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Abstract

The brain can be modelled as a network with nodes and edges derived from a range of 

imaging modalities: the nodes correspond to spatially distinct regions and the edges to the 

interactions between them. Whole-brain connectivity studies typically seek to determine how 

network properties change with a given categorical phenotype such as age-group, disease 

condition or mental state. To do so reliably, it is necessary to determine the features of the 

connectivity structure that are common across a group of brain scans. Given the complex 

interdependencies inherent in network data, this is not a straightforward task. Some studies 

construct a group-representative network (GRN), ignoring individual differences, while other 

studies analyse networks for each individual independently, ignoring information that is shared 

across individuals. We propose a Bayesian framework based on exponential random graph models 

(ERGM) extended to multiple networks to characterise the distribution of an entire population of 

networks. Using resting-state fMRI data from the Cam-CAN project, a study on healthy ageing, 

we demonstrate how our method can be used to characterise and compare the brain’s functional 

connectivity structure across a group of young individuals and a group of old individuals.
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1 Introduction

Brain connectivity analysis aims to understand how spatially distinct regions of the brain 

interact with each other. The use of networks to model whole-brain connectivity has become 

increasingly popular in recent years (Bullmore and Sporns, 2009): by treating distinct 

regions as nodes and the connections between them as edges, researchers have gained new 

insights into both the structure and function of the brain. To determine the salient features 

of the brain’s connectivity structure, it is necessary to identify which of those are common 

across individuals. Given the complex interdependencies inherent in network data, however, 

it is not a trivial task to consider connectivity structure across multiple individuals; how best 

to combine connectivity information across participants remains a key challenge (Simpson et 

al., 2013b).

Many existing methods aim to construct a (single) group-representative network (GRN) 

across (multiple) individuals. There have been several methods proposed for constructing 

GRNs. For example, Achard et al. (2006) constructed a group-representative network using 

mean functional connectivity (mean-GRN) by first taking the mean of the individuals’ 

functional connectivity matrices and then thresholding the resulting matrix. Song et al. 

(2009) took a similar approach using the median of the individuals’ functional connectivity 

matrices (i.e. median-GRN). Sinke et al. (2016) constructed a group-representative structural 

connectivity network from Diffusion Tensor Imaging (DTI) data by keeping those edges 

which are present in at least 35% of the individuals’ networks (i.e. minimal-GRN). 

These edge-based GRN methods are computationally convenient, since each individual is 

processed separately and the subsequent analysis is based on a single network. However, 

these methods ignore higher-order topological properties present in each individual’s 

network. Rather than construct a completely new network as a combination of each 

individual’s, other methods represent a whole group by selecting a ‘best’ individual network 

(i.e. best-GRN) in terms of mutual information (Meunier et al., 2009) or Jaccard index 

(Joyce et al., 2010). While this approach preserves the topological properties of a single 

network, in subsequent analyses it may lead to undue weight being placed on features that 

are not present in many of the remaining networks.

The above issues are compounded when comparing brain networks across groups of 

individuals, identifying group differences in connectivity via differences in the GRNs from 

each group. In particular, network metrics are influenced by the overall density of the 

network (Ginestet et al., 2011). As a result, it is difficult to disentangle differences in more 

complex topological properties such as clustering from differences in the network density; 

especially in the context of the various GRN methods. This is particularly important in 

the context of ageing since mean functional connectivity is known to decrease with age 
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(Geerligs et al., 2017). Note that it is not trivial to simply control for network density when 

comparing network metrics due to their highly non-linear relationship.

A key consideration is whether to view the network as a single object or a single realisation 

of a random process. The former implies that the network is a fixed construct, the latter 

defines a random process (with inherent noise) that gives rise to a distribution of brain 

networks. An exponential random graph model (ERGM) defines a parametric statistical 

distribution across all possible networks with a given set of nodes (see Robins et al. (2007b) 

for a review). The aim of the model is to characterise the distribution of a network in 

terms of a set of summary statistics. These summary statistics are typically comprised of 

topological features of the network, such as the number of edges and subgraph counts. 

The summary statistics enter the likelihood via a weighted sum; the weights are (unknown) 

model parameters that quantify the relative influence of the corresponding summary statistic 

on the overall network structure and must be inferred from the data. ERGMs are thus a 

flexible way in which to describe the global network structure as a function of network 

summary statistics.

ERGMs have been applied successfully to characterise both functional connectivity 

(Dell’Italia et al., 2018; Obando and Fallani, 2017; Simpson et al., 2011, 2012) and 

structural connectivity (Sinke et al., 2016). To date, there have been two proposed 

approaches for using ERGMs in group studies. The first approach constructs an edge-based 

GRN for each group and then fits the same ERGM (i.e. identical summary statistics) 

separately to each group’s network, obtaining GRN-ERGM parameter estimates (Sinke et 

al., 2016). As described above, this edge-based approach may average over informative 

topological structure present in each of the individuals’ networks. In contrast, the second 

approach fits an ERGM to each individuals’ network and then takes the mean or median 

of the fitted parameters from individuals within a group to represent the group-level 

connectivity structure (Obando and Fallani, 2017; Simpson et al., 2012; i.e. mean-ERGM 

or median-ERGM). Note that it is then possible to generate a GRN from the resulting 

mean-ERGM and median-ERGM parameter estimates (Simpson et al., 2012). While this is 

preferable to the first approach, taking a simple mean or median may obscure important 

information.

