
High-dimensional profiling clusters asthma severity by lymphoid 
and non-lymphoid status

Matthew J. Camiolo1,2, Xiaoying Zhou3,10, Timothy B. Oriss1,10, Qi Yan4, Michael Gorry1, 
William Horne5, John B. Trudeau6, Kathryn Scholl1, Wei Chen4, Jay K. Kolls7, Prabir Ray1,8, 
Florian J. Weisel9, Nadine M. Weisel8, Nima Aghaeepour9, Kari Nadeau3,10, Sally E. 
Wenzel1,6,8,10, Anuradha Ray1,8,10,11,*

1Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of 
Pittsburgh School of Medicine, Pittsburgh, PA, USA

2Center for Systems Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA

3Sean N Parker Center for Allergy Research and Division of Pulmonary, Allergy, and Critical Care 
Medicine, Stanford University, Stanford, CA, USA

4Division of Pulmonary Medicine, Children’s Hospital of Pittsburgh, University of Pittsburgh 
School of Medicine, Pittsburgh, PA, USA

5Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of 
Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

6Department of Environmental Medicine and Occupational Health, Graduate School of Public 
Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

7Department of Medicine and Center for Translational Research in Infection and Inflammation 
Tulane School of Medicine, New Orleans, LA, USA

8Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

9Departments of Anesthesiology, Pain, and Peri-operative Medicine and Biomedical Data 
Sciences, Stanford University, Stanford, CA, USA

10These authors contributed equally

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Correspondence: raya@pitt.edu.
AUTHOR CONTRIBUTIONS
Conceptualization, A.R., S.E.W., K.N., and M.J.C.; methodology, M.J.C., X.Z., T.B.O., Q.Y., W.H., K.S., F.J.W., N.M.W., J.K.K., 
W.C., M.G., J.B.T., S.E.W., A.R., and P.R.; data analysis, M.J.C., T.B.O., Q.Y., S.E.W., N.A., and A.R.; writing, A.R., M.J.C., S.E.W., 
and T.B.O.; supervision, A.R., S.E.W., K.N., J.K.K., and W.C.; funding acquisition, A.R., S.E.W., J.K.K., M.J.C., P.R., T.B.O., and 
K.N.

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.celrep.2021.108974.

DECLARATION OF INTERESTS
A.R. has a research agreement with Pieris Pharmaceuticals. S.E.W. is a consultant for AstraZeneca, Glaxo Smith-Kline, and Sanofi. 
She is also involved in clinical trials being run by Knopp, Sanofi, and AstraZeneca. She has a research agreement with Pieris 
Pharmaceuticals. M.J.C. is a consultant for Pieris Pharmaceuticals.

INCLUSION AND DIVERSITY
We worked to maintain gender balance and ethnic diversity in our selection of human subjects. We have also ensured gender balance 
in citations of previous work.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2021 May 19.

Published in final edited form as:
Cell Rep. 2021 April 13; 35(2): 108974. doi:10.1016/j.celrep.2021.108974.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


11Lead contact

SUMMARY

Clinical definitions of asthma fail to capture the heterogeneity of immune dysfunction in severe, 

treatment-refractory disease. Applying mass cytometry and machine learning to bronchoalveolar 

lavage (BAL) cells, we find that corticosteroid-resistant asthma patients cluster largely into two 

groups: one enriched in interleukin (IL)-4+ innate immune cells and another dominated by 

interferon (IFN)-γ+ T cells, including tissue-resident memory cells. In contrast, BAL cells of a 

healthier population are enriched in IL-10+ macrophages. To better understand cellular mediators 

of severe asthma, we developed the Immune Cell Linkage through Exploratory Matrices (ICLite) 

algorithm to perform deconvolution of bulk RNA sequencing of mixed-cell populations. 

Signatures of mitosis and IL-7 signaling in CD206−FcεRI+CD127+IL-4+ innate cells in one 

patient group, contrasting with adaptive immune response in T cells in the other, are preserved 

across technologies. Transcriptional signatures uncovered by ICLite identify T-cell-high and T-

cell-poor severe asthma patients in an independent cohort, suggesting broad applicability of our 

findings.

Graphical abstract

In brief

Asthma is an immune-mediated heterogeneous disease. Current type-2 biomarkers provide limited 

understanding of underlying pathobiology or therapeutic guidance. Using a multi-omics approach, 
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Camiolo et al. identify two clusters of severe asthma patients with similar type-2 biomarkers but 

with strikingly distinct immune profiles and associated biological pathways.

INTRODUCTION

The term “asthma” encompasses a disease spectrum characterized by reversible airflow 

obstruction affecting more than 300 million people worldwide (Pavord et al., 2018; Ray et 

al., 2020; Wenzel, 2012). Clinical manifestations of asthma are heterogeneous, with 5%–

10% of patients exhibiting poor response to inhaled corticosteroids (ICSs), the current 

standard of care, even when used at high doses or accompanied by systemic administration 

(Fahy, 2015; Gauthier et al., 2015; Ray et al., 2016, 2020; Wenzel, 2012). The economic 

impact of severe asthma (SA) in the U.S. is estimated at $56 billion annually, driven 

primarily by frequent exacerbations and need for emergency care (Barnett and 

Nurmagambetov, 2011).

Initial studies of asthma heterogeneity clustered patients using combinations of clinical and 

biological variables such as sputum, bronchoalveolar lavage (BAL) fluid or blood cell 

counts, and age of onset (Haldar et al., 2008; Moore et al., 2007; Wu et al., 2019). While 

they did not identify specific biologic mechanisms, they paved the way for molecular 

phenotyping. Subsequent work focused on transcriptional profiling using platforms such as 

microarray and RNA sequencing of epithelial brushings, sputum, and, more recently, BAL 

cells (Baines et al., 2014; Hekking et al., 2017; Kuo et al., 2017; Modena et al., 2017). The 

concept of type-2 (T2)Hi asthma and its associated biomarkers, including blood eosinophils 

and fraction exhaled nitric oxide (FeNO), was promoted in different reports (Hastie et al., 

2013; Modena et al., 2014; Woodruff et al., 2009). Molecular signatures were associated 

with these biological variables using bioinformatic tools such as weighted gene correlation 

network analysis (WGCNA) and k-means clustering, confirming T2 immune pathway 

activation (Haldar et al., 2008; Modena et al., 2017; Weathington et al., 2019). Targeting 

these pathways using therapeutics directed at immunoglobulin E (IgE), interleukin 

(IL)-4Rα, IL-5, or its receptor has confirmed their importance in many patients (Bleecker et 

al., 2018; Brusselle et al., 2017; Hanania et al., 2013; Ray et al., 2020; Wenzel et al., 2013). 

Response to targeted therapy remains variable, however, and does not fully correspond with 

biomarkers used in patient selection (Brightling et al., 2015; Flood-Page et al., 2007; Leckie 

et al., 2000; Panettieri et al., 2018). Possible explanations for this lack of correspondence 

include heterogeneity in the cellular sources of T2 inflammation, activation of concomitant 

signaling pathways, and limitations in currently available biomarkers. Taken together, many 

gaps remain in our understanding of immune and molecular characteristics that underlie the 

umbrella term asthma.

No study heretofore has conducted an in-depth analysis of lung immune cell populations as 

identified by cell-surface phenotype or the cytokines they produce in a range of rigorously 

phenotyped SA patients. We performed bronchoscopy to collect airway and alveolar 

immune cells and used mass cytometry and RNA sequencing to identify cells and pathways 

salient to disease in these participants. We show that treatment-refractory patients can be 

stratified into two distinct groups based on cellular immune profile and accompanying gene 
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signature. Despite broad differences in BAL cell count, sources of T2 cytokines, and 

coinciding type-1 (T1) pathway activation, these groups were inscrutable by clinically used 

markers of T2 inflammation. BAL cells in one patient group (PG) were enriched in 

IL-4+FcεRI+ innate immune cells that were distinct from gene expression signatures linked 

to mast cells or basophils, while those in the second were dominated by interferon (IFN)-γ+ 

T cells, including tissue-resident CD4+ and CD8+ memory (TRM) cells. Both PGs exhibited 

a reduction in IL-10+ alternatively activated M2-like macrophages as compared to the group 

that housed all healthy subjects.

The varying composition of mixed-cell samples may complicate bulk transcriptional 

analysis by introducing variance that obfuscates meaningful discovery. We have developed 

and validated a machine learning algorithm that performs deconvolution of mixed gene 

expression data called Immune Cell Linkage through Exploratory Matrices (ICLite), 

publicly available as a package for R Statistical Software (R Development Core Team, 2014; 

https://github.com/camiolomj/ICLite/). Compared to current technology, ICLite provided 

deeper insight into pathways linked to important cells from our mass cytometry analysis 

while also requiring less parameter tuning and providing integrated estimation of gene 

module number. Signatures uncovered by ICLite also identified groups of treatment 

refractory patients with impaired lung function from external cohorts. Importantly, these 

groups varied significantly in the lymphocyte content of their BAL, suggesting broad 

applicability of our findings to the study of SA.

RESULTS

Mass cytometry identifies diversity of BAL immune cell populations in asthma

Using clinical definitions, 7 healthy controls (HCs), 15 mild-moderate asthma (MMA), and 

19 SA patients were recruited for analysis of bronchoscopically obtained distal airway and 

alveolar cells. SA was defined by European Respiratory Society-American Thoracic Society 

(ERS-ATS) criteria, which include treatment with high dose ICSs as well as an additional 

controller medication for at least 1 year, or systemic CSs for greater than half the preceding 

year. The majority of asthmatic patients in our cohort, including those with MMA, were 

treated with ICSs. Table S1 includes baseline characteristics of human subjects enrolled in 

this study.

Cells recovered in BAL fluid from HC, MMA, and SA participants were used for single-cell 

mass cytometry with a panel of antibodies (Method details) targeting lineage markers for the 

adaptive and innate immune systems. Unsupervised cell clustering was performed using the 

FlowSOM algorithm (Kohonen, 2013; Van Gassen et al., 2015) following gating for viable 

singlets and removal of artifacts. The resultant clusters comprised cells from HCs and MMA 

and SA patients (Figure 1A).

