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Activation of the trigeminal system
as a likely target of SARS-CoV-2 may
contribute to anosmia in COVID-19
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Abstract

Clinical publications show consistently that headache is a common symptom in the coronavirus disease of 2019

(COVID-19). Several studies specifically investigated headache symptomatology and associated features in patients

with COVID-19. The headache is frequently debilitating with manifold characters including migraine-like characteristics.

Studies suggested that COVID-19 patients with headache vs. those without headache are more likely to have anosmia.

We present a pathophysiological hypothesis which may explain this phenomenon, discuss current hypotheses about how

the coronavirus SARS-CoV-2 enters the central nervous system and suggest that activation of the trigeminal nerve may

contribute to both headache and anosmia in COVID-19.
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Headache is a frequently described initial symptom of

COVID-19 (1). The headache is mostly bilateral

though it frequently has a migraine-like phenotype

and lasts longer than two days in most cases (2,3).

Remarkably, it shows a clear association with anosmia

(4,5), however the pathophysiological basis for this

association is as yet unclear. Meinhardt and colleagues

(6) presented postmortem findings in patients with

COVID-19 and discussed how SARS-CoV-2 enters

the central nervous system (CNS) and causes multiple

neurological symptoms including headache and loss of

smell and taste. They showed the presence of SARS-

CoV-2 ribonucleic acid (RNA) and protein mainly in

the nasal mucosa and certain brain areas. They sug-

gested a transmucosal entry via regional nervous struc-

tures, possibly followed by transport along the

olfactory tract of the CNS. The olfactory neuroepithe-

lium shows a high expression of ACE2 receptors used

by SARS-CoV-2 to enter the cells, which has been sug-

gested to cause the early olfactory dysfunctions (7).

Another nervous structure, the trigeminal nerve, has

been suggested by Caronna et al. (5) and Bolay et al.

(8) to be as likely to serve as a point of entry into the

brain and if so, could not only explain the loss of taste
and smell but also the headache associated with an
infection of SARS-CoV-2 (Figure 1).

These hypotheses give rise to two principal ques-
tions. The first question is: how does the virus pene-
trate the brain and how it is transported? There are two
possible routes for the direct passage of peptides from
the nose to the brain, namely an intraneuronal pathway
using the axonal transport, and an extraneural pathway
through intercellular clefts in the olfactory epithelium
directly connected with the subarachnoid space (9).
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Large molecules such as wheat germ agglutinin-

horseradish peroxidase are known to hardly penetrate

the blood-brain-barrier (BBB) but have been found in

the CNS shortly after nasal application (10). Even large

peptides such as melanocortin, vasopressin and insulin

can be demonstrated in cerebrospinal fluid (CSF)

