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Abstract: Gradient nanostructured metallic materials with a nanostructured surface layer show
immense potential for various industrial applications because of their outstanding mechanical,
fatigue, corrosion, tribological properties, etc. In the past several decades, various methods for
fabricating gradient nanostructure have been developed. Nevertheless, the thickness of gradient
microstructure is still in the micrometer scale due to the limitation of preparation techniques. As
a traditional but potential technology, rotary swaging (RS) allows gradient stress and strain to be
distributed across the radial direction of a bulk cylindrical workpiece. Therefore, in this review paper,
we have systematically summarized gradient and even nano-gradient materials prepared by RS. We
found that metals processed by RS usually possess inverse nano-gradient, i.e., nano-grains appear
in the sample center, texture-gradient and dislocation density-gradient along the radial direction.
Moreover, a broad gradient structure is distributed from center to edge of the whole processed rods.
In addition, properties including micro-hardness, conductivity, corrosion, etc., of RS processed metals
are also reviewed and discussed. Finally, we look forward to the future prospects and further research
work for the RS processed materials.

Keywords: nano-gradient materials; rotary swaging; microstructure; metallic material

1. Introduction

Nano-gradient microstructure is commonly defined as a gradient in the internal mi-
crostructure from the surface to the interior over a feature length scale, ranging from
several nanometers to hundreds of micrometers, or even to millimeters [1–3]. As shown in
Figure 1, there are four typical gradient nanostructures [4]: grain size gradient—a gradient
of grain size from nanometers in the top surface to micrometers in the interior (Figure 1a),
twin thickness gradient—a gradient of twin thickness from nanometer to the microscale
embedded in grains with uniform size (Figure 1b), lamellar thickness gradient—a gradient
of two-dimensional lamellar grains from nanometers to micrometers parallel to the surface
(Figure 1c) and columnar size gradient—a gradient of one-dimensional columnar grains
from nanometers to micrometers with the same long axis (Figure 1d). As reported by
previous literature, at room temperature, the nano-gradient materials often display extraor-
dinary mechanical properties, such as strength–ductility synergy [5–8], unprecedented
strain hardening [9], enhanced fatigue performance [10,11], and remarkable resistance to
corrosion [12,13] and wear [14–16]. Compared with conventional homogeneous microstruc-
ture materials, a significant characteristic of gradient nanostructured materials is that their
deformation mechanism is often strongly heterogeneous, occurs progressively and succes-
sively, and is accommodated, coordinated and confined by the gradient microstructure [9].
Moreover, the gradient structure often leads to strain and stress gradients and even in-
duces emerging strengthening mechanisms, such as hetero-deformation induced (HDI)
strengthening [3]. All of these fascinating results indicate that the gradient nanostructured
materials have a broad industrial application and scientific research prospects.
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Figure 1. The classification of nano-gradient microstructure with (a) grain size gradient, (b) twin 
thickness gradient, (c) lamellar thickness gradient and (d) columnar size gradient. 

