of an individual image that is equivalent to training on one
million cells26. Importantly, this information can be acquired adaptively for
every tissue image. Therefore, it is conceivable to develop adaptive DL
methods that perform sub-cellular segmentation of individual unlabeled
tissue images adaptively, by leveraging UNSEG as a label generator to
initialize internally consistent cell and nucleus labels that a DL method can
optimize and improve using self- and semi-supervised learning paradigms.
For example, in a self-supervised learning frameworkUNSEGcould be used
to optimally initialize joint learning of neural network parameters and k-
means-based segmentation of cells and nuclei58. Another application could
be in a semi-supervised setting, where a small portion of the image is
annotated, while the remaining is unlabeled.Here, UNSEGcould be used to
provide pseudo-labeling estimate of cell and nucleus segmentation for the
unlabeled data, which can then be used to refine the DL model trained on
labeleddata59,60. Finally,UNSEGcould beused in the setting of learningwith
noisy labels, where the UNSEG generated segmentation masks are noisy
labels on which robust DL models can be trained61.

UNSEGperforms sub-cellular segmentation based on nucleus and cell
membrane compartment markers. However, its framework does not
impose any constraint on the number of markers that can be used. For
example, in multi-nucleated cells, UNSEG can be modified to incorporate
an additional marker specific to the nuclear membrane to coherently seg-
mentmultiple overlappingnuclei belonging to the same cell. Supplementary
Fig. 14depicts an example of amulti-nucleated cell, with LaminA/C (shown
in green) marking the nucleus membranes. As depicted in this figure, the
modification of UNSEG utilizes the specificity of the extra marker to seg-
ment the nuclei and associate them with the same cell.

UNSEG is an easy-to-use method for sub-cellular segmentation of
complex tissue images using multiplexed imaging technologies. It only uses
well-known and robust Python libraries that require minimal setup and is
accessible to researchers with varying computational backgrounds. In total,
UNSEGhas thirteenparameters (seeMethods, SupplementaryTable2, andthe
code implementation), all with clearmeaning and interpretation, and assigned
default values for images having a pixel pitch of 0.16 μm/pixel. Among them,
minimal area and convexity threshold are the two primary parameters (see
“Methods” and Supplementary Table 2) that have the strongest effect on
UNSEG execution. They can be adjusted by the user to optimize segmentation
performance for individual images includingrelatively large imagesas shown in
Supplementary Fig. 13.However, aswe demonstrated using theGIT, CODEX,
Vectra and Zeiss datasets, a single setting of these two parameters can also be
used across an entire cohort of images with the same pixel pitch, without
noticeably compromising segmentation quality. The user can also define the
expected cell size via the dilation radius (u0) parameter. UNSEG uses this
parameter only for cells without cell membrane marker expression. This
parameter does not affect execution of the core UNSEG method. Two other
parameters, disk radius (r0) and the kernel-size list (n0) can also be customized
to more accurately account for local background noise and pixel pitch.
Examples based on such customization are shown in Supplementary
Figs. 4–10. The remaining parameters only marginally affect UNSEG seg-
mentation quality, but if needed, can be used to further fine-tune UNSEG
performance. The default values and reasonable adjustment ranges for all
parameters are listed in SupplementaryTable 2.UNSEG, therefore, is aflexible

framework that can also be extended to include additionalmarkers to enhance
cell segmentation and to extract localized expression of individual markers
across the tissue sample. Finally, we re-emphasize that unlike segmentation of
objects in computer vision-based situational awareness tasks, segmenting cells
and their nuclei, particularly in the context of tissue samples, often results in
subjective ground truth. By being able to capture intrinsic, marker-specific
topological structure of cell compartments, UNSEG offers opportunities to
further improve current state-of-the-art deep learning methods. To aid in this
task,wehave also generatedaGITdataset of 75 tissue images fromeight organs
of the human gastrointestinal system, along with their corresponding nucleus
and cell annotations independently generated by expert pathologists.