While ERGMs are designed to represent network data in terms of network summary 

statistics, they are limited in their ability to study specific edges. A complementary 

approach for analysing brain network data is the mixed effects framework. This models the 

probability of a connection in terms of both network metrics and covariates (Simpson and 

Laurienti, 2015). Although both approaches incorporate network metrics into the models, 

the associated parameters have subtly different inter-pretations. The outcome variable in 

an ERGM is the entire network and the parameters quantify the effect of the network 

metrics on the global network structure. In contrast, the outcome variables in the mixed 

effects model are the individual network dyads and the parameters quantify the relationship 

between the network metrics and the probability of a connection. Note that, by including 

group membership as a covariate, it is straightforward to use the mixed effects approach for 

group studies. The aim of this work is to similarly expand the use of ERGMs for group 

studies.
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In this article, we introduce a novel framework to model a population of individual 

brain networks which we call multi-BERGM (the ‘B’ denotes Bayesian; the framework 

could theoretically be analysed in a frequentist paradigm but we do not consider that 

further). Our framework uses a Bayesian formulation of the ERGM within a multi-level 

(i.e hierarchical) model. Bayesian ERGMs have previously been used in the context of a 

group study to characterise the distribution of a group-representative network (Sinke et al., 

2016). In contrast, our method fits a Bayesian ERGM to each individual network and pools 

information across multiple individuals nested within multiple groups via the multilevel 

structure of the overarching model. This provides an approach to characterise connectivity 

at a group-level, and thus compare the brain’s connectivity structure between groups. We 

demonstrate our method on functional connectivity networks derived from resting-state 

fMRI scans of participants from the Cam-CAN project, a study on healthy ageing (Shafto et 

al., 2014).

2 Methods

2.1 Data

The data were collected as part of Phase II of the CamCAN project (www.cam-can.org; 

Shafto et al., 2014). The MRI data were acquired on a 3T Siemens TIM Trio at the MRC 

Cognition & Brain Sciences Unit, with a 32 channel head-coil. Structural images were 

acquired using a 1mm3 isotropic, T1-weighted Magnetization Prepared RApid Gradient 

Echo (MPRAGE) sequence and a 1mm3 isotropic, T2-weighted Sampling Perfection with 

Application optimized Contrasts using different flip angle Evolution (SPACE) sequence. The 

fMRI data for the eyes-closed, resting-state run were acquired using a Gradient-Echo (GE) 

Echo-Planar Imaging (EPI) sequence, and consisted of 261 volumes (lasting 8 min and 40 s). 

Each volume contained 32 axial slices (acquired in descending order), with slice thickness of 

3.7 mm and interslice gap of 20% (for whole brain coverage including cerebellum; TR 1,970 

ms; TE 30ms; voxel-size 3 mm 3 mm 4.44 mm). EPI fieldmaps with two TEs (5.19 ms and 

7.65 ms) were also acquired. All the raw data from CamCAN Phase II, together with more 

acquisition details, are available on: http://www.cam-can.org/index.php?content=dataset.

The data were processed using r7219 of the SPM12 software (http://www.fil.ion.ucl.ac.uk/

spm), automated with release r5.4 of the Automatic Analysis (AA) pipeline system1 (Cusack 

et al., 2015; see Taylor et al. (2017) for an overview of the pipelines) in r2015 of MAT-

LAB (The MathWorks). To obtain a good starting-point for image normalisation, the T1 

image was coregistered to the Montreal Neurological Institute (MNI) template using rigid 

body transformation, and then the T2 image was coregistered to the T1. Both T1 and T2 

images were bias corrected, and then combined in a multimodal segmentation to estimate 

images of each of six tissue classes, including grey-matter (GM), white-matter (WM) and 

cerebrospinal fluid (CSF). Diffeomorphic registration (DARTEL) was then applied to the 

GM and WM segments to create group templates, which were in turn transformed to MNI 

space using a 12-parameter affine transform.

1Available at http://github.com/automaticanalysis/automaticanalysis/releases/v5.4.0.
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The fMRI images were unwarped using distortion fields estimated from the fieldmaps, and 

corrected for motion using rigid-body realignment to the mean fMRI image across runs. 

The different slice acquisition times were corrected by interpolating to the middle slice. 

The images were rigid-body coregistered to the T1 image and the spatial transformations 

from that T1 to MNI space (diffeomorphic and affine) were applied to every fMRI image. 

Residual effects of abrupt motion were reduced by applying wavelet despiking (Patel et al., 

2014). The mean time series for all voxels within the thresholded WM and CSF segments 

were calculated to use as later covariates of no interest.

The fMRI time series were then extracted from 90 cortical and subcortical regions of interest 

(ROIs) from the AAL atlas Tzourio-Mazoyer et al., 2002). ROIs in the cerebellum were not 

included. The time series for each voxel in each ROI were adjusted for various confounds 

by taking the residuals from a general linear model (GLM) that included: (1) the time series 

in WM and CSF segments, (2) the 6 rigid-body motion parameters from the realignment 

stage, (3) the first-order difference in those motion parameters across successive TRs and (4) 

a cosine basis set up to cut-off frequency of 0.008 Hz (implementing a form of high-pass 

filter). Second-order (squared) terms for (1), (2) and (3) were also included in the GLM. The 

autocorrelation in the GLM error was modelled by a family of 8 exponentials with half-lives 

from 0.5 to 64 TRs (estimated by pooling across voxels within each ROI), and used to 

prewhiten the time series. The average voxels of the residual time series was then used 

as a summary measure for each ROI. This approach was based on the optimised pipeline 

proposed by Geerligs et al. (2017).

To illustrate our method, we analysed two groups (denoted j, i.e. j=1, 2) from the Cam-CAN 

study: the 100 youngest individuals, aged 18–33, and the 100 oldest individuals, aged 74–89 

(denoted i within each group, i.e. i = 1, …, nj, where n1 = n2 = 100).