In practice, among all four nano-gradient microstructures, only the grain size gradi-
ent has been successfully and efficiently prepared by way of surface nanocrystallization, 
which can be mainly attributed to the gradient strains generated along the depth [17]. Two 
strategies are implemented to fabricate nano-gradient materials in previous investiga-
tions. The first one is laser shock peening (LSP) based on high-energy physics: high-am-
plitude laser shock waves are generated to impact the surface of the treated materials by 
absorption of the high-energy laser pulse in an extremely short duration. There exists a 
gradient microstructure from nanocrystals at the surface to initial coarse-grains at deeper 
regions [18–20]. The second is surface mechanical modification, which is further divided 
into two cases depending on the contact between the medium and the specimen surface: 
milling (SMGT—surface mechanical grinding treatment [5], SMRT—surface mechanical 
rolling treatment [21], FSP—friction stir processing [22], PFSD—platen friction sliding de-
formation [23], WB—wire brush [24], etc.) and impact (SB—sandblasting [25], RASP—ro-
tary accelerated shot peening [26], SP—shot peening [27], ABSP—air/water blast shot 
peening [28], USSP—ultrasonic shot peening [29], SFPB—supersonic fine particles bom-
barding [30], SMAT—surface mechanical attrition treatment [2], SNH—surface nanocrys-
tallization and hardening [31], HESP—high energy shot peening [32], etc.). Table 1 shows 
the characteristics of gradient structures prepared by four typical techniques. It can be 
seen that the gradient structure fabricated by LSP has a smaller feature length scale than 
those structures made by surface mechanical modification. In addition, due to the more 
energy that can be introduced, the gradient structure formed by the impact of medium 
has a thicker influence layer compared to the milled surface and can even reach several 
millimeters in RASP [26]. From Figure 2, we can see that the gradient nano-grained (GNG) 
structure successfully overcomes the strength–ductility trade-off in metals: nano-grained 
(NG) metals are strong but brittle, while coarse-grained (CG) metals are weak but ductile 
[5]. In contrast to the representative ‘banana curve’ (blue curve in Figure 2) for the trade-
off between strength and ductility in homogeneously deformed or homogeneous struc-
ture metals, the overall strength increase obtained using the gradient nanostructuring is 
much more marked than the ductility loss [9]. Of course, finer grain size or thicker gradi-
ent range may push the strength–ductility curve upwards (orange line in Figure 2). Un-
fortunately, it should be pointed out that the thickness of the gradient microstructure 
(usually less than 1 mm) is still in micrometer scale due to the limitation of aforementioned 
preparation techniques, unavoidably limiting the design of degree and distribution of gra-
dients and, of course, its widespread industrial applications. 
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In practice, among all four nano-gradient microstructures, only the grain size gradi-
ent has been successfully and efficiently prepared by way of surface nanocrystallization,
which can be mainly attributed to the gradient strains generated along the depth [17].
Two strategies are implemented to fabricate nano-gradient materials in previous investi-
gations. The first one is laser shock peening (LSP) based on high-energy physics: high-
amplitude laser shock waves are generated to impact the surface of the treated materials
by absorption of the high-energy laser pulse in an extremely short duration. There ex-
ists a gradient microstructure from nanocrystals at the surface to initial coarse-grains at
deeper regions [18–20]. The second is surface mechanical modification, which is further
divided into two cases depending on the contact between the medium and the specimen
surface: milling (SMGT—surface mechanical grinding treatment [5], SMRT—surface me-
chanical rolling treatment [21], FSP—friction stir processing [22], PFSD—platen friction
sliding deformation [23], WB—wire brush [24], etc.) and impact (SB—sandblasting [25],
RASP—rotary accelerated shot peening [26], SP—shot peening [27], ABSP—air/water
blast shot peening [28], USSP—ultrasonic shot peening [29], SFPB—supersonic fine parti-
cles bombarding [30], SMAT—surface mechanical attrition treatment [2], SNH—surface
nanocrystallization and hardening [31], HESP—high energy shot peening [32], etc.). Table 1
shows the characteristics of gradient structures prepared by four typical techniques. It can
be seen that the gradient structure fabricated by LSP has a smaller feature length scale than
those structures made by surface mechanical modification. In addition, due to the more
energy that can be introduced, the gradient structure formed by the impact of medium
has a thicker influence layer compared to the milled surface and can even reach several
millimeters in RASP [26]. From Figure 2, we can see that the gradient nano-grained (GNG)
structure successfully overcomes the strength–ductility trade-off in metals: nano-grained
(NG) metals are strong but brittle, while coarse-grained (CG) metals are weak but ductile [5].
In contrast to the representative ‘banana curve’ (blue curve in Figure 2) for the trade-off
between strength and ductility in homogeneously deformed or homogeneous structure
metals, the overall strength increase obtained using the gradient nanostructuring is much
more marked than the ductility loss [9]. Of course, finer grain size or thicker gradient range
may push the strength–ductility curve upwards (orange line in Figure 2). Unfortunately,
it should be pointed out that the thickness of the gradient microstructure (usually less
than 1 mm) is still in micrometer scale due to the limitation of aforementioned preparation
techniques, unavoidably limiting the design of degree and distribution of gradients and, of
course, its widespread industrial applications.
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Table 1. Comparison of methods for fabricating gradient nanostructured metals and alloys.