Methods
Generation of GIT dataset and other images
For GIT dataset, formalin-fixed paraffin-embedded (FFPE) tissue microarray
(TMA) slides were obtained from Pantomics (Pantomics, DID381) Tissue
TMA samples for Supplementary Figs. 12–14 were obtained from the
Department of Pathology at University of Pittsburgh Medical Center Presby-
terian Hospital. The slides went through cyclic immunofluorescence antigen
retrieval protocol10. The corresponding figure slides were stained in cycles with
1:200dilutionofAnti-SodiumPotassiumATPase antibody (Abcamab198367,
cloneEP1845Y), 1:100dilutionof P53 antibody (Abcamab270192, clone SP5),
1:50dilutionofEZH2antibody (CST45638, cloneD2C9), and1:100dilutionof
LAMINA=C antibody (CST 8617, clone 4C11) overnight at 4 °C in the dark,
followed by staining with Hoechst 33342 (CST 4082S) for 10min at room
temperature in thedark.TMAimageswereacquiredusinga0.95NAanda40×
objective on a Nikon Ti2E microscope.

Seventy-five, 1000 × 1000 high-quality regions were identified and
extracted fromtheTMAimages and saved as tiff images. Expert pathologists
independently annotated these images. The annotations were done using
Cellthon, a Python-based cell annotation graphical user interface (GUI) we
created using Tkinter toolkit62. Together these 75 images and their cell and
nucleus annotations comprise the GIT dataset.

UNSEG algorithm
Input image. The input to our algorithm is a two-channel image. An
example is illustrated in the “input" panel of Fig. 1 and Supplementary
Fig. 15, as well as in Fig. 3 and Supplementary Fig. 13. Channel one,
depicted in blue, and channel two shown in red, are respectively asso-
ciatedwith nucleus and cellmembranemarker expressions. Each channel
of the image is independently scaled to 0 and 1, such that Ii: Ω→ [0, 1].
Here Ii is the normalized image intensity for ith channel, Ω is the image
domain, and i = 1, 2 is the indexing representing the two channels.

The algorithm performs nucleus and cell segmentation utilizing a
Bayesian framework: the posterior probability estimates of nucleus and cell
masks are obtained from their a priori and likelihood estimates thatUNSEG
computes from the normalized two-channel image. These posterior esti-
mates are then used to obtain the final nucleus and cell segmentations.
UNSEGimplements this framework through fourprocessing stages detailed
below and illustrated in Fig. 1 and Supplementary Fig. 15.

Processing stage 1: computing a priori nucleus and cell
membrane masks. In Stage 1, we compute a priori estimates of the
image foreground for each channel. The estimates are computed at the
global and local scale as described below.

A priori probability: Each channel, Ii(x, y), i = 1, 2, is first pre-
processed using a combination of a Gaussian filter63 and multi-level
Otsu63–65. The standard deviation of the Gaussian filter kernel, σ is a para-
meter of the algorithm that allows the user to control the degree of
smoothing. This and other algorithm parameters are summarized in Sup-
plementary Table 2. Our default setting is σ = 3. A three-level Otsu is next
applied to the smoothed image, and the lowest level is selected as the
threshold to obtain the initial estimate of the channel foreground.

We use the initial, per-channel foreground estimate to compute the
cumulative distribution function (CDF), F i of Ii using intensity values,
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Ii(x, y), of pixels (x, y) within this estimate. Two examples of CDFs are
presented in Supplementary Fig. 15. Using the monotonically non-
decreasing property of CDF, we map Ii to its cumulative probabilistic
representation Pe

i , where P
e
i ðx; yÞ ¼ F i Iiðx; yÞ

� �
. We define Pe

i ðx; yÞ to be
the apriori probability of thepixel being thenucleus (i=1)or cellmembrane
(i = 2).We note that this definition quantifies the intuition that stronger the
marker intensity at a particular pixel, the higher its a priori probability.
Examples of a priori probabilities for nuclei (Pe

1) and cell membranes, (Pe
2)

are presented in Fig. 1 and Supplementary Fig. 15.
A priori global mask: We compute the a priori global maskMg

i ðx; yÞ,
i= 1, 2 using Pe

i and a simple filter called localmean suppression filter (LMSF)
that we have developed. The foreground pixels (x, y) whereMg

i ðx; yÞ ¼ 1 are
designed to be a superset of the pixels belonging to the true nucleus (i= 1) and
cell membrane (i= 2) compartments of cells in Ii(x, y), i= 1, 2.M

g
i , therefore,

ensures that no pixels belonging to the cells are missed.
LMSF is designed to identify the valleys (or space) that exist between

nuclei (or cell membranes) of closely located cells that nevertheless have
some spillover marker expression, and are therefore, difficult to identify as
background. We define LMSF as,