Examining surface marker staining intensity on t-stochastic neighbor embedding (t-SNE) 

dimension-reduced space revealed territories harboring mononuclear and lymphocytic cells 

(Figure 1B; Table S2). Using these data to guide manual validation, we assigned identities to 

FlowSOM cell clusters by parallel analysis with traditional biaxial gating (Figure 1C; Table 

S2). This included 7 CD4 T cell subsets, 3 CD8 T cells, as well as individual clusters of 
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natural killer (NK) cells and polymorphonuclear (PMN)- and γδ T-cell-like cells. The 

remaining monocytic cell populations were identified as dendritic cells, CD206high 

alternatively polarized macrophages with varying expression of FcεRIα, CD206low M1-like 

macrophages, and three subsets of CD206−FcεRIα+ cells that occupied distinct territories of 

dimension-reduced space. As illustrated in Figure S1, the phenotypic uniqueness of 

FlowSOM cell clusters was determined using surface marker staining. As discussed below, 

we did not find a convincing link between expression of mast cell- or basophil-related genes 

with any FcεRIα+ cell population. Group 2 innate lymphoid cells (ILC2s) were not 

detectable in BAL as a discrete cell cluster.

Clustering of patients based on high-dimensional cell count

Seeking to identify immune response patterns that may better characterize patients than 

traditional evaluation of clinical disease severity, we next clustered cohort participants based 

on their BAL composition. We identified three groups distinguished by similarity in high-

dimensional cell count (Figure 1D). Of these, one housed the entirety of HCs in the dataset 

as well as a third of MMAs (PG1). The other two comprised exclusively asthma cases 

(Figure 1E). PG2 accounted for 11 of the 19 total SAs and included only one MMA. PG3 

was an admixture of both MMA and SA. Because these groupings were determined by BAL 

cell count, the 9 MMA patients in PG3 were more similar in immune composition to the SA 

patients within their group than to the MMA patients from others. Participants across groups 

varied in a number of clinical parameters (Table S1) including forced expiratory volume in 

one second (FEV1) (Figure 1F), asthma quality of life, and atopic dermatitis (eczema).

The growing availability of therapeutics targeted at T2 inflammation has led to the use of 

biomarker assays shown to predict response to these drugs during clinical assessment of 

asthma patients. Despite dramatic variation in immune cell profiles among PGs, we found 

no significant difference in the commonly used T2 biomarkers, absolute blood eosinophil 

count or FeNO, between them (Table S1). This inability to distinguish among PGs suggests 

that the complexity of underlying immune response in SA is not captured by the T2Hi versus 

T2Low paradigm alone. Supporting this intrinsic difference in immune response, participants 

of PG2 were much less likely to have eczema than PG3 despite similar T2 status.

Identifying cellular determinants of lung function

Because our PGs significantly varied in lung function (Figure 1F), we next identified cellular 

determinants of airway remodeling using elastic net (EN) regression, previously proven 

effective at handling mass cytometry data (Aghaeepour et al., 2017). Comparison of 

measured FEV1 to values predicted by high-dimensional cell count showed strong model 

performance (Figure 1G). Of the cells in our dataset, we found that 4 of the 6 CD206high 

macrophage populations, all of them FcεRIα−, were positively associated with FEV1, 

indicating a possible protective role (Figure 1H). M2-like, or alternatively polarized, 

macrophages have been described as a continuum of phenotypes with differential roles in 

lung homeostasis and disease (Chen et al., 2012; Kambara et al., 2015; Wynn and Vannella, 

2016). Cell clusters #8, a CD206highST2+FcεRIα+ population, and #19, another M2-like 

macrophage with high expression of FcεRI, were the only two macrophage populations with 

negative association to lung function. Numerous T cell subsets were also negatively 
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associated with lung function, including CD8 effector memory (EM) cells (cell cluster #11), 

and CD8TRM cells (cell cluster #15) (Figure 1H). The CD4+CD161+CCR5+ T cell cluster 

#16 showed the strongest negative association with FEV1, followed by the CD206− FcεRIα
+ CD127+ cell cluster #25 (Figure 1H).

Patient groups are defined by specific cell lineages

We next used mixed-effects modeling of association of single cells (MASC) to identify PGs 

while controlling for contributions from sex, CS use, and CyTOF batch. Though CSs exert 

pleiotropic effects on immune cells, self-reported ICS or oral CS use did not differ between 

PG2 and PG3 (Figure S2A), suggesting BAL composition was not driven by CS response 

alone. We also found no relationship between cytometry by time of flight (CyTOF) batch 

and patient cluster (Figures S2B and S2C). PG1 was associated with lung-function-

protective, CD206highFcεRIα− macrophages (cell clusters #2 and #17) (Figure S2D). PG2 

exhibited a higher proportion of the three CD206−FcεRIα+ innate lineages (cell clusters #1, 

#24, and #25) (Figure S2D). PG3, on the other hand, was associated with different 

populations of T cells, including CD4 EM cells (cell clusters #4 and #16), CD4 central 

memory (CM) cells (cell cluster #7), CD8 CM cells (cell cluster #11), CD4+ TRM cells (cell 

clusters #12, #14, and #23), and CD8+ TRM cells (cell clusters #15 and #18) (Figure S2D).

To validate these findings, we next quantified manually gated cells across patients in our 

cohort (Figure 2A). PG1 most closely approximated a normal BAL cell differential, with 

~90% of recovered cells being monocytic. These participants showed significant enrichment 

for alveolar macrophages, defined by a CD3−CD206+CD163+HLA-DR− surface phenotype, 

as well as CD206+CD11b+CCR4+ macrophages akin to FlowSOM cell cluster #17 (Figures 

1B and 2B). Patients in PG2 demonstrated greatly increased numbers of 

CD3−CD206−FcεRIα+ cells but very low numbers of T cells. Using FlowSOM clusters as 

guide, we identified subsets of CD3−CD206−FcεRIα+ cells with varying expression levels 

of the IL-7 receptor-α, CD127. CD3−CD206−FcεRIα+CD127+ cells could be further 

subdivided by CCR4 expression, yielding discrete populations of CD3−CD206−FcεRIα
+CD127−, CD3−CD206−FcεRIα+CD127+ CCR4−, and CD3−CD206−FcεRIα
+CD127+CCR4+ cells corresponding to FlowSOM clusters 1#, #24, and #25, respectively 

(Figure 2B). PG2 also showed enrichment for CD206+FcεRIα+ macrophages with varying 

levels of CCR4 expression, corresponding to FlowSOM clusters #8 (CCR4−) and #19 

(CCR4+)(Figure 2B). We then gated out CD3+ populations, first defining CD4 lymphocytes 

including naive CD4 T cells (CD4+CD45RA+CD69−), CD4 TRM cells (CD4+CD45RA
−CD69+), CD4+ EM cells (CD4+CD45RA−CD69−CCR7−CD27−), and CD4 CM cells 

(CD4+CD45RA−CD69−CCR7+CD27+). Of these populations, CD4 TRM cells were 

significantly increased in PG3, in agreement with our FlowSOM findings. CD4+CD45RA
−CD69−CCR5+ CD161+ cells, the phenotypic equivalent of FlowSOM cluster #16, were also 

enriched in PG3. We performed similar gating of CD8 T lymphocytes, identifying naive 

CD8 T cells (CD8+CD45RA+CD103−), CD8TRM cells (CD8+CD45RA−CD103+), CD8 

EM cells (CD8+CD45RA−CD103−CCR7−CD27−), and CD8 CM cells (CD8+CD45RA
−CD103−CCR7+CD27+). CD8+ CM cells, CD8+ EM cells, and CD8+ TRM cells were all 

significantly increased in PG3 (Figure 2B).
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Satisfied that manual gating recapitulated findings of automated cell clustering, we next 

tested whether PGs could be successfully recapitulated with these counts (Figures S2E and 

S2F). Our supervised learning model for PG prediction used 18 different manually gated 

cells to identify PG with high accuracy. Mapping of correlative relationships between BAL 

cells summarizes the dominant immune signatures identified across cohort participants 

(Figure 2C).

Cytokine production by both T-cell and non-T-cell sources

Our data showed that cohort participants could be grouped based on similarity in their BAL 

cellular composition. As cytokines have been implicated in asthma pathogenesis and are 

being targeted in asthma therapy, we examined production of six cytokines associated with 

asthma, including interferon (IFN)-γ, IL-4, IL-5, IL-13, IL-17, and IL-10. As expected, 

stimulation with phorbol myristate acetate (PMA) plus ionomycin was required for cytokine 

detection in T cells, but not for non-T cells (Figure S3A). Projection of cytokine staining 

intensities across the cell clusters in the t-SNE plots revealed that signals for T2 cytokines 

such as IL-4, IL-5, and IL-13 localized primarily in non-T-cell regions (Figures 3A and 3B). 

IFN-γ most intensely overlaid T cell populations, suggesting its expression characteristics 

were distinct from the other five cytokines surveyed. Quantitation of cytokine production by 

traditional manual biaxial gating confirmed that only IFN-γ and IL-17A were predominantly 

produced by T cells (Figure 3C). The canonical T2 cytokines IL-4, IL-5, and IL-13, as well 

as IL-10, were derived from largely non-T-cell sources. While IL-4 decorated regions shared 

by IL-5 and IL-13, it also stained heavily within the territory harboring the CD206−FcεRIα+ 

cells associated with PG2. Thus, although IL-4 is historically described as a product of T 

helper 2 cells (Th2, natural killer T [NKT]) in allergic diseases including asthma, our 

analysis revealed non-T cells to be its dominant source in SA.

Inflammatory signals are cellular phenotype specific

Having appreciated the cellular sources of cytokine production, we next sought to unravel 

how immune milieu may influence signaling. Regulation of maturation, chemotaxis, 

polarization, and tissue maintenance may be accomplished via cell-to-cell communication. 

We next evaluated how they may influence cytokine production across cell lineages and 

PGs.

IL-10 staining was predominantly found in CD206+ macrophage populations, including 

alveolar macrophages, CD206+CD11b+CCR4+ macrophages, and some CD206+ FcεRIα+ 

macrophages. Of these, alveolar macrophages and CD206+CD11b+CCR4+ macrophages 

showed greater relative (per cell) IL-10 production (Figure 3D) and a greater number of total 

IL-10+ cells per million BAL cells in PG1. Although CD4+ T regulatory cells (Tregs), 

defined by a CD3+CD4+FoxP3+CD25high phenotype, also showed greater relative 

production of IL-10 in PG1, the number of IL-10+ Tregs per million BAL cells was greatest 

in PG3 (Figure 3D).

As described above, PG2 was enriched for FcεRIα+ innate immune lineages that included 

discrete CD206+ and CD206− populations. These cells were the major source of IL-4 across 

our dataset, with ~5-fold-greater relative staining in PG2 and PG3 (Figure 3E), indicating 
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heightened IL-4 production specifically in the context of treatment refractory asthma. IL-4+ 

CD206−FcεRIα+CD127−, CD206−FcεRIα+CD127+CCR4+, and CD206+FcεRIα+CCR4− 

cells were all present at the highest counts per million BAL cells in PG2, suggesting possible 

roles as drivers of disease in these individuals. IL-4 production by CD206−FcεRIα+CD127− 

and CD206−FcεRIα+CD127+ innate cells was independently verified using high 

dimensional fluorescence flow cytometry with relevant isotype control (Figure S4), 

confirming specificity of IL-4 staining and enrichment of IL-4+ cells in participants of PG2. 