Fabrication Method Gradient Distribution in Feature Size
(from Top to Interior) Depth of Nano-Grains Depth of Gradient Refs.

SMAT Tens of nanometers to ~10 µm ~20 µm ~300 µm [9,17,33]
SMGT Several nanometers to ~10 µm ~75 µm ~300 µm [9,34]

LSP Tens of nanometers to ~100 nm ~50 µm <1 mm [9,19]
RASP Tens of nanometers to ~10 µm <50 µm ~2 mm [26,35]

‘Depth of gradient’ is the distance from the nanosized surface to the internal initial structure.
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Figure 2. Strength–ductility synergy of gradient nano-grains: CG—coarse grain, GNG—gradient
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As a traditional but potential technology, rotary swaging (RS) allows gradient stress
and strain distributed across the whole bulk workpiece. Therefore, in this review, we
focus on recent progress in demonstrating the possibility of preparing nano-gradient
microstructure throughout bulk materials using RS and the characteristics of nano-gradient
microstructure and linked properties.

2. Rotary Swaging
2.1. Theory of Rotary Swaging

RS is an incremental forming process utilized to reduce cross sections of bar, tubes,
wires and other cylindrical workpieces [37–39], which is schematically depicted in Figure 3a.
Set of dies (generally two to eight) perform short, high-frequency (from 6800 to 12,000 times
per minute), simultaneous radial movements and apply compressive force onto the en-
closed workpiece. With every hammering of the die, the workpiece begins to flow and is
formed with well precision [39]. Relatively wide strain rate from several to hundreds is
controllable by suitable parameters, involving hammer speed, feed speed and the amount
of reduction [40,41]. As a net-shape-forming process, the swaged workpiece is obtained
with/without only a minimum amount of cutting and processing. In order to measure the
deformation of a swaged sample, cross-sectional shrinkage rate (η) and true strain (ε) are
calculated as:

η =
SR − S0

S0
(1)

ε = ln
S0

SR
(2)
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where S0 and SR represent the cross-sectional area of the tube/bar before and after RS,
respectively. It should be noted that the actual area of the tube needs to be calculated due
to its hollow cross-section. In order to clarify the microstructure of materials, we define the
orientations and cross-sections of the workpiece in Figure 3b.
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Figure 3. Schematic representation of (a) the rotary swaging (RS) deformation of a sample, (b) the
principal observations of the microstructure.

RS is deemed as a plasticity enhancement process because of the 2-axial compression
and uniaxial tension stress applied to the swaged material, which can effectively refine the
grains and boost the mechanical properties of metallic materials. As shown in Figure 4, with
high-frequency hammering, the copper rod begins to plastically flow with the reduction in
diameter, eventually producing depressions in the two symmetrical end faces. Intuitively,
the mesh shrinks along the radial direction without any distortion. Two conclusions are
attained: (1) a gradient stress brings about a gradient strain; (2) the strain is radiate outward
from low to high along the radial [42]. The presence of residual stresses can significantly
affect the mechanical properties of the material. According to the finite element analysis
(FEA), the 2-axial compression and uniaxial tension stress of the load also lead to a gradient
distribution of residual stress along the radial direction in RS [43,44]. Kunčická et al.
reported that RSed tungsten heavy alloy has tensile residual stress exists in the surface
and compressive residual stress in the core [43]. However, Singh et al. found the opposite
results: compressive stresses at the surface and tensile stresses at the center in Zr-4 alloys
processed through RS [44]. The formation of such differences may be related to the nature
of the deformed material itself and to the processing parameters of RS (rotation speed, feed
speed, number of hammers, etc.). At present, the microstructural gradients are mainly
based on surface mechanical treatment (RASP, SMAT, SMGT, etc.), a top-down approach,
whereas the medium acts (impact or milling) on the surface of the workpiece to generate a
stress and strain gradient, and eventually form a gradient microstructure [9]. Unlike these
surface treatment processes, RS is capable of generating a stress/strain gradient across
the whole workpiece, and the RSed part also has a wide gradient distribution of residual
stresses. Hence, RS, a proven application in industrial production, seems to be a qualified
candidate for fabricating bulk nano-gradient materials.