Îiðx; yÞ ¼
0; if Iiðx;yÞ

�Iiðx;yÞ < t0
Iiðx; yÞ; otherwise

(

;

where �Iiðx; yÞ ¼
1

2n0 þ 1
� �2

Xxþn0

ξ¼x�n0

Xyþn0

η¼y�n0

Iiðξ; ηÞ:
ð1Þ

The above definition states that for a given pixel (x, y)∈Ω, LMSF replaces the
original intensity value with 0 only if the ratio of the pixel intensity to the
average intensity, computed locally around the pixel neighborhood, is below
the threshold parameter t0. The size of the kernel defining the neighborhood
overwhich the localmean intensity is computed is parameterizedbyn0.We set
t0 = 0.5. Consequently, all pixels with intensity value less than half the mean
intensity in their respective neighborhoods are replacedwith zeros, allowing us
to identify valleys between cells. By varying n0 we can identify valleys and gaps
of different widths. UNSEG performs LMSF filtering for n0 = 5, 10, 20, 40. If
Îiðx; yÞ ¼ 0 for anyvalueofn0, then thefinal pixel value is set to0 andassigned
to be background in the global mask, Mg

i ðx; yÞ. Thus, LMSF allows us to
capture valleys of differentwidths. The values ofn0 are user-defined and can be
optimized according to complexity of individual images.

We refine the global mask Mg
i ðx; yÞ by reassigning those pixels cur-

rently in the foreground that have a priori probabilityPe
i ðx; yÞ < pi, i = 1, 2 to

the background. This refinement is particularly useful for images with
highly heterogeneous tissue with varying marker expression. The threshold
value pi should be small and by default is set to 0.01.

An example of a priori global mask is presented in Supplemen-
tary Fig. 15.

A priori local mask: Complementing Mg
i ðx; yÞ, we next compute

Ml
iðx; yÞ, the a priori local mask corresponding to image Ii(x, y). Ml

iðx; yÞ
captures the local peculiarities of the compartments—nuclei or cell mem-
branes – associated with their local structure and morphology.

First, Ii(x, y) isfiltered by applying a single iterationof gradient adaptive
smoothing (GAS)45,66,

~Iiðx; yÞ ¼
1

Niðx; yÞ
X1

ξ¼�1

X1

η¼�1
Iiðx þ ξ; y þ ηÞwiðx þ ξ; y þ ηÞ;

where Niðx; yÞ ¼
X1

ξ¼�1

X1

η¼�1

wiðx þ ξ; y þ ηÞ;

wiðx; yÞ ¼ exp � d2i ðx; yÞ
2k20

" #

; diðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂Iiðx; yÞ

∂x

� �2
þ ∂Iiðx; yÞ

∂y

� �2
s

:

ð2Þ

This GAS-filtered image, ~Iiðx; yÞ smooths the original image, Ii(x, y), while
preserving the local variations within and around cell nuclei and
membranes. The local neighborhood is defined via a 3 × 3 kernel, wi, that
also performs variation preserving smoothing. Here, variation is quantified
via computation of local gradient and the degree of smoothing is controlled
by k0, which is an algorithmic parameter. Its default setting is 1.

ToobtainMl
iðx; yÞ, a two-level, localOtsu is applied to~Iiðx; yÞ basedon

disk kernel whose radius r0 is an algorithmic parameter. Its default setting is
5 pixels. The Otsu output faithfully captures the local structure but is also
noisy, particularly in image regions where no tissue samples are present and
the gradients are being computed on the backgroundnoise.AsMg

i ðx; yÞ can
accurately identify such background, the output of the local Otsu is
restricted to where Mg

i ðx; yÞ ¼ 1, resulting in local foreground
maskMl

iðx; yÞ.
An example of a priori local mask is presented in Supplemen-

tary Fig. 15.

Processing stage 2: computing a posteriori nucleus and cell
membrane masks. The a priori global and local binary masks are
computed independently for both channels. As a result, non-negligible
probability exists for a pixel to be classified as being both in the nucleus
and cell membrane. This is particularly true in tissue regions with
crowded cells, or when the nature of the tissue section is such that cell
membrane is laying over the nucleus. This processing stage reconciles
these overlaps and generates a posteriori global and local nucleus and cell
membrane masks.