Importantly, CD206−FcεRIα+cells did not possess side scatter qualities typical of 

eosinophils when assessed by traditional flow cytometry. Though IL-5 shared sources with 

IL-4 (Figure 3B), there was no difference in relative production or cytokine positive cells per 

million between PGs (Figure 3F) among innate cells, suggesting uncoupling of upstream 

regulatory mechanisms governing these cytokines.

Dominant sources for IL-4 and other T2 cytokines varied in PG3, suggesting immune milieu 

may promote or suppress production in a lineage-specific manner. We found IL-4-, IL-5-, 

and IL-13-positive cells across numerous T cell subsets (Figure S5A), including CD4+ and 

CD8+ EM, CM, and TRM cells. T2 cytokine-positive T cells were increased in count per 

million among participants in PG3 (Figure S5B), though their number was modest compared 

to other sources. Individuals in PG3 did, however, demonstrate notably higher relative IFN-

γ production from key cell populations such as CD4 and CD8 TRM cells, as well as a 

dramatic increase in IFN-γ+ cells per million BAL cells (Figure 3G), consistent with a 

prominent T1 response in PG3 not present in PG2.

Although IL-17A was also prominently derived from T cell sources (Figure 3C), we found 

the number of cytokine-positive cells per million in BAL to be an order of magnitude lower 

than IFN-γ for CD4 and CD8 TRM and EM populations (Figures 3G and S5C), consistent 

with a dominant T1 rather than Th17 signature. These data suggest that T1 polarization and 

antigen response may be intrinsically linked to disease in PG3, though these individuals did 

not exhibit lower levels of T2 biomarkers when compared to PG2 (Table S1).

PG3 featured MMA and SA patients who clustered together by cellular immune phenotype, 

suggesting similar enrichment for T cells in their BAL. We next examined whether cytokine 

production varied by clinical disease severity. The average numbers of IFN-γ+ and T2 

cytokine+ T cells in the MMA versus the SA subjects of PG3 were not significantly different 

(data not shown). However, the intensity of IFN-γ per cell was higher in specific T cell 

clusters of SA compared to MMA patients, such as CD8 TRM cells (Figure S5D). 

Interestingly, although a similar trend was noted, this difference was not evident in CD4 

TRMs or CD161+ CCR5+ EM cells, though the latter did display greater intensity per cell 

for IL-17A in SA (Figure S5E).

Cell-type-defined patient groups display distinct transcriptional programs

Given the profound differences in cellular immune phenotype identified among three PGs, 

we wondered how they might manifest at the gene expression level. To this end, we 

performed bulk RNA sequencing of BAL cells. Libraries for 38 of the 41 subjects included 

in the mass cytometry study passed through rigid quality control standards for inclusion 

(Table S3). Counts were normalized using rLog transformation and filtered to mitigate 
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contribution from genes expressed at low and highly variable levels. The remaining 17,373 

genes were used for downstream analyses.

As mentioned previously, CSs have widespread and profound impact on immune cells. We 

found no difference in the expression of FKBP5, a commonly surveyed CS-inducible gene, 

between BAL cells of asthma patients taking CS across groups (Figure S6A), indicating 

comparable medication compliance. Pairwise analysis (Figure S6B) showed very few 

differentially expressed genes (DEGs) between PG1 and PG2. Comparison of PG1 and PG3 

showed similar paucity in DEGs (Figure S6C). In contrast, the immune cells in PG3, when 

compared to PG2 (Figure S6D), showed numerous DEGs associated with a high T1 immune 

response. These included, but were not limited to, IL12RB2, TBX21, CXCR3, and GZMK.

To gain further insight into the biological processes that differ between our cellular immune 

phenotypes, we performed gene set enrichment analysis (GSEA) comparing each PG to all 

others in the dataset (Figure 4A). Among pathways enriched in PG1 were the citric acid 

cycle, mitochondrial respiration, and maintenance of cellular redox state, a profile generally 

associated with catabolic metabolism and immune quiescence (Olenchock et al., 2017; 

Rambold and Pearce, 2018). PG2 showed a surprising enrichment in pathways related to cell 

proliferation that included mediators of cell-cycle progression, DNA replication, and 

organization of the mitotic spindle (Figure 4A). This PG also exhibited enrichment for 

ribosomal synthesis, protein translation, and rapamycin-sensitive genes, consistent with 

activation of the well-described mechanistic target of rapamycin (mTOR) (Brown et al., 

1995). Collectively, immune cells in PG2 subjects appeared to be highly proliferative, 

suggesting an increase in aerobic glycolysis and anabolic metabolism (Rambold and Pearce, 

2018). As might be expected from mass cytometry measurement of cytokine, cells in PG3 

were enriched in pathways related to T cell antigen response. Specific pathways such as 

IL-12 signaling and CD8+ T cell activation were identified in these patients, suggesting the 

importance of T cell maturation, proliferation, and polarization in this group.

Deconvolution of bulk transcriptional data using WGCNA

Differential expression and pathway analysis recapitulated some of the differences seen at a 

cellular level among PGs but failed at linking biological processes and molecular pathways 

to specific cell lineages in our study. To accomplish this, we first employed WGCNA, a 

software package that identifies modules of highly correlated genes and relates them to 

external sample traits (e.g., BAL cell frequencies measured by mass cytometry) (Langfelder 

and Horvath, 2008).

WGCNA identified 9 correlated gene modules from our BAL transcriptional data (Figure 

4B; Table S4). Module eigengenes showed 16 total positive correlations and 13 negative to 

the 24 manually gated cell populations from mass cytometry, including several populations 

of interest from patient clustering. The Gene Ontology (GO) terms these modules 

represented included cell division and the adaptive immune response, processes that had 

been independently identified at the patient level (Figure 4C). CD206+CD11b+CCR4+ 

macrophages, which produce IL-10 and were increased in number in PG1, showed a link to 

the pink module (Figure 4D). Pink hub genes included components of the AP-1 transcription 

factor as well as cyclic AMP response element modulator (CREM) (Figure 4E), which was 
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recently shown to be downregulated in the BAL cells of SA patients (Weathington et al., 

2019). The magenta module was correlated with PG2-enriched CD206−FcεRIα
+CD127+CCR4− cells (Figure 4F) and had hub genes associated with cytoskeletal 

arrangements during mitosis (Figure 4G). Magenta was associated with GO terms such as 

cell division and the IL-7 pathway (Figure 4C), suggesting a possible role for this signaling 

axis in proliferation. Multiple T cell populations, including CD4+ and CD8+ TRM cells, 

were correlated with the green module (Figure 4H), which had hub genes associated with T 

cell response and T1 polarization (Figure 4I).

ICLite uses high-dimensional cell count to improve module-to-cell mapping

While WGCNA was successful at uncovering some key relationships in our multi-omics 

dataset, it failed to provide insight into a number of important cell populations. To improve 

resolution of the deconvolution process, we built a machine learning platform tailored to the 

specific task of ascribing transcriptional signatures to cells in mixed composition bulk 

sequencing data. ICLite is a software package that utilizes the known abundance of cells in 

an admixture to identify the optimal conditions from an input set of gene clustering 

parameters (Method details; https://github.com/camiolomj/ICLite/). Using a scoring system 

that integrates maximization of integrated completed likelihood (ICL) for gene clustering 

efficacy with measures of gene module to cell connectivity, ICLite provides users with a 

framework that is built for the task of mixed population deconvolution. Compared to 

WGCNA, ICLite requires less parameter tuning and offers a simplified user experience for 

transcriptional deconvolution.

Using ICLite, we found 45 positive and 40 negative correlations among 24 cell populations 

and 26 gene modules (Figure 5A; Table S5). Though the ratio of connections made to total 

possible connections was comparable between WGCNA and ICLite (13.4% versus 13.6%, 

respectively), ICLite was able to describe relationships to a greater number of unique cells 

(21 versus 14 for WGCNA) and capture a greater depth of function. This included linkage of 

alveolar and CD206+CD11b+CCR4+ macrophages to genes related to mitochondrial health 

(module 13) (Figure 5B), more closely resembling patient level findings from GSEA (Figure 

4A) than results from WGCNA. ICLite recapitulated the relationship between 

CD206−FcεRIα+CD127+CCR4− innate cells and genes related to cell division and IL-7 

signaling (Figure 5C). It also successfully associated both populations of CD206+FcεRIα+ 

macrophages with Fcγ and Fcε signaling (module 11). The relationship of these cells to 

neurotrophin or nuclear factor of activated T cells (NFAT) signaling highlights pathways that 

may be critical in SA pathogenesis for some. The correlation between T cell populations and 

gene modules representing terms such as adaptive immune response (module 1), T cell co-

stimulation, and positive regulation of IFN-γ production (module 20) was similarly 

reproduced (Figure 5D). In addition, ICLite identified specific relationships between CD8+ 

T cells and modules 7 and 14, indicating a level of resolution not afforded by WGCNA.

Mast cells have long been implicated in asthma pathogenesis and are known to express 

FcεRI. To help resolve the identity of the CD206−FcεRI+ cells identified by mass cytometry, 

we compared the frequency of each of our manually gated cell types to the expression of 42 

curated mast cell/basophil genes, finding multiple positive correlations (Figure S7A). The 
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majority of these relationships, however, were between canonical mast cell transcripts such 

as KIT, CPA3, and TPSAB1 (tryptase beta-1) and T cell populations such as CD8+ CM cells 

and EM cells rather than CD206− FcεRI+ cells (Figure S7B). Hypergeometric overlap of our 

mast cell/basophil gene list and modules identified by deconvolution supported this 

relationship, with the T-cell-associated green module (WGNCA) and module 14 (ICLite) 

showing the strongest relationship (Figures 4B, 5A, and S7C). Indeed, most of the patients 

with very high expression of mast cell genes were in PG3 and relatively depleted of the 

CD206−FcεRI+ cells that defined PG2 (Figure S7D). This confirmed prior reports 

associating mast cells with T cells in asthma (Gauthier et al., 2017). CD127 expression by 

subsets of these cells further exclude a basophil identity. Collectively, the data showed that 

mast cells and basophils in BAL were present below a frequency that was detectable using 

our cell-based technology. As mentioned previously, the side scatter properties of 

CD206−FcεRI+ populations also exclude eosinophils as a possible identity of these cells 

(Figure S4).

ICLite recovers a broad array of ontological functions

Our algorithm ICLite confirmed relationships between genes and cells from BAL that were 

detected by WGCNA while also expanding information for a number of key populations. 