Currently, RS technology is not only used for manufacturing hollow/solid cylindrical
shafts, difficult to deform materials and less plastic metals (e.g., tungsten and magnesium
alloys), but also for the fabrication of the hollow/solid shafts with variable diameter and
of the workpieces with various cross-sections via proper die design [45–47]. In addition,
because of the significant strengthening effect with low strain [40] and excellent grain
refinement ability [48], RS is employed to fabricate the workpieces with ultrafine-grained
(UFG) structure or even NG structure.
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Figure 4. Meshed end faces (top view) of a copper bar before and after RS: (a) initial rod, (b–d) RSed
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and εmeans true strain of RSed material.

Recently, RS processed materials were reported to exhibit excellent mechanical [40,41,49–53],
fatigue [54–56], corrosion [57–60], tribological [61], electrical properties [61–63], etc. We
will discuss them in detail in Section 3.

2.2. Advantages of Rotary Swaging

Compared with other surface nanocrystallization and severe plastic deformation
methods, the RS technique offers several advantages, as follows:

• Most importantly, RS allows gradient stress to be distributed across the bulk work-
piece;

• RS has lower tooling cost and higher efficiency in the metal working industry;
• RS is an efficient way to strengthen hexagonal close-packed (HCP) metals by imposing

low strain in each pass;
• Applied cooling and heating modes permit RS at expected temperatures;
• Better surface roughness (less than 1 micrometer) and more precise dimension can be

achieved via RS;
• The tandem connection of several RS equipment enables the preparation of extra-long

materials.

3. Gradient Micro-Hardness and Microstructures by Rotary Swaging
3.1. Rotary Swaged Face-Centered Cubic Metal

Soft and ductile pure face-centered cubic (FCC), copper and aluminum (Cu and Al)
are often chosen to investigate plastic deformation mechanisms. Mao et al. examined
the properties (tensile, wear resistance, thermal stability and electrical property) and the
microstructure evolution of a copper rod during RS [61], and Gholami et al. investigated
the corrosion resistance in Hank’s solution (a simulated body fluid) of them [57].