2.2 Network construction

The preprocessed data consists of N = 90 ROI time series for each individual. To apply 

a standard (binary) ERGM, it is necessary to extract a network for each individual. For a 

given individual i, we first computed the pairwise Pearson correlation between each of the 

time series, yielding a N × N correlation matrix C(i). In contrast with the pipeline proposed 

by Geerligs et al. (2017), we did not apply mean regression to the resulting functional 

connectivity matrices because we accounted for differences in mean connectivity via the 

thresholding procedure or through the specification of the ERGM (we return to this point in 

the discussion).

To each correlation matrix, we then applied a threshold r(i) to produce an N × N adjacency 

matrix, A(i), with entries:

Akl
(i) = 1  if Ckl

(i) ≥ r(i) k, l = 1 , …, N
0  otherwise.

(1)

The adjacency matrix defines an individual’s network, y(i), with an edge between nodes k 

and l if and only if Akl
(i) = 1. The choice of threshold r(i) can have a significant impact on 
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the resulting connectivity structure (van den Heuvel et al., 2017; van Wijk et al., 2010). The 

two most common strategies are “absolute” thresholding and “proportional” thresholding. 

Absolute thresholding picks a common threshold r(i) = r for each individual. In contrast, 

proportional thresholding ensures that the same number of edges are present in each network 

by allowing the threshold to vary by individual.

Both thresholding strategies have their drawbacks. Since the number of edges in a network 

inherently affects the overall network (Ginestet et al., 2014; van Wijk et al., 2010), 

differences in other network metrics may simply be attributable to variations in the overall 

connectivity. A proportional threshold may thus be preferred in order to keep the number of 

edges constant across individuals (in both groups) and facilitate comparison of other metrics 

of interest. On the other hand, a lower correlation value may be less reliable in indicating a 

functional connection between brain regions. Therefore, by including lower correlations as 

edges for individuals with lower overall connectivity, a proportional threshold may induce 

more randomness in the resulting network (van den Heuvel et al., 2017).

Given these issues, we analysed networks constructed using the two different thresholding 

procedures: absolute and proportional. Further, for both procedures we considered two 

distinct threshold values (i.e. different r(i)), chosen to yield average node degrees of K = 

3 and K = 5. The value of K = 3 corresponds to the efficiency-cost optimization (ECO) 

criterion (Fallani et al., 2017); this aims to optimise the trade-off between the efficiency of 

a network and its density, or wiring cost. The value of K = 5 has been used in previous 

applications of ERGMs to resting-state functional connectivity (Simpson et al., 2011, 2012).

2.2.1 Group-representative network construction—In order to contrast our 

framework with existing methods, we also constructed group-representative networks 

(GRN) following Achard et al. (2006) (mean-GRN) and Song et al. (2009) (median-GRN). 

The mean-GRN and median-GRN take the mean and median, respectively, of the correlation 

matrices across all individuals within the group (young and old) and then threshold these 

group mean and median matrices to yield networks with average node degrees of K = 

3 and K = 5. Explicitly, we have Ckl
mean  = 1

n∑iCkl
(i) and Ckl

median  = median( Ckl
(i): ∀i ), with 

associated adjacency matrices. These approaches produce a single network for each group, 

which can be modelled as an ERGM and we can assess the respective GRN-ERGM 

parameters.

2.3 Exponential random graph model specification

The probability mass function of a network Y under an ERGM is given by π(Y|θ) where

π(y ∣ θ) =
exp θTs(y)

Z(θ) . (2)

Here, s(y) is a vector of p network summary statistics, θ ∈ Θ ⊆ ℝp is a vector 

of p corresponding model parameters that must be estimated from the data and 

Z(θ) = ∑y′ ∈ Yexp θTs(y′)  is the normalising constant ensuring the probability mass 
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function sums to one. Given data, that is, an observation y of Y, the goal is to infer 

which values of θ best correspond to the data under this distribution. The summary 

statistics included in a given ERGM represent those configurations expected to appear more 

frequently or less frequently than in a random graph. In other words, the choice of summary 

statistics is a modelling decision; it reflects our belief of how the global network structure 

may be summarised and is driven by the context of the network. The flexibility of ERGMs 

derives from the range and number of possible summary statistics that can be used (Robins 

et al., 2007a).

In what follows, we work in the Bayesian paradigm, treating the model parameters θ as 

random variables. The Bayesian formulation of ERGMs was first suggested by Koskinen 

(2004) and then expanded upon by Caimo and Friel (2011). Through the machinery of 

Bayesian hierarchical modelling, this provides a natural framework for describing the joint 

distribution of a group of networks. To fully specify a Bayesian ERGM, we need only 

augment the definition in (2) with a prior distribution π(θ) for the model parameters. Given 

an observation y of the network, we can then perform inference by analysing the posterior 

distribution π(θ|y). Through Bayes’ rule, we may write the posterior as

π(θ ∣ y) = π(y ∣ θ)π(θ)
π(y)

=
exp θTs(y) π(θ)

Z(θ)π(y)

(3)

where π(y) = ∫Θ
π(y ∣ θ)π(θ)dθ is the model evidence. Although the posterior distribution 

is generally not available in a closed-form expression, one may obtain samples from the 

posterior through a Markov chain Monte Carlo method known as the exchange algorithm 

(Murray et al., 2006).

Under absolute thresholding, our exponential random graph model (which is common to 

all individuals and groups) uses three summary statistics that have previously been applied 

to single brain functional connectivity networks (Simpson et al., 2013a, 2011). The three 

summary statistics used are: number of edges (E); geometrically weighted edgewise shared 

partners (GWESP); and geometrically weighted non-edgewise shared partners (GWNSP). 

For the proportional thresholding, we fixed the number of edges and modelled the network 

using two summary statistics: GWESP and GWNSP.