Inspecting gene module membership across technologies, we observed that several of the 

ICLite modules comprised genes from a single WGCNA module (Figure 6A). This included 

the T-cell-linked modules 1, 14, and 20, which consist of genes found in the WGCNA green 

module. Modules 11 and 25, which connected to CD206+FcεRI+ IL-4-producing 

macrophages and described biologically significant processes such as Fcε signaling, 

contained genes from the yellow module, which itself did not associate with any cells. Other 

ICLite modules, such as 10, were an admix of multiple WGNCA networks. Despite this, 

nearly all of the magenta (mitosis) module from WGNCA was included in module 10, which 

was enriched for similar GO terms as magenta and again associated with CD206+FcεRI
+CD127+ cells in BAL. These data suggest that key relationships between genes and cells 

were robust to technology used and support validity of the additional findings uncovered by 

ICLite.

Our modules of correlated genes could be linked to ontological functions as described 

above. Because membership for each gene in our BAL dataset is exclusive and non-

overlapping, we used GO semantic similarity to compare functional terms represented by 

each ICLite module (Figure 6B; Table S6). We found striking similarity in functional terms 

for modules that shared relation with correlated cells, reinforcing the biological plausibility 

of our solution and suggesting that our deconvolution process had been successful. Modules 

identified by ICLite could be linked to ~2-fold more GO terms than those from WGCNA 

(Figure 6C), with ~4-fold-greater GO terms effectively linked to cells. Using GO semantic 

similarity to summarize terms linked to cells by both modules, ICLite showed greater 

breadth in parent terms without losing key families such as cell division and T cell co-

stimulation (Figure 6D).
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Using BAL gene modules to classify patients in external cohorts

Persuaded that our modules showed a rational relationship with the cells in our study, we 

sought to validate our findings in another well-characterized asthma cohort. To this end, we 

employed BAL microarray data from the multi-center SA Research Program (SARP) cohort 

(Jarjour et al., 2012; Moore et al., 2007), which comprised 154 patients enrolled in phases I 

& II of the program. Though mass cytometry data were not available from SARP, we 

reasoned that expression of genes from our ICLite modules may be used as a surrogate. To 

accomplish this, we first trained a model for predicting PG based on expression of ICLite 

modules in the immune modulation in severe asthma (IMSA) (experimental) cohort (Figure 

7A). Our model was highly effective in predicting patient grouping determined by high-

dimensional cell count using strength of expression scoring for the 26 ICLite gene modules 

(Figure 7B).

After training on IMSA participants, clustering of SARP again yielded two SA-enriched 

groups and one predominantly comprising HCs (Figure 7D). Importantly, manual cell count 

differential of BAL showed the highest percentage of lymphocytes in SARP PG3 (Figure 

7D), redemonstrating a key finding from IMSA. The four ICLite modules that correlated 

with T cells in IMSA showed a similar correlation with percent lymphocyte count from the 

BAL of SARP participants (Figure 7E), reaffirming their relationship with BAL T cell 

content. Clinical characteristics such as lung function were also similar across SARP PGs 

(Figure 7F). As further evaluation of our prediction model, we performed GSEA, again 

observing enrichment for terms related to proliferation in SARP PG2 (Figure 7G) and T cell 

antigen response in SARP PG3 (Figure 7F). We were thus able to reconstitute groups of 

treatment refractory asthma patients with impaired lung function that fundamentally varied 

in their BAL lymphocyte content, increasing confidence that our findings could be 

generalized beyond our cohort.

DISCUSSION

With the understanding that a diagnosis of asthma insufficiently reflects disease 

pathogenesis comes the need to define the disease with increased molecular precision. The 

rise in T2-targeted biologic therapy has had substantial impact on treatment, reducing 

systemic CS dependency. While targeted biologic therapy is highly efficacious for many, 

others fail to respond despite exhibiting elevated levels of T2 biomarkers. In this study, two 

groups of predominantly SA patients were identified that were poorly distinguished by T2 

biomarkers (eosinophilis and FeNO) despite broad differences in lower airway immune 

milieu. Similarity in blood eosinophil counts may be attributed to roughly equivalent 

abundance of IL-5+ innate cells across PGs. The ability of both T2 cytokines (IL-4/IL-13) 

and IFN-γ to induce NOS2 may further explain why median FeNO levels were 

indistinguishable between groups (Spahn et al., 2016). Thus, neither biomarker revealed the 

striking and potentially treatment-modifying differences in immune profiles in the two PGs.

Our studies suggest that lung health, as observed in HC- and MMA-dominated PG1, 

associates with enrichment for IL-10-expressing macrophages, known to be regulatory in 

nature (Mantovani et al., 2004). These cells positively associate with lung function and are 

linked to genes related to mitochondrial fusion. For example, mitofusin2 mediates important 
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functions in macrophages, such as phagocytosis and cytokine production, in response to 

pathogen sensing (Tur et al., 2020). In contrast, IL-4-producing innate immune cells appear 

to replace these populations in PG2 and associate with lower lung function. Strikingly, a 

second PG (PG3) showed marked enrichment for IFN-γ+ T cells, including TRM cells, also 

associated with lower lung function.

As a machine learning tool for deconvolution of bulk transcriptional data from mixed 

populations, ICLite was able to preserve important relationships between immune lineages 

in our dataset while capturing additional links to important cell types. The estimation of the 

underlying cluster number remains a field of ongoing research. One advantage to ICLite 

over WGCNA is the integration of a goodness-of-fit metric that removes manual parameter 

testing from the cluster estimation process. As the identification of plausible correlation 

modules has been previously inferred by successful GO analysis, we believe our algorithm 

was highly successful at functional term enrichment as well as linkage of those processes to 

cells. For the specific task it was built for, ICLite is a powerful complement to currently 

available packages.

BAL cells enriched in PG2 linked with signatures of cell division. BAL cells in this group 

were also associated with IL-7, FcεRI, FcγR, and FcR signaling, which may in turn 

stimulate calcineurin-NFAT signaling, also detectable in the cells. Notably, NFAT plays an 

important role in IL-4 gene transcription, though this relationship has been described 

predominantly in CD4 T cells (Wierenga and Messer, 2000), which may relate to the greater 

number of IL-4+ FcεRI+ cells in PG2. It is important to again note that these FcεRI+ cells do 

not associate with genes commonly expressed by mast cells.

As discussed above, IL-7 signaling was evident in the innate cells enriched in PG2 subjects. 

Since IL-7Rα is a component of the thymic stromal lymphopoietin receptor (TSLPR), these 

FcεRIαbrightCD127+ cells may be targeted by anti-TSLP therapies, which have shown 

promise in the treatment of SA (Corren et al., 2017). As recently reported, the phase 3 trial 

of tezepelumab met its primary endpoint in reducing exacerbations in SA patients (Menzies-

Gow et al., 2020; Wechsler et al., 2020). Enrichment of these cells in PG2 is evocative of in 
situ hematopoiesis, accomplished via expansion of tissue-resident pluripotent progenitors in 

mucosal tissue. In situ hematopoiesis has been associated with the epithelial cytokines IL-33 

and TSLP (Li et al., 2018). Increased numbers of progenitor cells expressing TSLPR, 

CD127 (IL-7R), and ST2 were detected in the sputum of asthma patients in response to 

allergen challenge (Sergejeva et al., 2005). The combined signatures of cell proliferation and 

IL-7 signaling revealed by both WGCNA and ICLite invite the notion of cytokine-driven 

expansion of progenitor cells that differentiate into IL-4-secreting pathogenic cells. It will be 

interesting to determine whether polyclonal IgE (non-cross-linking) plays a role in the 

accumulation of these cells given the ability of non-cross-linking IgE to promote survival of 

FcεRI-expressing mast cells (Kawakami and Galli, 2002). While the exact identities of the 

IL-4-producing FcεRIαbrightCD127−, FcεRIαbrightCD127+CCR4+, and 

FcεRIαbrightCD127+CCR4− cells that defined PG2 remain to be determined, it is possible 

that upstream mechanisms triggered by epithelial events play a role in their development.
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In contrast, cells from PG3 patients were associated with gene modules tied to the adaptive 

immune response and positive regulation of IFN-γ, concordant with the preponderance of 

IFN-γ+ T cells in PG3. We previously reported an increased T1 response in the airways of 

SA patients (Raundhal et al., 2015). A similar steroid-resistant T1 phenotype was also 

reported in a pediatric population (Wisniewski et al., 2018). One important insight gained in 

our study is the presence of high levels of CD4+ and CD8+ TRM cells expressing IFN-γ in 

the airways of PG3 subjects. CD8+ TRM cells have not been previously described within 

asthmatic airways, and their presence suggests a role for microbial pathogens (viruses) in 

disease etiology. A study of immune response in lung transplant patients has shown that 

numbers of TRM cells in BAL fluid closely correspond with those in the lung tissue (Snyder 

et al., 2019), suggesting our assessment of BAL is representative of adjacent tissue. CD8+ 

TRM cells provide host protection in the skin (Ariotti et al., 2014) and defend against 

respiratory viral infection (Jozwik et al., 2015). Their numbers have been found to peak 

during viral season and contract over time (Jozwik et al., 2015). For safety reasons, our 

cohort participants were not bronchoscoped within 6 weeks of infectious symptoms, 

suggesting their immune profiles were reflective of chronic changes. A recent study has 

documented higher circulating levels of rhinovirus-specific T1 cells in uninfected asthma 

patients with worse lung function (Muehling et al., 2020). It is interesting to note that DPP4/

CD26 and SLAMF1 were present in modules associated with CD4+ and CD8+ TRM cells 

using both WGCNA and ICLite, given their well-established roles in T cell co-stimulation 

and IFN-γ production (Araki et al., 2009; Aversa et al., 1997; De Meester et al., 1999). 

Blood DPP4 was suggested and then abandoned as a T2 biomarker (Peters et al., 2016). Our 

findings suggest it may be more specific to the phenotype associated with PG3 patients. 

Notably, DPP4/CD26 expression has been also linked with virus-specific memory CD8+ T 

cells (Ibegbu et al., 2009). Thus, persistence of activated TRM cells following microbial 

clearance may be pathogenic, and mechanisms that prevent their reduction must be 

addressed in future studies. In this regard, it is important to remember that CD8+ T cells 

have also been associated with autoimmunity (Liblau et al., 2002).