Contrast-based likelihood function:Human visual perception of cell
membranes and nuclei is based on inherent contrast between the two
channels. Usually this contrast is visualized via imbuing the individual
intensity-based channels with colors.Here, we adapt this notion to compute
a visual contrast function based on nucleus and cell membrane marker-
specific expression to quantify the likelihood of pixel belonging to either the
nucleus or cell membrane. The first step computes the contrast function for
each pixel in the a priori local mask as follows,

L0ðx; yÞ ¼
I2ðx;yÞ�I1ðx;yÞ
I2ðx;yÞþI1ðx;yÞ ; if I1ðx; yÞ > i1 or I2ðx; yÞ > i2
0; otherwise

(

;

where
ii ¼ minðx;yÞ2Ωi

Iiðx; yÞ; Ωi ¼ ðx; yÞ 2 Ω jMl
iðx; yÞ ¼ 1

� �
; i ¼ 1; 2. The

second step ensures that this function is consistent with the a priori global
mask for each channel, resulting in the contrast-based likelihood function,

Lðx; yÞ ¼ L0ðx; yÞ; if L0ðx; yÞ < 0 andMg
1ðx; yÞ ¼ 1 or L0ðx; yÞ > 0 andMg

2ðx; yÞ ¼ 1

0; otherwise

	
:

ð3Þ

L(x, y) is bounded between [− 1, 1], with the contrast of − 1 indicating the
strong likelihood that the pixel (x, y) belongs to the nucleus, while 1 indi-
cating the pixel most likely belongs to the cell membrane. Two examples of
likelihood function are presented in Fig. 1 and Supplementary Fig. 15.

Aposteriori globalmask:Wecombine the apriori probabilitywith the
contrast-based likelihood function to compute the a posteriori global mask
Mg(x, y), such thatMg :Ω→ {0, 1, 2}, where the labels 0, 1, and 2 correspond
to the background, nuclei, and cell membranes, respectively. However,
before performing this combination, we enhance Pe

i ðx; yÞ as follows,

Ps
i ðx; yÞ ¼

1; if Ml
iðx; yÞ ¼ 1

Pe
i ðx; yÞ; otherwise

(

; ð4Þ

where i = 1, 2. This enhancement, saturatesPe
i ðx; yÞ—that is, setsPe

i ðx; yÞ ¼
1—where the a priori localmask is 1. It ensures graceful performance of our
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algorithm in the global context, when computing a posteriori global mask
Mg(x, y). We then compute the a posteriori global probability Pg

i ðx; yÞ, via
Ps
i ðx; yÞ-weighted convex combination of the likelihood and a priori belief,

Pg
1ðx; yÞ ¼

Ps
1ðx; yÞ þ 1� Ps

1ðx; yÞ
� � jLðx; yÞj; if Lðx; yÞ < 0

0; otherwise

(

;

Pg
2ðx; yÞ ¼

Ps
2ðx; yÞ þ 1� Ps

2ðx; yÞ
� � jLðx; yÞj; if Lðx; yÞ > 0

0; otherwise

(

:

ð5Þ

The final posterior global mask is obtained by either applying k-means
clustering, with k = 3, or argmax operation45 on Pg

i ðx; yÞ, i = 1, 2 (Eq. (5)) to
computeMg(x, y). The default setting is argmax. We note that k-means (or
argmax) is performedunder the constraint that pixel (x, y)∈Ω is assigned to
the common background if both global probabilities have zeros values, i.e.,
Pg
i ðx; yÞ ¼ 0, i= 1, 2. Examples of the a posteriori globalmask are presented

in Fig. 1 and Supplementary Fig. 15.
A posteriori local mask: We define the a posteriori local mask,

Ml:Ω→ {0, 1, 2}, simply by restricting the a priori probability Pe
i ðx; yÞ to the

local maskMl
iðx; yÞ,

Pl
iðx; yÞ ¼

Pe
i ðx; yÞ; if Ml

iðx; yÞ ¼ 1

0; otherwise

(

; ð6Þ

where i = 1, 2. This restriction allows us to optimally capture the local a
posteriori structure of the nuclei and cell membranes in a self-consistent
manner.