Figure 5 shows the fractal-like microstructure of RSed Cu with a strain of 2.5 charac-
terized by electron backscattering diffraction (EBSD). Initial equiaxed CG grains (~54 µm)
are gradually refined and stretched with an average length of 300 µm and a width of 2 µm
(high angle grain boundaries, misorientation larger than 15◦) along RS direction, where
it contains dislocation cells with a length of 25 µm and a width of 220 nm formed by low
angle grain boundaries (misorientation lager than 2◦ less than 15◦), as shown in Figure 5b,c.
RS stirs up the otherwise random grain orientations with the material flow; a large number
of grains are oriented with <001> and <111> directions parallel to the Cu rod axis, but their
proportions are different in the edge and center. As shown in Figure 5d, the RSed rod center
has a higher content of <111> texture than edge, and it can be exacerbated by higher strain.
According to this phenomenon, RS has the potential to prepare a new gradient structure,
texture content gradient—a gradient from several percent to a few tens of percent, unlike
the grain size gradient spanning several orders of magnitude. Additionally, compared with
the edge (Figure 5(b-2)), the center has a higher density of dislocations (Figure 5(c-2)) i.e.,
a dislocation density-gradient. Hence, the authors consider the high strength (460 MPa)
of RSed Cu is contributed by refined grains, texture and high density of dislocations. Of
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course, RSed Cu rods have excellent friction properties because it is a natural consequence
of high hardness [61].
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Interestingly, according to previous literature, there are three different hardness/strength
distributions observed in the cross sections (top view) of RSed rods: (1) V-shaped dis-
tribution [40,43]—the strength of edge is higher than that of the center; (2) uniform
distribution [64]—the strength of edge is basically equal to that of the center; (3) Λ-
shaped [41,50,65]—the strength of edge is lower than that of the center. Fortunately, these
hardness distributions are detected in the Cu rods with various strains. Figure 6a shows the
curves of Vickers micro-hardness vs. position. At the beginning stage of deformation with
a strain of 0.08, the micro-hardness distribution has a V-shape. The higher micro-hardness
at the edge is because deformation occurred first at the edge and has not been delivered
to the center yet due to (1) the direct contact of the Cu rod surface and swaging dies, (2)
the resistance and hysteresis of Cu to the deformation. When strain is larger than 0.5,
deformation has been delivered to the Cu rod center, and the micro-hardness distribution
changes into a Λ-shape. The highest micro-hardness in the rod center may originate from
strain superposition. As schematically shown in Figure 6b,c, every impact from the die
does not go around the center, which leads to the maximum strain and micro-hardness
in the rod center. The microstructural results also verified the above speculation. The
dislocation density at the center is evidently larger than that at the edge when the strain is
larger than 2.5. Therefore, the aforementioned three sorts of hardness distributions may
be determined by the RS formability of different materials. Moreover, the residual stress
also has an effect on strength. Reference [43] point out that the strength distribution is
positively correlated to the residual stress, and residual tensile stress is beneficial to the
increase strength, as shown in Figure 7. RS can significantly strengthen tungsten alloy with
the doubling of tensile strength. However, compared with the center (red line in Figure 7a),
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the edge has a higher tensile strength (blue line in Figure 7a). Obviously, there is a radially