The frequency of Th2 cells expressing IL-4, IL-5, or IL-13 was low in all patient subgroups, 

suggesting that Th2 cells in general may be a minor component in the T2 immune pool in 

the context of CS therapy. Similarly, ILC2 cells expressing T2 cytokines were not detectable 

in the BAL cells of the patients in our analysis. This is probably because of the 

responsiveness of both cell types to CSs, as previously shown (Jee et al., 2005; Nagakumar 

et al., 2019). It is worth noting that although IL-17+ T cells were detected in PG3, they were 

far fewer in number than IFN-γ+ T cells across all T cell clusters. Of the subsets identified, 

CD4+CD161+CCR5+ EM cells showed the greatest skewing toward IL-17A production, 

though still demonstrating staining for T1 and T2 cytokines. Unlike other T cell populations, 

these cells expressed high levels of CD161, which has been associated with highly 

pathogenic Th17 cells in Crohn’s disease (Kleinschek et al., 2009) and rheumatoid arthritis 

(Basdeo et al., 2017). CD4+CD161+ T cells also demonstrate plasticity enabling IFN-γ 
production (referred to as “ex-Th17” cells) and are refractory to suppression by Tregs and 

steroids (Basdeo et al., 2017). The relative median signal intensity of IL-17 and IFN-γ from 

the CD161+ cells also showed a higher trend in SA patients compared to MMA patients in 

PG3 (Figure S5). Thus, although fewer in number than TRMs, the ability of CD161+ T cells 
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to produce IL-17, IFN-γ, and T2 cytokines may contribute to poor lung function in some 

asthmatic patients.

We understand that the study, although the largest of its kind, is still small with respect to 

cohort size. This may have limited our ability to dissect additional cellular phenotypes, 

including those of patients with nasal polyps. We also appreciate that the lung is an 

anatomically complex organ with multiple compartments, of which our study addressed only 

the luminal compartment of the small airways and the alveoli.

In summary, our study used mass cytometry and RNA sequencing coupled with machine 

learning tools to identify two distinct molecular mechanisms, potentially driving disease 

pathogenesis in two SA-enriched PGs, who were largely indistinguishable by clinical 

measures of disease severity and T2 biomarkers. Importantly, the segregation of patients into 

a lymphocyte-poor (PG2) versus a lymphocyte-rich (PG3) group was also evident in an 

independent patient cohort, using a clustering approach based on gene module scoring. 

These findings go well beyond the broad and simplistic characterization of asthma as T2high 

or T2low, which provides limited help in determining treatment options. The presence of 

similar immune and molecular signatures in the airways of two independent cohorts suggests 

broad applicability of our findings to not only differentiate between health and disease, but 

also to uniquely distinguish two immune phenotypes of SA. Future studies to determine 

their responses to targeted therapies should move us closer to appreciating true endotypes of 

asthma.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Anuradha Ray (raya@pitt.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—The GEO accession number for the RNA-seq data is GEO: 

GSE136587 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136587). FCS files 

of mass cytometry data are available through FlowRepository (https://

flowrepository.org/id/FR-FCM-Z395). The ICLite package and documentation are available 

for download at https://github.com/camiolomj/ICLite/. Immune cell count and BAL 

transcriptional data from IMSA participants are included as part of the R package and are 

preformatted to run in ICLite. Additional code used in this analysis represents 

implementation of previously published work as noted below and will be available upon 

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study participants—All participants provided informed consent in accordance with an 

IRB protocol approved by the University of Pittsburgh. Male and female nonsmoking (< 10 

pack year and no smoking in the previous year) subjects meeting the ERS/ATS definition of 

severe asthma (Chung et al., 2014) were recruited. Also recruited were milder asthma 
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subjects on no or lower doses of inhaled CS (Forced Expiratory Volume 1 > 60% predicted 

with no history of frequent or severe exacerbations of asthma in previous year) and healthy 

controls. Subjects comprised all racial/ethnic backgrounds and between the ages of 18 and 

60 years old. Subjects underwent extensive baseline characterization, including physiologic 

(spirometry, diffusing capacity and PC20), allergic and clinical characterization (Moore et 

al., 2007). Subjects also underwent bronchoscopy per published protocols and consistent 

with procedures established at the University of Pittsburgh consistent with the severe asthma 

research program.

METHOD DETAILS

CyTOF sample preparation—Cryopreserved BAL cells were thawed and incubated in 

RPMI 1640 media containing 10% FBS at 37°C for overnight resting. Cells were incubated 

in the absence or presence of PMA (20ng/ml) and ionomycin (1 ug/ml) for 4 hours. A 

protein transport inhibitor-Brefeldin A (BFA, 5ug/ml) was added to the culture of 

unstimulated (treated with BFA alone) and stimulated (treated with BFA, PMA and 

ionomycin) samples for 4 hours. Cells were harvested and stained for viability with 5uM 

cisplatin (Fluidigm) for 5 minutes at room temperature before quenching with CyTOF 

Buffer (Fluidigm). Cells were then incubated with Fc Receptor Blocking solution (Human 

TruStain FcX, Biolegend) for 10 min at room temperature and stained with cell surface 

antibody cocktail for 45 minutes on ice. Samples were washed with CyTOF Buffer and fixed 

at 4°C overnight with 2% paraformaldehyde. On the following day, cells were permeabilized 

(permeabilization solution from eBiosciences) and stained with antibodies for 6 cytokines 

for 45 minutes at room temperature. Cells were washed and incubated in 0.25μM Ir 

intercalator (Fluidigm) for 20 min at room temperature, and stored in PBS at 4°C until 

acquisition. Antibodies were purchased from DVS Biosciences or conjugated in-house using 

purified antibodies and Fluidigm conjugation kit following manufacture’s instruction. All 

the antibodies were titrated prior to use.

CyTOF data acquisition—Samples were washed twice with PBS and de-ionized water 

consecutively and then resuspended at a concentration of 0.5 million cells/ml in deionized 

water containing a 1/4 dilution of Equation 4 Element Calibration Beads (Fluidigm). The 

samples were acquired on a Helios CyTOF instrument (Fluidigm) at an event rate of < 350 

events/second. To minimize the effect of experimental variability on mass cytometry 

measurements between samples from clinical status groups, cryopreserved BAL cells from 

severe asthma, mild to moderate asthma and healthy control samples were processed, 

stained, and run within the same batch for a total of 5 batches of samples, with 2 days of 

acquisition for each batch. Instrument tuning was performed daily to minimize oxide-

induced signal crosstalk during data acquisition and to find the balance between detection 

sensitivity and oxide formation. Following instrument tuning, Fluidigm’s EQ Four Element 

Calibration Beads were used to track daily instrument performance. EQ beads contain four 

natural abundance elements including cerium (Ce), europium (Eu), holmium (Ho), and 

lutetium (Lu) with a total of seven isotopes distributed across the CyTOF mass window. The 

median signal intensities of Eu151 and Eu153 on the EQ bead singlet population were 

determined following instrument tuning. The coefficient of variance (CV) of median 

intensities of Eu151 and Eu153 was collected on each of the 10 running days covering all of 
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the BAL samples included in this study. Given that beads have identical ion components, the 

instrument performance was monitored for precision and repeatability by comparison of CV 

of the bead signal intensities. The CVs of Eu151 and Eu153 were 10.9% and 10.5%, 

respectively across the 10 days of sample acquisition. In addition, in order to account for the 

variability of instrument performance and therefore represent the real biological difference 

among samples, each sample was spiked with the EQ beads as described above as a constant 

reference prior to data acquisition, which allowed for normalization of each sample’s signal 

intensity. After acquisition, the raw data files were normalized using bead-based 

normalization using CyTOF 6.7 software (Fluidigm) with a “Bead passport” (EQ-

P13H2302_ver2).

The intact and viable cells were gated in order to exclude normalization beads, dead cells, 

cell debris and cell doublets using FlowJo software (Tree Star, Inc.) prior to downstream 

computational analysis or/and additional analysis with FlowJo. FlowJo analysis for cell 

types identifiable by primary gating using cell surface phenotype (e.g., total CD3 cells) was 

performed essentially according to conventional flow cytometry practice. An additional level 

of stringency for cytokine expression in particular was that steps were taken to place 

thresholds of positivity to ensure parity with machine-based determination of expression as 

described below. For analysis of post-FlowSOM cell clustering solution files, the primary 

gate was set on the cell cluster of interest on plots of cluster number designation versus 

CD45 or another relevant cell type-specific surface marker (e.g., CD4 or CD8). From there, 

conventional analysis was performed using the criteria described above.

Immune cell identification using machine learning—The R implementation of 

FlowSOM through the cytofkit package (version 3.7) was used to cluster cells together 

based on expression of 33 surface markers. Cell clustering was performed using 20,000 

arcsin transformed events per participant. A maximum number of clusters of 40 was tested 

using ConsensusClusterPlus with an accepted solution of 28 returned by “consensus” output. 

As the purpose of this study was identify patient groupings by cell count, our results could 

be skewed by overclustering of cells leading to Type I error driven by cell clusters with 

minimal difference in cell surface phenotype. To combat the effect of redundant cell clusters 

on our downstream analysis, we compressed all clusters that demonstrated a cosine 

similarity in mean surface marker intensity greater than 0.80. The clusters effected were 6 

monocytic/macrophage populations that were compressed to 3. This resulting 25 clusters 

from FlowSOM analysis were then used for downstream analysis. Biological veracity and 

homogeneity of cell clusters was investigated using traditional biaxial gating via FlowJo 

software as described above.

t-SNE plot preparation—Staining intensity for 33 surface markers included in our mass 

cytometry experiments were used for optimized T-distributed stochastic neighbor embedding 

(opt-SNE) plot generation (Belkina et al., 2019). Scaled staining intensity is presented for 

individual surface markers as indicated.

Handling of compositional data—The resultant distribution of each subject’s BAL 

across the 25 cell clusters identified by FlowSOM represented a compositional simplex in 

which each sample added up to a total of 100%. Extensive work has demonstrated that 
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spurious correlation or anti-correlation may occur when using this type of data. To address 

this issue, FlowSOM cluster percentage data was converted into real vector space for 

subsequent analysis using log-ratio transformation. The R package “compositions” (version 

1.40-3) was used for this purpose.

Adjustment of high-dimensional cell count for CyTOF batch effect—To mitigate 

the contribution of batch effect to recovered cell cluster percentages, adjustment of log 

transformed data was performed via parametric empirical Bayesian framework using the 

function “ComBat” from R package “sva” (version 3.20.0).

Estimation of patient group number—The determination of three patient groups was 

arrived at by gap statistic calculation as well as Gaussian mixture modeling using log-ratio 

transformed, batch corrected data. These fundamentally different methods for patient cluster 

estimation both arrived at a consensus of k = 3. Gap statistic was calculated using the R 

package “NbClust” (version 3.0). Gaussian mixture modeling was done using the R package 

“mclust” (version 5.4.5).