The number of edges E = ∑k < lY kl characterises the sparsity of the network. When using an 

absolute threshold, it is important to include the number of edges in the model in order to 

account for differences in the network density across individuals. When using a proportional 

threshold, however, each individual network is constructed to have a predetermined density. 

As a result, the number of edges E is constrained to be the same across each network. In this 

case, we therefore opted not to include the summary statistic in the model, constraining the 

space of networks to those with the same number of edges as those observed. In other words, 

the model describes a probability distribution over networks with a given average node 

degree K. Note that this in contrast to previous applications of ERGMs in neuroimaging, 
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which include the number of edges in the model despite using a proportional threshold 

(Simpson et al., 2011, 2012).

The geometrically weighted edgewise shared partner (GWESP) statistic of a network y is a 

measure of network transitivity (or clustering) and is given by:

GW ESP (y) = eτ1 ∑
w = 1

V − 2
1 − (1 − e−τ1)w EPw(y) (4)

where EPw(y) is the number of connected node pairs having exactly w shared partners and 

τ1 > 0 is a decay parameter. The decay parameter τ1 serves to diminish the effect of the 

network having more higher-order edgewise shared partners relative to lower-order edgewise 

shared partners. In other words, the increase in GWESP from adding a single edge is smaller 

if the edge adds a shared partner to connected nodes that already share many partners.

The geometrically weighted non-edgewise shared partner (GWNSP) statistic is similarly 

defined as

GW NSP (y) = eτ2 ∑
w = 1

V − 2
1 − (1 − e−τ2)w NPw(y) (5)

where NP w(y) is the number of non-connected node pairs having exactly w shared partners 

and τ2 > 0 is a decay parameter. GWNSP is related to global network efficiency; a higher 

value of GWNSP indicates that non-connected nodes are more likely to have a shared 

partner.

While it is possible to treat the decay parameters for both geometrically weighted statistics 

as extra model parameters (leading to curved ERGMs; see Hunter, 2007), this increases the 

computational burden substantially. The decay parameters were therefore fixed at τ1 = τ2 

= 0.75, as these values have previously been found to result in better fitting models for 

networks constructed from the AAL atlas (Simpson et al., 2011).

2.4 Multi-level (hierarchical) framework

The Bayesian exponential random graph model described above provides a flexible family 

of distributions for a single network. Our goal is to extend this to a model for a population 
of networks. Our proposed approach is simple: represent each network as a separate 

ERGM within a Bayesian multilevel (or hierarchical) model. By pooling information across 

individual networks, this approach allows us to characterise the distribution of the whole 

population.

We model each individual network Y(i) as an exponential random graph with model 

parameter θ(i). Importantly, each individual ERGM must consist of the same set of summary 

statistics s(·). The probability mass function of each network can then be written

π(y(i) ∣ θ(i)) =
exp θ(i)Ts(y(i))

Z(θ(i))
, i = 1, …, n . (6)
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This specifies the data-generating process for each individual network. To obtain a joint 

distribution for the set of networks, we assume that, conditional on their respective 

individual-level parameters, the Y(i) are independent. Thus, the sampling distribution for 

the set of networks Y is simply the product of the individual probability mass functions:

π(y ∣ θ) = ∏i = 1
n π(y(i) ∣ θ(i))

=
exp ∑i = 1

n θ(i)Ts(y(i))

∏i = 1
n Z(θ(i))

.
(7)

2.4.1 First level of the multi-level model (within group)—To model a group of 

networks we need to specify the prior distribution of the individual-level ERGM parameters 

θ(1), …,θ(nj) (for individuals 1,…,nj in group j). To this end, we propose a multilevel model 

such that θ(1), …,θ(n) are drawn from a common population-level Normal distribution with 

parameters ϕ = (μmulti , ∑θ), which are also treated as random variables. We write

θ(i) ∼ π( ⋅ ∣ ϕ), i = 1, …, nj (8)

for the population-level distribution. Assuming that, conditional on ϕ, the θ(i) are 

independent, we have

π(θ ∣ ϕ) = ∏
i = 1

nj
π(θ(i) ∣ ϕ) . (9)

Finally, write π(ϕ) for the (hyper)prior distribution of ϕ. The joint distribution of (Y, 

θ, ϕ) can be written as π(y, θ, ϕ) = π(y ∣ θ)π(θ ∣ ϕ)π(ϕ). See Fig. 1 for a diagrammatic 

representation of the full hierarchical framework. Full details of the prior specifications 

can be found in the Supplementary Material.

2.4.2 Second level of the multi-level model (between group)—To extend the 

model for multiple groups of within a population, we add another level to the hierarchy. 

Denoting θ(i,j) to be the (vector-valued) ERGM parameter for the ith individual in the jth 

group, we assume θ(i, j) ∼ N(μmulti 
(j) , ∑θ). Thus, we assume different group-level means but 

the same covariance structure across groups (our framework allows per-group covariance, 

but the sample size of our illustrative example leads us to a common covariance). 

Writing ϕ(j) = (μmulti 
(j) , Σθ), we then complete the model by specifying the group-level 

prior ϕ(j) ∼ π( ⋅ ∣ ϕpop) and population-level hyperprior π(ϕpop). Full details of the prior 

specifications can be found in the Supplementary Material.

2.5 Model fitting and comparison to alternative approaches

To generate samples from the joint posterior distribution, we devised a novel MCMC 

algorithm, the details of which can be found in Lehmann (2019) We used our algorithm to 
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generate posterior samples for two sets of networks. The first set consisted of a single group 

of networks from the 100 youngest individuals in the Cam-CAN study (a one-level model), 

while the second set also included the networks from the 100 oldest individuals (a two-level 

model).