Similar to computing the a posteriori global mask, we either apply k-
means clustering or argmax (default setting) operation on Pl

iðx; yÞ, i = 1, 2
(Eq. (6)) to obtain the a posteriori local maskMl(x, y). As mentioned above
for the a posteriori global mask, the same constraint for the common
background is also applied here. Examples are presented in Fig. 1 and
Supplementary Fig. 15.

Processing stage 3: nucleus segmentation. The a posteriori global
and local masks provide a semantic segmentation of image pixels com-
prising the tissue into nuclei and cell membranes. This, and the following
processing stages are designed to obtain every instance of individual
nucleus and its cell from the semantic segmentation of the tissue. Spe-
cifically, in this stage, wefirst segment all nuclei, and use them as a basis to
identify their cells in the next stage. These steps ensure that the nucleus
and cell segmentations are internally consistent with the latter always
bounding the former.

To segment nuclei we process the a posteriori global mask for the
nuclei, Mg

nucðx; yÞ :¼ Mg ðx; yÞjlabel¼1 with help from the a posteriori local
mask for the cell membrane, Ml

cellðx; yÞ :¼ Mlðx; yÞjlabel¼2. Particular
examples of these two masks are presented in Supplementary Fig. 15.

Convexity analysis:Nucleus segmentationbeginswith convexanalysis
of every connected component ofMg

nucðx; yÞ. As a part of this analysis, we
compute area and the steepest concave point (SCP)37 of every component.
SCP is aboundarypoint of the componentwith the largest deviation from its
convex hull. The area parameter allows us to filter out exceedingly small
objects that are not nuclei, while SCPhelps us determine if the component is
nucleus cluster (NC) or not. The component is kept for further analysis only
if the area of the component exceeds a0. Otherwise it is removed. Each
component that passes the area threshold, is either classified as an NC or
non-NC depending on whether SCP is above or below the threshold d0.
Both a0—default set to 20 pixels—and d0—default value is 4 pixels—are the
primary algorithm parameters (Supplementary Table 2). The non-NC
components are statistically analyzed to obtain the initial segmentation for
all individual nuclei, along with a small component (SC) list comprising of
small convex objects that we are less confident about being nuclei.

Convexity analysis of Mg
nucðx; yÞ, is illustrated in Supplemen-

tary Fig. 15.
Perturbed watershed and virtual cuts: We process the NC compo-

nents using perturbedwatershed (PW) and virtual cut (VC) algorithms that
we have developed. Their goal is to partition the NC into individual nuclei.

PW steps are illustrated in Fig. 2. Briefly, the NC component mask
(Fig. 2d) isfirstmodifiedbyMl

cell (Fig. 2e). Specifically, cuts are introduced in
the NC component mask where the local cell membrane is indicated in the
Ml

cell spatially corresponding to the NC component (Fig. 2f).We next apply
distance transform (DT) on the modified NC component and use the
resulting DT image (Fig. 2g) to compute davr—the average of all non-zero
DT values in the DT image. davr is used to threshold the distance transform
to identify n sub-regions with large DT values indicative of interior of the
sub-regions—putativenuclei—makingup theNCsplitting (Fig. 2h).Within
every sub-region we identify a pixel with the maximal distance-transform
value as thewatershed seed point (marker) for that sub-region.We perform
watershed segmentation of NC based on these n seed points to obtain our
initial estimate of the nuclei comprising the NC (Fig. 2i). If these estimates
are correct, then perturbing themarkers does not affect segmentation of the
NC. However, if the estimates are incorrect, then sub-region estimates are
not stable on perturbation. We exploit this perturbation-based stability to
identify the correct segmentation of the NC. Specifically, we perturb the
marker location and recompute the watershed-based segmentation. The
perturbations are implemented by shifting each watershedmarker location
sequentially in the horizontal and vertical directions by ± ⌊davr⌋, resulting in
four perturbations: (xj ± ⌊davr⌋, yj) and (xj, yj ± ⌊davr⌋) with j = 1, …, n
(Fig. 2j–m).Here, ⌊ ⋅ ⌋ stands for thefloor function. If during any of the four
scenarios, the size of any of the n putative nuclei collapses to a point object
with an area size bounded to a few pixels (Fig. 2j, l, m), we deem them as
unstable and remove their corresponding seed points from the list of n seed
points, and recompute the watershed-based segmentation with the
remaining seedpoints (Fig. 2n). If the segmentation results remain stable for
all four shifts, then the estimate is considered correct. To ensure that each of
the segmented sub-regions are indeed nuclei and not smaller NCs, we
recursively perform convexity analysis and PW on each sub-region. An
example of this recursion is illustrated in Supplementary Fig. 16.