Patient clustering based on high-dimensional cell count—An input of k = 3 

clusters as determined above was used for patient clustering with the robust sparse k-means 

(RSKM) algorithm using the “RSKC” package in R (version 2.4.2). Log ratio cell cluster 

percentages with adjustment for CyTOF batch were used as described above. Resultant 

patient cluster designations are projected on principal component analysis (PCA) reduced 

space using FactoMineR (version 2.0). Ellipses represent the 75% confidence interval 

around the patient cluster centroid.

Modeling of cellular determinants of FEV1—To address the limitations of 

compositional data and small sample size, we employed elastic net modeling to assess 

relationship of cells to FEV1. This approach allows for consideration of multi-collinearity 

within the dataset and does not require correction for multiple testing. It has also been 

previously shown to successfully handle mass cytometry data without additional 

transformation (Aghaeepour et al., 2017). The R package “glmnet” (version 3.0-2) was used 

for this analysis, with 41-fold model cross validation. Model prediction was cross-validated 

using leave-one-out to estimate FEV1 based on an individual’s cell count. Model 

performance was evaluated via comparison of actual measured FEV1% predicted and values 

derived from EN modeling by Spearman’s rank correlation.

Mixed-effects association testing for single cell determination of patient group 
specific cells—To identify cell clusters variant between patient groups, we employed 

Mixed-effects Association testing for Single Cells (MASC) (“immunogenomics/masc,” 

version 0.1.0). Using a reverse association strategy, mixed-effects logistic regression is used 

to predict individual cell membership in previously defined populations. In our case, patient 

groupings as determined from RSKM clustering were used for comparison. The model used 

for odds-ratio calculation took biological sex, any steroid use (ICS or oral CS) as well as 

CyTOF batch into account. Patient group specificity was determined based off odds ratio 

comparison, with cells showing at least 2-fold greater likelihood to in one group compared 

to any other being designated as group specific.
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Testing for variance in cell count across patient clusters—Following 

identification of cell populations of interest using automated cell clustering, we performed 

validation by manual gating of cell populations using the corresponding surface phenotypes 

as described in Results. Cell counts across participants were log ratio transformed as 

described above and subjected to Kruskal-Wallis testing.

Modeling patient groups using manually gated cell counts—To ensure patient 

clusters identified by FlowSOM cell counts could be reproduced using manual gating, we 

used sparse partial least-squares discriminant analysis (sPLS-DA) from the “mixOmics” 

package in R (version 6.10.8) to build a prediction model for group prediction using this 

data. Following model tuning, we used log-ratio transformed manual cell count data for 

prediction of patient group based on the 25 FlowSOM cell clusters that are detailed above. 

MixOmics offers leave-one-out or fold cross validation as options for these steps and models 

assembled using both protocols performed similarly in AUROC curve generation and model 

error rate measurement. For the AUROC demonstrated in Figure S2, 5-fold cross validation 

was used.

Network correlation mapping of BAL cells—Network map was assembled using 

Spearman rank-order correlation of unscaled cell count data following log ratio 

transformation of data. Nodes represent all cell clusters found to have at least one significant 

correlation as determined by a p value of < 0.05 and a rho of > 0.32. Correction for multiple 

testing was performed using a FDR of < 0.05. Nodes were colored for clinical disease 

specificity using comparison of odds ratios as described above. Edges of the network 

represent correlations that have passed through filtering as above. Network assembly was 

performed using the Fruchterman-Reingold force-directed layout algorithm.

Cytokine quantification—Scaled intensity of staining for the indicated cytokine is 

projected on tSNE dimension reduced space. Biaxial gating of cell events included in the 

FlowSOM clustering solution was performed for the indicated cytokines using Flowjo as 

described above. Relative distribution of T cell versus non-T cell cytokine is demonstrated 

by pie charts. Differences in distribution of staining intensity for each cytokine across 

patient groups was determined by pairwise Kolmogorov-Smirnov (KS) test on down-

sampled data to allow for comparison of equal event numbers. The process of downsampling 

and comparison by KS test was repeated ten thousand times, with a meaningful difference 

defined as a test statistic (D) greater than 0.5 and p value less than 1e-10 in greater than 99% 

of test iterations. Staining distributions that passed testing are plotted using the R “density” 

function with illustration of the 85th quantile of staining intensity and quantification of the 

proportion of cell events for each patient group that fall above that threshold in plot area 

(Figures 3D-3F). These cutoffs were then used to quantify cytokine positive cells per million 

across patient groups.

High dimensional fluorescence flow cytometry—Certain key aspects of mass 

cytometry were validated using conventional fluorescence flow cytometry. Specifically, the 

ability to identify innate immune cell populations (FlowSOM clusters 1 and 25) and to 

validate IL-4 expression in them using isotype control antibodies were examined. Due to the 
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number of analytes measured in the context of severe autofluorescence inherent with human 

BAL innate immune cells, particularly macrophages, high dimensional fluorescence flow 

cytometry was employed using an Aurora instrument (Cytek). One primary feature of the 

Aurora platform is the ability to collect data for unstained cells such that autofluorescence in 

all channels can then be treated as a parameter in the algorithm for minimizing fluorochrome 

spectral overlap. The process is analogous to conventional compensation, but is termed 

“unmixing” by Cytek to reflect proprietary methodology for accomplishing it.

Staining of cryopreserved BAL cells for fluorescence flow cytometry was carried out to the 

greatest extent possible to match the reagents and methodology for mass cytometry, which 

were described above. A panel consisting of 14 monoclonal antibodies constructed using 

mass cytometry-derived phenotypes was used with all but two being identical clones as 

those used for mass cytometry (see Key resources table). Importantly, the critical antibodies 

used to identify the cell populations of interest (FlowSOM clusters 1 & 25) and the anti-

cytokine antibodies (anti-IL-4 and anti-IL-13) were matched clones. Fluorochromes were 

chosen for anti-IL-4, anti-IL-13, and key cell surface markers to identify/distinguish clusters 

1 & 25, such as CD127, to coincide with Aurora channels with the least amount of BAL cell 

autofluorescence in order to minimize its impact. Additionally, relevant rat anti-human IgG1 

isotype control antibodies from the same manufacturer (Biolegend) were used at the same 

optimized concentrations. Stimulation and staining was methodologically identical to the 

mass cytometry experiments with the following exceptions. Monensin (Biolegend) was used 

in addition to Brefeldin A, viability was determined using fixable viability dye eFluor 506 

(eBioscience) instead of cisplatin, FACS buffer (2% FBS in PBS) was used instead of 

CyTOF buffer, and data acquisition was performed immediately upon final washings.

Controls for Aurora instrument set up and calibration included unstained cells serving as the 

autofluorescence control, cells stained with only fixable viability dye, and individual single 

color controls with each specific antibody bound to UltraComp eBeads™ compensation 

control beads. Spectral unmixing (analogous to conventional compensation) and data 

acquisition were carried out using SpectroFlo software (Cytek). Verification of successful 

unmixing was made by the SpectroFlo software and by examining single color-stained cells 

in pilot experiments as was practical. Importantly, autofluorescence was set in the 

SpectroFlo software as a parameter for unmixing in order to reliably detect specific signal 

for cell surface markers on innate (non-T) cells. Controls for cytokine expression were of the 

fluorescence minus one (FMO) variety but with isotype control anti-cytokine antibodies 

included. All relevant cell surface markers were included plus rat anti-human IgG1 labeled 

with each necessary specific fluorochrome. Available cryopreserved BAL cell samples 

consisted of 5 X 106 cells each such that minimal numbers of cells were used for unmixing 

controls and data for essentially all of the remaining cells was acquired in order to be able to 

visualize rare subpopulations such as those approximating FlowSOM clusters 1 & 25. 

Analysis was carried out by conventional methods using FlowJo software (TreeStar) with 

doublet discrimination (FSC-Area versus FSC Height) being employed throughout.

BAL transcriptional profiling—RNA isolated from BAL cells was used to generate 

cDNA libraries using the Illumina TruSeq RNA Library Prep Kit. The libraries were 

sequenced using the Illumina NextSeq500 System. Quality control for raw FASTQ files was 
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performed using FastQC and the low-quality reads and 3′ adapters were trimmed with Trim 

Galore! (Babraham Bioinformatics). The RNA sequence aligner, STAR (Dobin et al., 2013), 

was used to align the trimmed reads to the reference human genome (hg19). Gene 

expression was subsequently quantified by counting the number of read fragments uniquely 

mapped to genes using featureCounts (Liao et al., 2014). Gene expression data was 

normalized using the rLog package from the DESeq2 suite (Love et al., 2014). Samples 

were controlled for batch effect using the COMBAT algorithm (Hu et al., 2004; Johnson et 

al., 2007). Duplicate gene identities were resolved using maximum values. Stochastic 

variation in gene expression was mitigated using a median cutoff of 5 across patient 

samples. Pairwise differential expression analysis was performed using t test with p value 

adjustment for a FDR < 0.05. “Volcano” plotting was accomplished based off log2 fold 

expression change between indicated groups.

Gene set enrichment analysis across patient groupings—Gene set enrichment 

analysis (GSEA) was performed using the Java implementation of the application on gene 

expression data filtered to include probes with a median value greater than 1 across all 

patients. Comparison was made to the Hallmark (H), curated (C2) and GO sets (C5) libraries 

with illustrated gene sets meeting a p value of < 0.05 and an FDR < 0.25. Actual p value, ES 

and NES scores are illustrated in Figures 5B, 7G, and 7H.

WGCNA analysis of BAL—The R implementation of Weighted Gene Correlation 

Network Analysis (WGNCA version 1.69) (Langfelder and Horvath, 2008) was used for 

comparison of gene network expression to the abundance of immune cells identified by mass 

cytometry. BAL gene network construction was performed according to best practices as 

outlined by the package authors. Briefly, a soft thresholding of 4 for network topology 

construction was selected as the lowest power for which scale-free topology fit index 

exceeded a cutoff of 0.9. Dynamic tree cutting of the gene dendrogram was performed with 

a minimum module size of 30. This resulted in 10 gene modules which were subsequently 

collapsed to 9 based on module eigengene correlation value greater than 0.8. We tested a 

number of input parameters for method (e.g., hierarchical versus hybrid), PAM integration 

and deepSplit integer and found only minor variation (range 8-10 modules) in number 

following the compression of highly correlated modules as recommended by the WGCNA 

authors. Immune cell log ratios were used as comparative traits to these modules and 

significant interactions were defined by gene-trait correlations with p value less than 0.05. 

Gene network hubs were visualized using VisANT (Hu et al., 2004). Gene ontology analysis 

of gene modules was performed using the TopGO package (Alexa and Rahnenfuhrer, 2020).