2.5.1 One-level model for young group—For the single-group dataset, we derived 

estimates for the posterior mean and 95% credible regions for each pair of components 

of the group-level parameter μmulti using our multi-BERGM model with one-level (i.e. 

individuals nested within one group).

In order to compare our method with existing approaches, we also generated posterior 

samples for the same (using three summary statistics defined earlier) Bayesian ERGM fit to 

the mean-GRN, μmean-GRN, and median-GRN, μmedian-GRN·

We also compare our method, which generates a full posterior distribution for μ and Σ, 

to a mean-BERGM approach. Specifically, we fit a BERGM to each individual within 

the group (i.e. we fit n1 = 100 separate single-BERGMs and obtain 100 separate sets of 

posterior samples θt
(i)

t = 1
T

 for i = 1,…,100). The original proposal of this approach used 

frequentist ERGMs, giving a point estimate per individual (Simpson et al., 2011). The 

Bayesian approach we use yields a separate posterior per individual, which can then be 

combined into a group-level estimate μmean-BERGM ∼ N(μ, ∑) with mean

μ = 1
n ∑

i = 1

n
θ(i)

and covariance

∑ = 1
T − 1 ∑

t = 1

T
(μt − μ)2 + 1

T ∑
t = 1

T 1
n(n − 1) ∑

i = 1

n
(θt

(i) − μt)
2

.

where

θ(i) = 1
T ∑t = 1

T θt
(i) and μt = 1

n∑i = 1
n θt

(i) .

2.5.2 Two-level model for young and old groups—For the two-group dataset, 

we used the two-level multi-BERGM model and derived posterior density estimates for 

the group-level mean parameters μmulti 
(1) , μmulti 

(2) , thus providing a way to compare the 

connectivity structure across the two groups. We also applied the mean-BERGM approach 

to the group of old individuals, i.e. we fit a single-BERGM to each individual within the 

old group and used the resulting posterior samples to construct a group-level estimate (see 

previous section).
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2.6 Goodness-of-fit assessment

For the single-group dataset, we assessed the goodness-of-fit of the posterior distribution to 

the data by simulating networks from the posterior predictive distribution and comparing the 

network metrics of these simulated networks to those of the observed networks. Specifically, 

we chose uniformly at random S = 1000 samples μ1, …, μs generated from the posterior 

distribution of the group-level parameter μmulti. For each sample, s, we also randomly 

selected (uniformly, with replacement) an individual is and then simulated a network Y(s) 

from the ERGM with parameter μs + θs
is . We compared the simulated networks to the 

observed networks based on three network metrics: degree distribution, geodesic distance 

distribution (length of shortest paths) and edge-wise shared partners distribution (note these 

are different to, but highly correlated with, the summary statistics used to define the ERGM).

It is possible to assess goodness-of-fit on any network metrics by comparing simulated 

networks to observed networks. Since age-related differences in local efficiency (Achard 

and Bullmore, 2007; Geerligs et al., 2015; Sala-Llonch et al., 2014; Song et al., 2014) and 

global efficiency (Achard and Bullmore, 2007; Sala-Llonch et al., 2014) have previously 

been observed, we assessed the goodness-of-fit for the two-group dataset in terms of these 

two metrics. For both groups, we chose uniformly at random S = 1000 samples μ1
(j), …, μS

(j)

generated from the posterior distribution of the group-level parameter μmulti
j . For each sample, 

we simulated a network Y(j,s) from the ERGM with parameter μS
(j), and compared the local 

and global efficiency of the simulated networks to the observed networks.

3 Results

We performed analyses for two populations of networks, the first with a single group (young 

only) and the second with two groups (young and old). Both the one and two group settings 

were considered under two different thresholding procedures (absolute and proportional) and 

two different threshold values (chosen to yield average node degrees of K = 3 and K = 5); 

resulting in eight sets of networks that we analysed using our multi-BERGM framework. 

In this section we present the results of the analyses performed on the sets of networks 

constructed under absolute thresholding with a population-wide average node degree of K 
= 3. The other results can be found in the Supplementary Material. In the context of this 

paper the supplementary results are in line with those presented here, except where explicitly 

stated.

For the single-group setting we compare our method, specifically the estimated ERGM 

parameters, to several alternative approaches from the literature.

3.1 Single-group mean ERGM parameter estimation

We first consider the point estimate of the ERGM parameters, μ, for the young only (i.e. 

single-group setting) under various approaches: our one-level multi-BERGM framework; the 

mean-BERGM, the mean-GRN BERGM; the median-GRN BERGM; and the distribution of 

point estimates (posterior sample mean) from a single-BERGM fitted to each individual’s 

network. Briefly, multi-BERGM fits all the model parameters simultaneously in a multilevel 
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framework; mean-BERGM combines estimates from the separate single-BERGM fits; 

mean-GRN and median-GRN are single-BERGM fits on the group-representative mean and 

median networks respectively (see Section 2.5 for details).

Fig. 2 presents the three components of μ (corresponding to the three summary statistics) 

showing the mean-BERGM estimate (blue dotted line); the posterior sample means of the 

one-level multi-BERGM (red line), the mean-GRN BERGM (green dashed line), and the 

median-GRN BERGM (purple dashed line); and the distribution of posterior sample means 

for single-BERGM fitted to each individual (grey histogram).

The multi-BERGM estimates are very close to the mean-BERGM estimates, i.e. the centre 

of the posterior mean values across the individual network fits (single-BERGMs). In 

contrast, the posterior means of the edges and GWESP components for the mean-GRN 

and median-GRN are in the tails of single-BERGM distribution. Similar results were 

observed under the proportional thresholding procedures while the estimates under absolute 

thresholding with average node degree K = 5 were similar under each of the approaches 

(see Supplementary material Fig. A.1). This suggests that the mean-GRN and median-GRN 

do not always accurately capture the topological structure of the majority of the individual 

networks.