The above recursive segmentation of an NC can sometimes result in a
specific pathological situation, where the convex analysis identifies a sub-
region as an NC, but PW does not segment it into sub-regions. For this
specific scenario,we have developed the virtual cuts (VC) approach,where a
virtual cut is defined through theSCPof theNCcomponentmask to identify
virtual sub-regions. We use “virtual” to emphasize that this cut and the
resulting sub-regions are only used to identify their respective watershed
seed points based on which we perform the actual segmentation. The
hypothesis driving the VC method is based on the idea of PW method:
although the locations of the respective watershed markers identified using
virtual cuts might not exactly coincide with their true locations, they do
represent aperturbedversionof the true location.Thus, theyyield stable and
accurate segmentation into the two sub-regions. These sub-regions follow
the same recursive logic of the PW method detailed above. VC method is
illustrated in Supplementary Fig. 15.

Finally, we process the small components in the SC list in a context-
dependent manner, with small isolated SCs included in the final nucleus
segmentation result. Multiple examples of nucleus segmentation are pre-
sented in Figs. 1, 4, and 6 as well as in Supplementary Figs. 7–10, 12, 13, and
15, where the contours of nuclei are outlined in white.

Processing stage 4: cell segmentation. We segment cells via the joint
use of a posteriori global mask for the cell membranes Mg

cellðx; yÞ :¼
Mg ðx; yÞjlabel¼2 and the segmented nuclei.

We begin by initializing the segmented cell mask as the segmented
nucleus mask. The cell mask is then expanded till its boundary coincides
with that of the closest cell membrane around it. It is possible that the cell
membrane marker used for cell segmentation is not expressed by all cells.
Therefore, for cells without any cell membrane marker expression, the
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nucleus mask is morphologically dilated a small amount u0 (1–10 pixels) to
obtain an estimate of the cell membrane. u0 with its 9 pixels default value is
one more algorithm parameter (Supplementary Table 2). In the opposite
scenario, where due to the nature of the tissue section, a cell is present with a
membrane but without a nucleus, we utilizeMg

cell . Specifically, the skeleton
ofMg

cell is computed and subtracted from Mg
cell itself. This operation natu-

rally reveals the cell membrane contour withinMg
cell , which we identify via

computing the Euler number of its connected component. When the Euler
number is zero and the area of the connected component exceeds half of the
average area of nuclei, the connected component is identified as the seg-
mented cell. Examples of cell segmentation are presented in Figs. 1, 4, and 6
as well as in Supplementary Figs. 4–10, 12, 13, and 15, where the contours of
the segmented cells are outlined in green.

Performance evaluation
To evaluate UNSEG performance and compare it with Cellpose25 and
Mesmer26 results, we used the F1 score (or Dice coefficient) as the
accuracy metric46. To compute the F1 score, we first estimated the true
positive (TP), false positive (FP) and false negative (FN) values by
comparing the predicted segmentation with the expert annotated
ground truth and using intersection over union (IoU) as the threshold
value46. The IoU threshold, ranging from 0 to 1, indicates how much of
an overlap between the predicted segmentation and ground truth is
considered amatch, which is then used to estimate the number ofTP, FP,
and FN segmented objects. The F1 score is then given by

F1 ¼
2TP

2TP þ FP þ FN
: ð7Þ

Varying the IoU threshold from 0 to 1, gives us the corresponding F1 curve
as a function of the IoU threshold.

Statistics and reproducibility
Statistical robustness of UNSEG, and its reproducibility has been exhaus-
tively tested on the GIT dataset and three publicly available datasets47,48.

Data availability
The gastrointestinal tissue (GIT) dataset is available at https://doi.org/10.
7303/syn61804540.

Code availability
The Python implementation67 of the UNSEG is available at https://github.
com/uttamLab/UNSEG.git. UNSEG is also available at https://doi.org/10.
5281/zenodo.13117814. Both Linux andWindows versions of Cellthon are
publicly available at https://github.com/uttamLab/cellthon.git.
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