ICLite gene module assembly—BAL gene module assembly was performed as outlined 

below using a machine learning process that sought to link cells to correlated genes through 

an iterative process designed to maximize interaction while accounting for quality of gene 

clustering results. This was accomplished by creating sparse binary matrices from the input 

gene expression data using varying thresholds for inclusion and transformation which are 

detailed below as well as in package documentation available at https://github.com/

camiolomj/ICLite/. Optimal condition testing was performed using varied thresholds for 

gene inclusion, binary transformation and assumed number of underlying gene clusters.
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The first step in the ICLite algorithm involves construction of a sparse binary matrix based 

on user input values for minimum connectivity and Spearman rho cutoff. After calculation of 

pairwise Spearman correlation across the entire transcriptome, values that fall over the input 

cutoff are converted to 1 on a binary scale while those under the threshold are reduced to 0. 

Any genes that do not demonstrate a total number of interactions above the user-defined set 

minimum connectivity threshold are then removed from the matrix. This process is repeated 

for all starting conditions, resulting in a varied set of matrices for downstream testing.

Clustering of the binary matrices is accomplished via the blockcluster package in R (Bhatia 

et al., 2017). Afterward, module strength of expression is calculated for genes in a module 

using geometric mean expression of scaled normalized values for each cohort participant 

and correlation between module scoring and immune cell log ratio is performed. Solutions 

are scored on the ratio of gene clusters to successful connections, defined as positive 

correlations between gene modules and cells with p value of less than 0.05. This data is used 

to inform optimal gene clustering solution selection, along with integrated completed 

likelihood (ICL), a measure of assessing how appropriate the assumed number of clusters 

was for the expression data (Biernacki et al., 2000). The solution that scores highest in a 

weighted system is then used for comparison to WGCNA results and downstream analysis. 

For this study, input rho cutoff values were tested from 0.4 to 0.65, minimum connectivity 

was varied between 25 and 200 and number of clusters ranged from 12 to 30. It is important 

to note that the blockclustering algorithm is sensitive to seed. For consistency between runs, 

a fixed value in the R environment should be set beforehand.

Cellular phenotype prediction modeling—In order to build a predication model for 

cellular phenotype using transcriptional data, we employed sparse partial least-squares 

discriminant analysis (sPLS-DA) within the “mixOmics” package in R (version 6.10.8). 

sPLS-DA has been previously shown to perform well on datasets with multiple related 

variables (Le Cao et al., 2011), making it well suited for our analysis. Training on the IMSA 

(experimental) cohort was performed using module strength of expression scores which 

were calculated for all 26 modules as detailed above. We then used these scores to train a 

sPLS-DA model to predict cell count-based patient cluster using gene expression data for the 

39 participants that had both datasets available. MixOmics offers leave-one-out or fold cross 

validation as options for these steps and models assembled using both protocols performed 

similarly in AUROC curve generation and model error rate measurement. For the AUROC 

demonstrated in Figure 7A, 5-fold cross validation was used.

Cross validation using BAL gene expression from the SARP cohort—BAL 

transcriptional data from the Severe Asthma Research Project (SARP) I & II cohorts was 

prepared as previously described in the literature and subjected to patient scoring using 

mean scaled expression values. These patient scores were used for class prediction by the 

sPLS-DA model trained on IMSA as detailed above.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was performed using the R computing environment (Version 3.5.3 or 

3.6.1 contingent on package dependencies) unless otherwise noted. Statistical testing and 

methodology is described above within context specific methodologies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Multi-omics and machine learning reveal two immune phenotypes of severe 

asthma

• Severe asthma stratified by FcεRI+IL-4+ innate immune and IFN-γ+ T cells

• ICLite identifies pathways potentially related to disease pathogenesis

• Gene expression modules fingerprint disease severity in independent cohorts
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Figure 1. Unsupervised clustering of BAL cells identifies immune populations
(A) Results of FlowSOM projected on t-stochastic neighbor embedding (t-SNE) space.

(B) Relative staining intensity for indicated surface markers across t-SNE space.

(C) Summary of cell types identified by FlowSOM.

(D) Results of patient clustering projected on principal component analysis (PCA) plot. 

Patients are colored by group, with ellipses representing 90% of the confidence interval 

around group centroid.

(E) Distribution of clinical disease severities across groups is represented by stacked bar 

chart of proportion with p value determined by Pearson’s chi-square testing of raw values.

(F) Boxplot of FEV1 measured by spirometry across PGs with p value of variance calculated 

using Kruskal-Wallis testing.

(G) Elastic net (EN) predicted lung function based on high-dimensional cell count versus 

measured values of FEV1% predicted. Gray area indicates the 95% confidence bounds 

around a linear regression model comparing the two. Spearman’s rho and p value are 

indicated in plot area.

(H) Graphical representation of EN modeling of cellular determinants of lung function 

(FEV1). Coefficients are plotted in order of ascending value from left to right, with distance 
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from the hashed line indicating magnitude of contribution to the model. Blue coloration of 

cluster ID denotes a negative coefficient, and red indicates positive.
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Figure 2. Patient groups are defined by divergent cell lineages
(A) Stacked bar plot of BAL immune cell composition of cohort participants from manual 

hierarchical gating, arranged by PG.

(B) Boxplot of cell lineages differentially presented across PGs with p value of variance 

calculated using Kruskal-Wallis testing. Bars represent median values, with bounds of boxes 

representing interquartile range (IQR) and whiskers representing 1.5× the upper or lower 

IQR.

(C) Network of correlated cell types across BAL of all patients in cohort. Nodes represent 

cells, and edges represent a Spearman correlation rho ≥0.45 with p < 0.05. Coloring of nodes 

for PG specificity is based on Dunn post hoc testing of cell lineages identified as variant by 

Kruskal-Wallis.
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Figure 3. Cellular immune phenotype relates to distinct cytokine expression patterns
(A) Graphical summary of cell lineages in t-SNE space.

(B) Relative staining intensity of six cytokines across t-SNE-reduced space.

(C) Pie charts demonstrating distribution of cytokine-positive cells in T-cell and non-T-cell 

compartments.

(D) Density plots for IL-10 staining intensity of indicated cells demonstrate the relative 

distribution of events for a PG. Hashed line indicates the 85th quantile. Numeric values 

presented in plot area indicate the percentage of events in each PG falling above this cutoff. 

Cell types presented have passed Kolmogorov-Smirnov testing for variance in distribution 

with p value < 1e–10. Boxplots demonstrate cytokine-positive cells per million BAL cells 

per patient in respective groups with p value of variance calculated using Kruskal-Wallis 

testing. Bars represent median values, with bounds of boxes representing IQR and whiskers 

representing 1.5× the upper or lower IQR.

(E) Plotting for IL-4 within indicated cell lineages as described in (D).

(F) Plotting for IL-5 within indicated cell lineages as described in (D).

(G) Plotting for IFN-γ within indicated cell lineages as described in (D).
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Figure 4. WGCNA of BAL links global transcriptional signatures to specific cell lineages
(A) GSEA using Hallmark and curated gene sets. The p values, normalized enrichment score 

(NES), and enrichment scores (ES) are listed in the figure.

(B) Heatmap of correlation between WGCNA module eigengenes and immune cell log 

ratios from mass cytometry evaluation of BAL. The p value and Spearman’s rho are 

indicated in the figure.

(C) Barplot of −log10(p values) for gene ontology (GO) term enrichment of WGCNA 

modules of interest based on correlation to cells from BAL.

(D) Plotting pink module absolute gene significance (GS) for correlation to CD206+ CD11b
+ CCR4+ macrophages versus module membership (MM).

(E) Visualization of pink module network hub genes (diamonds) with next closest network 

members (circles).

(F) Plotting magenta module GS for correlation to FcεRI+ CD127+ CCR4− innate cells 

versus MM.

(G) Visualization of magenta module network hub genes (diamonds) with next closest 

network members (circles).

(H) Plotting green module GS for correlation to CD8 or CD4 T cells versus MM.

Camiolo et al. Page 33

Cell Rep. Author manuscript; available in PMC 2021 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(I) Visualization of green module network hub genes (diamonds) with next closest network 

members (circles).
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Figure 5. ICLite deconvolution of BAL sequencing improves GO term linkage
(A) Correlogram of gene module to cell cluster interactions using the ICLite algorithm. 

Spearman correlation of module scoring with immune cell log ratio was used construct a 

correlogram of BAL gene modules (x axis) versus cell lineages (y axis). Only associations 

with false discovery rate (FDR) corrected p < 0.05 are illustrated.

(B) Barplot of −log10(p values) for GO term enrichment of ICLite modules 13 and 15, 

which correlate with CD206+ CD11b+ CCR4+ macrophages. Plotting of patient module 

score versus immune cell log ratio is adjacent, with Spearman’s rho and p value of 

comparison as indicated in the figure. Red hashed line indicates linear regression model for 

data.

(C) Barplot of −log10(p values) for GO term enrichment of ICLite modules 10 and 11, 

which correlate with FcεRI+ CD127+ CCR4− innate cells and CD206+ FcεRI+ 

macrophages, respectively. Plotting of respective patient module score versus immune cell 

log ratio is adjacent, with Spearman’s rho and p value of comparison as indicated in the 

figure. Red hashed line indicates linear regression model for data.

(D) Barplot of −log10(p values) for GO term enrichment of ICLite modules 1 and 20, which 

correlate with CD4 and CD8 EMs, CMs, and TRMs. Plotting of respective patient module 

score versus CD4 TRM log ratio is adjacent, with Spearman’s rho and p value of 
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comparison as indicated in the figure. Red hashed line indicates linear regression model for 

data.
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Figure 6. ICLite ascribes greater breadth of functional terms to BAL cells than WGCNA
(A) Circos plot demonstrating gene module membership across trait-association 

technologies. WGCNA modules (bottom) are connected to ICLite modules based off 

commonality in membership, with chords of diagram colored by WGCNA module.

(B) Phylogram of GO term semantic similarity for ICLite modules. Distance is independent 

of cell associations and based only on functional enrichment from transcriptional data. 

Module coloring is based off hierarchical clustering of semantic similarity.

(C) Barplots quantifying the total number of GO terms enriched in modules or the number of 

GO terms effectively linked to cells by respective technology.

(D) Tree plot of GO term semantic clustering results for all modules effectively linked to 

BAL cells using either ICLite or WGCNA. Size of box and text indicates −log10(p value) of 

enrichment. Families are colored according to parent-child relationship in term clustering.
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Figure 7. Gene modules predict cellular phenotype in SARP cohort
(A) Schematic for machine learning model of patient classification in external cohort using 

training based on cell count and transcriptional profile

(B) Receiver operating characteristics (ROC) curve of a sparse-partial least-squares 

discriminant analysis (sPLS-DA) model for cellular immune phenotype prediction using 

BAL gene module scoring within the IMSA (experimental) cohort. ROC curves were 

calculated as one class versus the others using 5-fold validation on the original training set. 