3.2 Individual-level covariance under multi-BERGM and single-BERGM

We consider the covariance of the posterior distribution of the individual-level parameters 

for three randomly selected participants under our multi-BERGM approach compared to the 

distribution from the single-BERGM fits. For each approach, we calculated 95% credible 

regions for each pair of model components based on the respective posterior samples.

While the mean values were similar between the multi-BERGM and single-BERGM 

distributions, the multi-BERGM yielded tighter credible regions (Fig. 3). This illustrates 

one of the benefits of modelling the networks simultaneously: the borrowing of information 

across individuals leads to more precise estimates of the model parameters. The credible 

regions derived from the other thresholding procedures were similar or tighter under multi-

BERGM compared to single-BERGM (see Supplementary material Fig. A.2).

3.3 Single-group covariance under multi-BERGM and mean-BERGM

We consider the covariance of the posterior distribution under our multi-BERGM approach 

compared to the mean-BERGM distribution constructed from the posterior samples of the 

single-BERGMs for each individual. From the posterior samples for the multi-BERGM, we 

calculated 95% credible regions for each pair of model components. For the mean-BERGM 

approach, we calculate a 95% region from a normal distribution with mean and covariance 

based on the single-BERGM fits for each individual.

While the mean values were similar between the multi-BERGM and mean-BERGM 

distributions, the multi-BERGM yielded moderately tighter credible regions (Fig. 4). This 

again illustrates how the borrowing of information across individuals can lead to more 

precise estimates of the model parameters. The credible regions derived from the other 
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thresholding procedures were similar or tighter under multi-BERGM compared to the mean-

BERGM approach (see Supplementary material Fig. A.3).

3.4 Single-group goodness-of-fit under multi-BERGM

To assess the goodness-of-fit under multi-BERGM, we simulated networks from the 

ERGM with parameters taken uniformly at random from the posterior samples. The 

simulated networks appeared broadly similar to the observed networks in terms of the 

network metrics we considered: degree distribution, geodesic distance distribution and 

edgewise-shared partner distribution (Fig. 5). This indicates that the group-level posterior 

distribution adequately captured the important network characteristics across the entire 

group of individuals. Similar results were observed under the remaining three thresholding 

procedures (see Supplementary material Figs A.4-A.6).

3.5 Two-group multi-BERGM: group differences

Using a two-level multi-BERGM framework we obtained posteriors for the group-level 

ERGM parameters. These posterior distributions reveal that network differences between the 

young group and the old group are driven by differences in the GWNSP parameter (Fig. 6). 

In particular, the posteriors for the edges and GWESP parameters are almost identical for 

the two groups, while the GWNSP parameter is markedly larger for the young group. This 

difference in the group-level GWNSP parameters was also observed under the remaining 

three thresholding procedures (Supplementary Figs A.8-A.10).

By considering the posterior distribution of difference in the group-level parameters, μ1 – 

μ2, we also calculated 95% credible regions to assess the degree of certainty in the group 

differences under both the multi-BERGM and the mean-BERGM approaches (Fig. 7). The 

left panel shows that difference in the (edges-GWESP) pair of parameters is centered on 

zero, while the middle and right panels demonstrate that, under the multi-BERGM approach, 

the credible regions for the (GWESP-GWNSP) and (GWNSP-edges) pair do not contain 

zero. This provides evidence that the group-level differences in network structure are driven 

by the differences in GWNSP. We note that a permutation testing approach based on 

single-BERGM and single-ERGM fits also found the strongest group difference between the 

GWNSP parameter estimates (Supplementary Table A.1).

Under the mean-BERGM approach, the credible regions are slightly wider and contain zero 

for each pair of parameters. This again high-lights the benefit of more precise estimates 

of the model parameters via the multi-BERGM approach by modelling the networks 

simultaneously. Similar results were observed under absolute thresholding with average 

node degree K = 5 but no significant differences were found under proportional thresholding 

(Fig. A.11)

Age-related differences in both local efficiency (Achard and Bullmore, 2007; Geerligs 

et al., 2015; Sala-Llonch et al., 2014; Song et al., 2014) and global efficiency (Achard 

and Bullmore, 2007; Sala-Llonch et al., 2014) have previously been observed. To check 

whether the multi-BERGM approach could identify similar age-related group differences, 

we also simulated S = 1000 networks for each group from the ERGM with parameters 

taken uniformly at random from the group-level posterior samples. Overall, the simulated 
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networks for the young group exhibited higher global and local efficiency, in correspondence 

with the observed data (Fig. 8). Similar results were observed for networks constructed via 

absolute thresholding with average node degree K = 5 (Supplementary Fig. A.12). Under 

proportional thresholding, however, the posterior predictive distribution of local and global 

efficiency did not correspond well with the observed networks, indicating a poor model fit 

(Supplementary Figs A.13 and A.14).

Based on the results from previous sections, we have shown that the various GRN methods 

do not properly reflect the distribution of individual ERGMs, and hence we do not consider 

group differences under these alternative approaches.

4 Discussion

The characterisation of connectivity structure at a group level is a necessary step towards 

understanding how the brain changes with a given phenotype such as age, disease condition 

or mental state. We have proposed multi-BERGM, a multi-level (hierarchical) Bayesian 

framework based on exponential random graph models (ERGMs), as a coherent method 

for understanding group level connectivity. By pooling information across the individual 

networks, this framework provides a principled (and extendable) approach to model the 

relational structure for groups of networks.