distributed intensity gradient, which coincides with the distribution of residual stresses
(Figure 7b).
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It is important to note that the RSed microstructure is a recursive fractal structure—
long rods containing numerous parallel fibers divided by large angle grain boundaries,
which further contains a smaller fibrous network of low angle grain boundaries inside. The
concept of macro directional design of the microstructure (MDDM) can fully use the per-
formance of the material by making design according to the specific working direction [62].
For example, the IACS (International Annealed Copper Standard) conductivity of 103%
and yield strength above 380 MPa were achieved through this preserved fractal structure
prepared by RS and subsequent incomplete annealing. The excellent combination of elec-
trical conductivity and strength is mainly attributed to: (1) the fibrous-like grain boundary
network is preserved via incomplete annealing, a large number of grain boundaries parallel
to the current direction seduces the scattering of an electron by the grain boundaries; (2)
the reduction in dislocation density improve the work hardening of RSed Cu and reduce
obstruction of election motion by dislocations. This concept successfully solves the paradox
of the strength–electrical conductivity trade-off through clever microstructure design.
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In order to investigate the corrosion performance of Cu in the human body, Gholami
et al. compared the corrosion resistance property of RSed Cu (UFG structure) with CG Cu in
Hank’s solution as the simulated body fluid at 37 ◦C [57]. According to the potentiodynamic
polarization curves, the corrosion potential of Cu rods before and after RS does not change
much (~210 ± 10 mV), while their corrosion current density is undulating. The corrosion
current density of RSed Cu (strain of 0.5 and 1.0) increased compared with that of the CG Cu
counterparts. Further deformation (strain of 2) led to a drop of the corrosion current density.
The lowest value of corrosion current density was achieved by RSed Cu with a strain of
3. Fitting the Nyquist plots to the equivalent, the authors found that the RSed Cu (strain
of 3) has the maximum resistance (25,883 Ω·cm2). That means the severe RSed Cu with
a strain of 3 has the best corrosion resistance compared to CG and low strain conditions.
Changes in corrosion properties are related to the evolution of the microstructure during
RS: higher corrosion resistance exhibited at high strain is intimately related to a higher
residual stress, higher density of (111) planes, finer distribution of grain size and more grain
boundaries as a continuous corrosion product on the surface. Accordingly, Abdulstaar
et al. studied the corrosion behavior of Al 1050 that was severely deformed by RS via
potentiodynamic polarization and a weight loss immersion test in 3.5% NaCl solution at
room temperature [59]. The corrosion rate and corrosion current density of RSed Al were
significantly lower than those of CG as-received material. After RS2 (with strain of 2) and
RS3 (with strain of 3), the corrosion current density dropped to 65% and 75% in comparison
to CG Al, and the corrosion rate dropped to 65% after both RS2 and RS3. Observing the
surface morphology after the potentiodynamic polarization, the authors found that the
formation of a higher number of rectangular shallow deep micro-size metastable pits that
have a frequently growth and repassivation, which cover the entire exposed surface, and
the pits’ size of RS3 Al is smaller than that of CG Al. Considering that RS is a cumulative
strain process and there are obvious residual stresses [43,44,61], it is believed that internal
residual stresses play a vital role in inhibiting the dissolution of aluminum, and a larger
fraction of grain boundaries and residual stress provide more nucleus to form a dense
oxide film.