Reported area under the curve (AUC) values (right of plot) are based on comparison of 

predicted scores of one class versus the others using a two-component model. Wilcoxon test 

of predicted scores for one class versus the others met a significance threshold of p < 0.05 

for all groups.

(C) Distribution of clinical disease severities across predicted SARP PGs is represented as 

proportion in stacked bar chart with overall p value determined by Pearson’s chi-square 

testing of raw values.

(D Boxplot of manual differential cell counts from BAL across predicted SARP PGs with p 

value of variance calculated using Kruskal-Wallis testing and represented on plot. Bars 

represent median values with bounds of boxes representing IQR and whiskers representing 

1.5× the upper or lower IQR.
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(E) Plotting of patient module scores versus percent lymphocyte of participant BAL from the 

SARP cohort, with Spearman’s rho and p value of comparison as indicated in the figure. Red 

hashed line indicates linear regression model for data.

(F) Boxplot of measured spirometry across predicted SARP PGs with p value of variance 

calculated using Kruskal-Wallis testing and represented on plot.

(G) SARP BAL gene expression data was used for GSEA using Hallmark and curated gene 

sets. The p values, NES, and ES for gene sets enriched in predicted SARP PG2 are listed in 

the figure.

(H) SARP BAL gene expression data were used for GSEA. The p values, NES, and ES for 

gene sets enriched in predicted PG3 are listed in the figure.
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KEY RESOURCES TABLE

REAGENT or 
RESOURCE SOURCE IDENTIFIER

Antibodies

Purified anti-human CD206 
(MMR) Antibody

Biolegend Cat# 321102; RRID:AB_571923

Purified anti-human CD163 
Antibody

Biolegend Cat# 333602; RRID:AB_1088991

Purified anti-human 
FcεRIα Antibody

Biolegend Cat# 334602; RRID:AB_1227649

Anti-human CD45-89Y 
(clone HI30)

Fluidigm Cat# 3089003; RRID:AB_2661851

Anti-Human CD196/CCR6 
(G034E3)-141Pr

Fluidigm Cat# 3141003A; RRID:AB_2687639

Anti-Human CD4 (RPA-
T4)-145Nd

Fluidigm Cat# 3145001; RRID:AB_2661789

Anti-Human CD8 (RPA-
T8)-146Nd

Fluidigm Cat# 3146001; RRID:AB_2687641

Anti-Human CD11c 
(Bu15)-147Sm

Fluidigm Cat# 3147008; RRID:AB_2687850

Anti-CD278/ICOS 
(C398.4A)-148Nd

Fluidigm Cat# 3148019B; RRID:AB_2756435

Anti-Human CD25 
(2A3)-149Sm

Fluidigm Cat# 3149010B; RRID:AB_2756416

Anti-Human CD103 (Ber-
ACT8)-151Eu

Fluidigm Cat# 3151011B; RRID:AB_2756418

Anti-Human TCRgd 
(11F2)-152Sm

Fluidigm Cat# 3152008B; RRID:AB_2687643

Anti-Human CD194/CCR4 
(L291H4)-153Eu

Fluidigm Cat# 3158006A; RRID:AB_2687647

Anti-Human CD3 
(UCHT1)-154Sm

Fluidigm Cat# 3154003; RRID:AB_2687853

Anti-Human CD45RA 
(HI100)-155Gd

Fluidigm Cat# 3155011B; RRID:AB_2810246

Anti-Human CD195/CCR5 
(NP-6G4)-156Gd

Fluidigm Cat# 3156015; RRID:AB_2661814

Anti-Human CD197/CCR7 
(G043H7)-159Tb

Fluidigm Cat# 3159003; RRID:AB_2714155

Anti-Human CD28 
(CD28.2)-160Gd

Fluidigm Cat# 3160003B

Anti-Human CD183/
CXCR3 (G025H7)-163Dy

Fluidigm Cat# 3156004B; RRID:AB_2687646

Anti-Human CD161 
(HP-3G10)-164Dy

Fluidigm Cat# 3164009B; RRID:AB_2687651

Anti-Human CD16 
(3G8)-165Ho

Fluidigm Cat# 3165001B; RRID:AB_2802109

Anti-Human CD27 
(L128)-167Er

Fluidigm Cat# 3167006B

Anti-Human CD127/
IL-7Ra (A019D5)-168Er

Fluidigm Cat# 3168017B; RRID:AB_2756425

Anti-Human HLA-DR 
(L243)-170Er

Fluidigm Cat# 3170013B
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REAGENT or 
RESOURCE SOURCE IDENTIFIER

Anti-Human CD38 
(HIT2)-172Yb

Fluidigm Cat# 3172007B; RRID:AB_2756288

Anti-Human CD279/PD-1 
(EH12.2H7)-174Yb

Fluidigm Cat# 3175008; RRID:AB_2687629

Anti-Human CD14 
(M5E2)-175Lu

Fluidigm Cat# 3175015B

Anti-Human CD56 
(NCAM16.2)-176Yb

Fluidigm Cat# 3176008B

Anti-Human CD11b/Mac-1 
(ICRF44)-209Bi

Fluidigm Cat# 3209003 RRID:AB_2687654

Anti-Human CD69 
(FN50)-144Nd

Fluidigm Cat# 3144018 RRID:AB_2687849

Anti-Human IL-10 
(JES3-9D7)-166Er

Fluidigm Cat# 3166008B

Anti-Human IL-4 
(MP4-25D2)-142Nd

Fluidigm Cat# 3142002B

Anti-Human/Mouse IL-5 
(TRFK5)-143Nd

Fluidigm Cat# 3143003B

Anti-Human IL-22 
(22URTI)-150Nd

Fluidigm Cat# 3150007B

Anti-Human IFN-g 
(B27)-158Gd

Fluidigm Cat# 3158017B

Anti-Human IL-17A 
(BL168)-161Dy

Fluidigm Cat# 3161008B

Anti-Human FoxP3 (259D/
C7)-162Dy

Fluidigm Cat# 3162024A

Anti-Human IL-13 
(JES10-5A2)-169Tm

Fluidigm Cat# 3169016B

Human/Primate ST2/IL-33 
R Antibody

R&D Systems Cat# MAB523-100

CD19 Antibody, Qdot® 
605 (Monoclonal, SJ25-C1)

ThermoFisher Cat# Q10306; RRID:AB_10374734

Anti-Human IL-4 
(MP4-25D2) Brilliant 
Violet 421

Biolegend Cat# 500825 RRID: AB_10898316

Anti-Human IL-13 (JES10-
A2) PE-Cy7

Biolegend Cat# 501914 RRID:AB_2616746

Anti-Human FcεR1α 
(AER-37; CRA-1)Alexa 
Fluor 488

Biolegend Cat# 334639 RRID:AB_2721289

Anti-Human Mannose 
Receptor CD206 (15-2) PE-
Cy5

Biolegend Cat# 321108 RRID:AB_571919

Anti-Human CD127 
(A019D5) Brilliant Violet 
605

Biolegend Cat# 351334 RFID:AB_2562022

Anti-Human CD25 (BC96) 
PE-Dazzle 594

Biolegend Cat# 302646 RRID:AB_2734260

Anti-Human CD194 
(L291H4) PE

Biolegend Cat# 359412 RRID:AB_2562433

Anti-Human CD183 
(G025H7) Alexa Fluor 700

Biolegend Cat# 353742 RRID:AB_2616920

Anti-Human HLA-DR 
(L243) Brilliant Violet 570

Biolegend Cat# 307638 RRID:AB_2650882
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REAGENT or 
RESOURCE SOURCE IDENTIFIER

Anti-Human CD11c (3.9) 
Brilliant Violet 650

Biolegend Cat# 301638 RRID:AB_2563797

Anti-Human CD11b 
((ICRF44) Brilliant Violet 
711

Biolegend Cat# 301344 RRID:AB_2563792

Anti-Human CD3 
(UCHT1) APC-Cy7

Biolegend Cat# 300426 RRID:AB_439780

Anti-Human CD45 (HI30) 
Brilliant Violet 785

Biolegend Cat# 304048 RRID:AB_2563129

Rat Anti-Human IgG1 
Isotype Control Brilliant 
Violet 421

Biolegend Cat#401911

Rat Anti-Human IgG1 
Isotype Control PE-Cy7

Biolegend Cat#401908

Critical commercial assays

Maxpar® X8 Antibody 
Labeling Kit, 173Yb–4 Rxn

Fluidigm Cat# 201173A

Maxpar® X8 Antibody 
Labeling Kit, 171Yb–4 Rxn

Fluidigm Cat# 201171A

Deposited data

RNA-seq GEO accession This paper GEO: GSE136587

Flow cytometry FCS files This paper https://flowrepository.org/id/
RvFr2BjGjcsd9iMYBm2whCXRWrDZpdwd99WkYjqmfxcFJsgTNG2f5mKHTu0dLcVH

Software and Algorithms

FlowSOM Cytobank, Inc. RRID:SCR_016899

FlowJo Tree Star, Inc. RRID:SCR_008520

ICLite This paper https://github.com/camiolomj/ICLite/

Other

Maxpar Cell Staining 
Buffer

Fluidigm Cat# 201068

eBioscience IC Fixation 
Buffer

ThermoFisher Cat# 00-8222-49

eBioscience 
Permebilization Buffer

ThermoFisher Cat#00-8333-56

Cell ID-intercalator-Ir 
500uM

Fluidigm Cat# 201192B

Cell-ID Cisplatin 100 uL Fluidigm Cat# 201064

Lanthanum (III) chloride 
heptahydrate 99.999% trace 
metals basis

Sigma Cat# 203521

Fixable Viability Dye 
eFluor 506

eBioscience 
ThermoFisher

Cat # 65-0866-14

Human TruStain FcX Fc 
Receptor Blocking Solution

Biolegend Cat# 422302 RRID:AB_2818989

Brefeldin A (1000X) Biolegend Cat# 420601

Monensin (1000X) Biolegend Cat# 420701

UltraComp eBeads 
Compensation Beads

ThermoFisher Cat# 01-2222-41

Cell Rep. Author manuscript; available in PMC 2021 May 19.

https://flowrepository.org/id/RvFr2BjGjcsd9iMYBm2whCXRWrDZpdwd99WkYjqmfxcFJsgTNG2f5mKHTu0dLcVH
https://flowrepository.org/id/RvFr2BjGjcsd9iMYBm2whCXRWrDZpdwd99WkYjqmfxcFJsgTNG2f5mKHTu0dLcVH
https://github.com/camiolomj/ICLite/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Camiolo et al. Page 43

REAGENT or 
RESOURCE SOURCE IDENTIFIER

Invitrogen UltraComp 
eBeads Compensation 
Beads

ThermoFisher Cat# 01-3333-42
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