Our work builds on previous approaches attempting to investigate differences between 

groups of networks, either by constructing a group-representative network (GRN; Achard 

et al., 2006; Joyce et al., 2010; Meunier et al., 2009; Sinke et al., 2016; Song et al., 

2009) or by combining separate individual-level estimates, e.g. mean-ERGM (Obando and 

Fallani, 2017; Simpson et al., 2012). There are three main advantages of our framework: 

using the Bayesian paradigm allows us to formally quantify uncertainty in the group-level 

model parameters; the group-level posterior densities provide a way to directly compare 

connectivity structure across groups; and the multi-level (hierarchical) framework allows 

information to be borrowed across individuals thus, in principle, improving the accuracy of 

the parameter estimates.

In line with previous findings (Ginestet et al., 2011; Simpson et al., 2012), our 

results illustrate that the mean-GRN and median-GRN approaches for constructing group-

representative networks do not accurately characterise the topological structure of the 

individual networks. This is at least partially due to the quasi linearity of the thresholding 

operation used to construct the networks: the expectation of thresholded correlation matrices 

will not in general be equal to the network constructed by thresholding the expectation 

of the correlation matrices (Ginestet et al., 2011). As a result, the network metrics from 

such a GRN will not accurately summarise the topological information across the individual 

networks.

Our proposed method takes as input any group of unweighted networks. While there are 

a variety of methods to construct networks from functional neuroimaging data, each with 

their own benefits and disadvantages, we took the most common and simple approach of 

applying a threshold to the correlation matrices, keeping edges between nodes that exhibited 
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a sufficiently strong positive correlation. The choice of threshold can have a significant 

impact on the resulting connectivity structure (van den Heuvel et al., 2017; van Wijk et al., 

2010) and we found that different threshold values did indeed lead to small differences in the 

posterior distribution of the model parameter. Regardless of the threshold used, our approach 

provides a framework to characterise the group-level brain connectivity structure, though 

further investigation into the effect of thresholding procedure on ERGM parameter estimates 

is warranted.

From a modelling perspective, the appropriate selection of summary statistics is crucial. 

This is true of fitting ERGMs to single networks, let alone populations of networks. 

Moreover, the ‘correct’ choice likely depends on the network construction method. We used 

three summary statistics: the number of edges, the geometrically-weighted edgewise shared 

partners (GWESP) statistic and the geometrically-weighted non-edgewise shared partners 

(GWNSP) statistic. The choice of summary statistics follows Simpson et al. (2011), in which 

this particular combination was selected via a graphical goodness-of-fit approach, with the 

‘best’ metrics chosen from a prespecified set of potential metrics. While it is possible to 

perform Bayesian model selection for an ERGM on a single network (Bouranis et al., 2018; 

Caimo and Friel, 2013), further work is needed to extend these approaches to perform model 

selection for a group of networks.

Although ERGMs provide a concise representation of network data via a set of summary 

statistics, the biological interpretation of these summary statistics requires some care. 

The number of edges corresponds to overall network density and is a natural measure 

of connectedness. The GWESP/GWNSP statistics are weighted sums of the number of 

connected/non-connected node pairs having exactly w shared partners. The GWESP statistic 

quantifies the propensity to form triangles and is thus a measure of local clustering 

(functional segregation). The GWNSP statistic can be seen as an indirect measure of 

global network efficiency (functional integration); a higher value of GWNSP indicates that 

non-connected nodes are more likely to have a shared partner. Both GWNSP and GWESP 

were highly correlated with local as well as global network efficiency (Supplementary Table 

A.2) for the 200 networks constructed under absolute thresholding with average node degree 

K = 3. This is in line with previous work (Obando and Fallani, 2017) which concluded that 

it may not be possible to uniquely relate GWNSP and GWESP to global and local efficiency 

respectively. Note however that GWESP and GWNSP were also highly correlated with each 

other. In fact, when Spearman’s partial correlation is used, the correlation between GWNSP 

and local efficiency (controlling for GWESP) is close to zero while the correlation between 

GWNSP and global efficiency is still strong (see Supplementary Tables A.3-A.4). Similarly, 

the correlation between GWESP and local efficiency (controlling for GWNSP) is close to 

zero while the correlation between GWESP and global efficiency is moderately large. These 

results indicate that GWNSP and GWESP are indeed useful surrogates for global and local 

efficiency respectively.

The parameter estimates obtained from the fitting procedure quantify the relative influence 

of the corresponding summary statistics on the overall network structure. To be precise, 

the parameter estimates represent the estimated change in log-odds of an edge existing 

for each unit increase of the corresponding summary statistic. The negative estimates for 
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the edges parameter corresponds to a lower expected edge density relative to a random 

graph in which each edge exists with probability 1/2. Note that this relates strongly to the 

overall sparsity of the network and is thus highly dependent on the threshold level used. 

The positive estimates for the GWESP parameter indicate that many connections contribute 

to the formation of clusters in the brain. This corresponds to the well-established local 

efficiency and functional segregation of the brain (Bullmore and Sporns, 2009; Rubinov 

and Sporns, 2010). The negative estimates for the GWNSP parameter suggest that pairs 

of non-connected nodes sharing one or more neighbours are relatively uncommon. The 

lower estimates of this parameter for the old group indicate lower levels of functional 

integration. Note that the parameter estimates, as well as the corresponding summary 

statistics, are strongly correlated, so caution should be exercised when interpreting the 

estimates independently.