3.2. Rotary Swaged Hexagonal Close-Packed Metals

Magnesium (Mg) and its alloys possess great potential to improve energy efficiency
in electronics, automotive and aerospace industries due to its ultra-low density [50,66].
However, as a typical hexagonal close-packed (HCP) metal with insufficient slip systems,
Mg and its alloys are intractable to be plastically deformed at room temperature [67]. A
plethora of literature reiterated that activating the <c+a> pyramidal slip is an effective
method to improve their formability [40,66–68].

Coincidentally, RS can substantially enhance the plasticity of HCP metals by 2-axial
compressive stress. Surprisingly, Wan et al. prepared a bulk nano-gradient AZ31B Mg
alloy [69]. As shown in Figure 8a, the swaging process increases the overall micro-hardness,
and gradually forms Λ-shape distributions along the radial direction. Moreover, the micro-
hardness of the center becomes higher with increasing strain. It can be understood by the
microstructure transformation during RS: at the initial stage of grain refinement, dense
deformation twins first divided the coarse grains into fine lamellar structures; then a large
number of dislocation arrays further refined the twin lamellae into ultrafine grains; finally,
randomly orientated nano-grains were formed via dynamic recrystallization as a result of
the combined effect of deformation heat and increased stored energy (Figure 8b–d). The
inverse nano-gradient microstructure (the grains of 80 nm are placed in the center, and
the lamellar grains of thickness of 400 nm are in the edge, Figures 8d and 9) along the rod
radial direction was formed by radial hammerings as shown in Figure 6c. The grains in the
center were subjected to loading almost equally from all radial directions while those at
the edge only experienced loading from one direction. Λ-shaped hardness distribution is
found in the cross-section of the RSed AZ31B Mg alloy, mainly due to gradient grain size.
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Figure 9. TEM images at different radial positions of RSed AZ31B Mg after five-pass, distance to
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Furthermore, Wan et al. achieved a similar nano-gradient microstructure in Mg–8Gd–
3Y–0.4Zr alloy via the same RS process. In the top view of RSed rod, the center has an
equiaxed grains of 80 nm (Figure 10b), while dislocation cell structures are formed in the
edge (Figure 10d), and ultra-fine grains mixed with nano-sized grains are formed in the
transition region from center to edge (Figure 10c). This gradient distribution of grains
corresponds to the trend of hardness evolution (Figure 10a).
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Later on, Yang et al. employed a low-strain RS to fabricate a bulk ultra-light Mg–
4Li–3Al–3Zn alloy with new strength record (405 MPa, Figure 10a) [40]. The enhanced
mechanical strength is primarily attributable to three reasons: (1) high density of deforma-
tion twins; (2) high density of stacking faults; (3) high density of basal <a> and pyramidal
<c+a> dislocations. A distinct V-shaped hardness distribution appears in the top view of
RSed Mg–4Li–3Al–3Zn alloy (Figure 11b).
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Generally, RS can improve the corrosion resistance of the FCC materials [57–60]. For
instance, Bösing et al. investigated the corrosion resistance of RSed stainless steel in
phosphate buffered saline (0.2 M NaCl + 0.1 M phosphate buffer solution) and found that
a smaller grain size leads to a lower corrosion current density and a higher impedance,
pointing to a better resistance against corrosion. However, Minarik et al. investigated
the corrosion resistance of the AE42 commercial alloy processed by RS in 0.1 M NaCl
solution at room temperature and found that a continuous decrease in the corrosion
resistance with an increasing stage of the RS [70]. As the deformation increases, the
polarization resistance drops from 165 Ω·cm2 (CG) to 147 Ω·cm2 (RS with a strain of
3). The decrease in the corrosion resistance is attributed to the grain refinement due to
the increase in the volume fraction of small grains. Numerous grain boundaries provide
diffusion channels for internal atoms to interact with the corrosion environment, and finally,
the corrosion resistance is determined by the nature of the corrosion products: the dense
layer of oxidation produces leads to increased corrosion resistance, such as Al [59], while
flimsy ones accelerate corrosion, such as Mg [70].

Meng et al. selected a commercially pure titanium (CP Ti) with a grain size of ~10 mi-
crometer to investigate its microstructure evolution during RS (Figure 12a,d). The deforma-
tion changes with the increasing strain, which can be summarized into two processes: (1) at
the early stage of RS (strain of 0.4), the {10-12} extension and {11-22} contraction twins occur
in the initial coarse grains, as shown in Figure 12b,e, giving rise to the elevation of yield
strength and moderate ductility; (2) when the strain is increased to 2 (Figure 12c,f), the
twins vanish and are replaced by textured nano-grains with very high strength (~955 MPa).
Thus, the high strength of CP Ti is mainly due to the cumulative effect of grain boundary,
dislocation and texture strengthening. Moreover, as shown in Figure 13a, in line with
aforementioned hardness variation, fickle hardness distribution appears in the RSed Ti.
When the strain is low (0.4), the hardness of the center is comparable to that of the edge; as
the strain reaches 2, the hardness of the center is significantly higher than that of the edge.
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In addition to high strength, Alkhazraji et al. found that RSed CP Ti with a strain of
2.5 also has an excellent fatigue performance at room temperature [54]. CP Ti rod with a
grain size of ~100 nm was prepared via the RS process, as shown in Figure 13b, the grain
size may have been reduced because a large number of boundaries were not demarcated;
however, it is still the finest grains fabricated by RS in Ti and its alloys [37,41,56,71–73]. It
was shown that the endurance limit stress was dependent on the inverse square root of
the grain size. Metals with fine grains show enhanced fatigue property yet result in a high
notch sensitivity [54].