A graphical assessment of the model indicated a reasonable goodness-of-fit under constant 

thresholding. In particular, the model was able to recover differences in observed global 

and local efficiency, which were both higher in the young group than the old group. The 

observed age-related decrease in local efficiency is in line with previous studies (Achard 

and Bullmore, 2007; Geerligs et al., 2015; Sala-Llonch et al., 2014; Song et al., 2014). A 

decline in global efficiency has also been observed previously (Achard and Bullmore, 2007; 

Sala-Llonch et al., 2014), though not in other studies (Geerligs et al., 2015; Song et al., 

2014). In our study, the thresholding method had a pronounced effect on the observed age-

differences. Under constant thresholding, we observed a clear difference in global efficiency 

between the two age groups and a relatively small difference in local efficiency. Under 

proportional thresholding, however, both local and global efficiency were slightly lower for 

the young group. The disparities between thresholding procedures may be associated with 

alterations in mean connectivity due to age-related differences in vascular health (Geerligs 

et al., 2017), while the discrepancies with previous studies are likely due to differences in 

network construction including the par-cellation and definition of functional connectivity.

Future research will be needed to extend our approach to alternative settings. For example, 

the flexibility of Bayesian hierarchical modelling could be exploited to deal with continuous 

covariates or more complex group structures such as factorial designs. Given multiple 

networks per individual, one could extend the framework by adding another layer to the 

model. Specifically, one could again posit an ERGM for each network observation, with 

individual-level parameters to pool information for networks on the same individual and 

group-level parameters to pool information across several individuals. It would then be 

possible to apply our framework to dynamic functional connectivity or task-based scans 

in order to query how connectivity structure changes with time or across states. Although 

our framework is currently limited to binary networks, more work is needed to handle 

weighted networks (thus bypassing the thresholding issue). A promising avenue for this is 

the development of weighted ERGMs (Desmarais and Cranmer, 2012; Wilson et al., 2017), 

though the associated computational cost is likely to be prohibitive.

A downside to our framework, especially compared to the single-(B)ERGM and GRN 

approaches, is in terms of computation cost. Using a 40-core computing cluster (Intel 

Xeon E7-8860 v3, 2.2 GHz), the algorithm took between 8 and 12 h to produce the 
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posterior samples for each multi-BERGM (with additional time to tune the Bayesian 

procedure). However, Krivitsky and Handcock (2014) provide empirical evidence suggesting 

the computational cost may grow on the order of p(N + E) log(E) where p is the number of 

summary statistics, N is the number of nodes, and E is the (typical) number of edges (as well 

as increase roughly linearly in the number of networks, n). In practical terms this limits the 

size of networks that our framework can currently handle to relatively coarse parcellations of 

the brain (approximately 100 regions). Note that the computational cost also increases with 

the density of the networks. The efficiency cost optimisation (ECO) criterion, corresponding 

to an average node degree of K = 3, offers a principled threshold that yields sparse networks 

while maintaining their essential structure (Fallani et al., 2017). Improving the efficiency 

of fitting (B)ERGMs is an ongoing area of research (Bouranis et al., 2017; Cerqueira et 

al., 2020; Tan and Friel, 2020) and our framework will benefit from ongoing developments 

and may be applicable to more spatially resolved networks in the future. The code used 

to apply our framework is available as an R package at https://github.com/brieuclehmann/

multibergm/releases/v0.1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A diagrammatic representation of the hierarchical framework. Each network Y(i) is modelled 

as an exponential random graph with individual-level parameter θ(i). In turn, each θi is 

assumed to come from a common population-level distribution with hyperparameter ϕ.
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Fig. 2. 
Posterior mean estimates of models fit to networks constructed under absolute thresholding 

with group-wide average node degree K = 3. The histogram (grey bars) corresponds to 

the single-BERGM posterior mean values of the model parameters fitted to each of the n 
= 100 individual networks. The vertical lines correspond to the posterior mean values of 

group-level mean parameter under multi-BERGM (red line), mean-BERGM (blue dotted 

line), mean-GRN BERGM (green dashed line) and median-GRN BERGM (purple dashed 

line). For each of the model components, the posterior mean under multi-BERGM lay 

close to the mean-BERGM estimate, i.e. the centre of the single-BERGM mean values. 

In contrast, for the edges and GWESP components, posterior means for the mean-GRN 

BERGM and median-GRN BERGM lay in the tails of the single-BERGM mean values.
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Fig. 3. 
Posterior means and 95% credible regions of the individual-level parameters for three 

subjects and for each pair of model components under the multi-BERGM (dot and solid 

line) and under the single-BERGM (cross and dashed line) approaches. The correlation 

between parameter estimates is shown by the elliptical shape of the regions.
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Fig. 4. 
Posterior means and 95% credible regions of the group-level mean parameters for each 

pair of model components under the multi-BERGM (dot and solid line) and under the 

mean-BERGM (cross and dashed line) approaches.
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Fig. 5. 
Goodness-of-fit assessment of the multi-BERGM for a single group. S = 1000 networks 

were generated from the ERGM with model parameters sampled from the respective group-

level distributions. The simulated networks are compared to the observed data (shown in the 

box plots) across three network metrics: degree distribution, geodesic distance distribution, 

edge-wise shared partner distribution. The lines correspond to the respective means across 

the simulated networks, while the ribbons correspond to 95% credible intervals.
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Fig. 6. 
Posterior density estimates under multi-BERGM for the group-level mean parameters for 

networks constructed via absolute thresholding with average node degree K = 3. The young 

group displayed markedly larger values for the GWNSP parameter while the edges and 

GWESP posteriors were almost identical between the two groups.
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Fig. 7. 
Posterior means and 95% credible regions of the difference in group-level mean parameters 

for each pair of model components under the multi-BERGM (dot and solid line) and under 

the mean-BERGM (cross and dashed line) approaches.
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Fig. 8. 
Local and global efficiency in the observed networks (bar plots) compared to S = 1000 

networks simulated from the posterior predictive distribution (density plots) for the young 

group (red) and the old group (blue).
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