The phase transformations offer a new way of regulating material properties, espe-
cially in HCP metals. For example, Ti exists in two allotropic forms: α-Ti is soft, β-Ti is
strong, and their mixture has a good strength–ductility combination [74]. Modina et al. in-
vestigated the relationship between microstructure and mechanical behavior of a two-phase
Ti alloy (VT8M-1) prepared by RS [51,75]. As shown in Figure 14a, the initial microstructure
contains ~50% α phase with an average grain size of 5 µm. After heat treatment (940 ◦C +
water quenching + 700 ◦C/1 h + air cooling), α phase of 2.7 µm was significantly reduced to
less than 25% and immersed in α+β phase (Figure 14b). By comparison, the RS significantly
refines grain size, and introduces more α phase (Figure 14c). It indicates that the RS may
induce phase transformation in Ti alloys. Unfortunately, the mechanism of this phase
transformation during RS is unclear.
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3.3. Rotary Swaged Body Centered Cube Metals

The RS is extensively applied for the processing of pre-sintered and hardly deformed
metals, such as ultra-high-strength steel, tungsten (W) alloys and molybdenum (Mo) alloys,
due to its incremental character and favorable stress [42,76–78]. The W heavy alloys are
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usually fabricated from powder mixtures consisting of >90 wt% of tungsten powders and
elements with lower melting points (Ni, Co, Fe, etc.) usually dissolving between tungsten
particles during sintering [42]. The 2-axial compression deformation mechanism enabling
the elimination of residual porosity and additional structure refinement.

In order to investigate the effects of cold RS on the structure and properties of a WNiCo
heavy alloy, the sintered rod was subjected to a single pass cold RS by Kocich et al. [42].
Figure 15 shows micro-hardness distribution of a cross section of the RSed WNiCo rod, the
surface has a higher hardness compared to the center. There is a gradient from the surface
to the center, which is consistent with the distribution of the effective strain calculated
by the FEM. Higher effective strain result in higher hardness, which also validates the
V-shaped distribution of RSed Cu with low strain.
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It is well known that increasing the temperature can significantly improve the forma-
bility of the metals. Macháčková et al. investigated the deformed behavior of a WNiCo
alloy during cold (20 ◦C) and warm (900 ◦C) RS, and the effects of the individual processing
steps on its structure and properties via numerical prediction and experimental [76]. It was
found that compared with cold RS, the warm RS imparted a more homogeneous distribu-
tion of the imposed strain due to reduction in strength. However, for both of the RSed rods,
the highest strain was observed in their surface regions, which were directly affected by the
intensive shear strain introduced by the swaging dies. In addition, both the RSed pieces ex-
hibited the presence of residual stress in the peripheral areas of W agglomerates. However,
in HCP metals, the effect of temperature on RS is significant [79]. Estrin et al. demonstrated
the viability of the processing of Mg–4.4%Al–0.9%Zn–0.4%Mn alloy prepared by RS with
concurrent temperature drops (from 400 down to 200 ◦C) and found that the decreasing
of temperature leads to more strain accumulation, induces secondary deformation twins
form within the primary twins and exacerbates the dispersion of textures [79].

4. Concluding Remarks and Perspectives

It is surprising that the nano-gradient structure was successfully introduced to various
bulk metallic materials with large dimensions by means of an industrial technique of rotary
swaging, thanks to gradient stress and strain applied across the radial direction. Moreover,
metals processed by RS usually possess an inverse nano-gradient, i.e., nano-grains appear
in the sample center, texture-gradient and dislocation density-gradient along the radial
direction. In addition, the RS processed metals were proven to have superior properties,
including micro-hardness, conductivity, corrosion, etc.
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Although the materials prepared by RS ubiquitously display their own specific gra-
dient structures and some intriguing properties, there still exist issues and challenges for
the realization of applications. First, more RS processed materials with nano-gradient
microstructure need to be revealed in the near future, and the underlying formation mech-
anisms of the controllable gradient structure should be critically appraised. Second, the
fatigue, phase transformation, corrosion and tribological behavior and associated failure
mechanisms of the RS processed materials should be systematically examined in an effort
to explore its engineering applications. Third, quantitative correspondence between the
RS-processed gradient structure and its properties is not yet established, which should
spark numerous interests among the materials science community.
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