within 30-80 minutes after intranasal application, prob-

ably bypassing the bloodstream (11). Triptans, which

are the widely used treatment of choice for acute

migraine and cluster headache attacks, do not or very

sparsely penetrate the BBB, yet are effective through

nasal application. More to the point, therapeutic con-

centrations in the CNS of a radiolabelled triptan (zol-

mitriptan), have been demonstrated shortly after nasal

administration using positron emission tomography

(PET) (12). An extracellular route via diffusion of

SARS-CoV-2 particles through the cribriform plate

between the nasal mucosa and the subarachnoidal

space seems certainly possible and is supported by find-

ings in mice showing that the CSF can leave the cranial

cavity through the cribriform plate (13). On the other

hand, there are several possibilities of neuronal trans-

port once the virus gets into a neuron. At first glance,

the fila olfactoria, the axons of the primary olfactory

neurons, which enter the brain through the cribriform

plate and synapse within the olfactory bulb, appear to

be a target of such a transport. However, as mentioned

above, the SARS-CoV-2 needs ACE2 receptors to

Figure 1 Schematic representation illustrating the hypotheses about the movement of SARS-CoV-2 and its effects on nasal olfactory
and trigeminal nerve fibers (A) as well as the interaction of trigeminal afferents in the trigeminal ganglion and the spinal trigeminal
nucleus (B) leading to headache and anosmia. SARS-CoV-2 binding to ACE2 receptors expressed by supporting cells in the nasal
mucosa causes inflammatory and immune reactions involving the release of cytokines (Cyto) from various immune cells in the mucosa
and likely also in the dura mater. Possible alternative ways of SARS-CoV-2 penetration into the CNS are the foramina of the cribriform
plate or the infection of trigeminal afferents. Cytokines and inflammatory mediators sensitize and activate nasal and meningeal
trigeminal afferents, which may also be cross-sensitized by CGRP. However, massive CGRP release from trigeminal afferents can also
contribute to attenuating the olfactory function in the nasal mucosa and the olfactory bulb. Cross-sensitization of trigeminal afferents
may in addition occur in the trigeminal ganglion, where CGRP can induce cytokine production in satellite glial cells (SC), and in the
spinal trigeminal nucleus, where CGRP contributes to synaptic transmission, partly by enhancing glutamate (Glu) release from other
central trigeminal terminals.
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enter the cells but these receptors seem not to be
expressed by olfactory sensory neurons but rather by
sustentacular cells and basal cells in rodent, primate
and human nasopharyngeal mucosa (14,15), although
some colocalization of SARS-CoV spike protein immu-
noreactivity with neural cells in olfactory mucosa sam-
ples has been found by Meinhardt et al. (6). Another
receptor that binds SARS-CoV-2, the neuropilin-1
receptor (NRP1), which is expressed in olfactory neu-
rons, has recently been suggested as an alternative way
to enter the neurons (16). For the trigeminal afferents
innervating the nasopharyngeal mucosa no data are
currently available regarding ACE2 expression,
although this appears possible; at least ACE2 expres-
sion has been found in a subset of human dorsal root
ganglion neurons (17,18). According to the findings of
Meinhardt et al. (6), the density of virus RNA in the
olfactory bulb is comparable to the presence of RNA in
the trigeminal ganglion, where the cell bodies of the
trigeminal afferents are located. However, in the
mouse ACE2 expression has been found in superficial
layers of the olfactory bulb but not in any neuronal
cells (15).

The second principal question is, why SARS-CoV-2
causes a loss of function (anosmia) in the olfactory
system but a gain of function (headache) in the trigem-
inal system; and furthermore, are both these phenom-
ena interconnected? Most of the trigeminal afferents
innervating the nasal mucosa are nociceptors express-
ing transient receptor potential (TRP) cation channels
of the type TRPV1, which may be activated by chem-
ical compounds like capsaicin. Inflammatory responses
caused by SARS-CoV-2 with a massive increase of
cytokines in the nasal mucosa, particularly high
TNF-a levels (19), may induce a cascade of nociceptive
processes in the trigeminal system. TNF-a induces the
expression of a variety of cytokines including IL-1b
(20) as well as brain-derived neurotrophic factor
(BDNF) (21) and TRPV1 receptor channels (22) in
the trigeminal ganglion (TG). TNF-a and IL-1b stim-
ulate expression and release of calcitonin gene-related
peptide (CGRP) in TG neurons (23,24) and conversely,
CGRP stimulates the expression of cytokines like IL-1b
in TG satellite glial cells (25).

In rodents as well as humans, the afferent fibres
from the nasal mucosa reach the anterior cranial
fossa via the ethmoid nerve and travel in the dura
mater to the trigeminal ganglion (26). Activation of
these mucosal nerve endings following stimulation
with capsaicin releases calcitonin gene-related peptide
(CGRP) from the activated nociceptive afferents not
only in the nasal mucosa but, importantly, also in the
dura mater, leading to an increase in meningeal blood
flow (27). If the mucosal trigeminal afferents passing
through the dura mater are vigorously activated, the

neuro-inflammatory cascades with increased neuropep-
tide release may spread to the dura mater involving the
release of cytokines from macrophages (18) and sec-
ondarily activate meningeal nociceptors (28) to cause
headache. Furthermore, the TG with multiple nocicep-
tive interactions (29) and eventually the spinal trigem-
inal nucleus with converging afferent inputs from the
nasal mucosa and the meninges (30) can be involved in
the neuro-inflammatory cascades. Such a scenario may
account for the acute headaches as well as the pro-
longed headaches accompanying the presumed cyto-
kine storm in COVID-19 (5). The damage to the
olfactory pathway caused by the virus or by the inflam-
matory process may cause anosmia on the one hand
and stimulate the trigeminal system causing headache
through the above interactions on the other hand.
Lesions of the olfactory bulb following COVID-19
have been visualized by neuroimaging (31–33), sub-
stantiating structural changes that may underlie the
anosmia. Inflammatory mediators produced and
released through these lesions are likely to activate tri-
geminal afferents in the mucosa and the meninges sur-
rounding the olfactory bulb.

However, the loss in olfactory function may not
only be explained by the damage of the olfactory epi-
thelium (34) but also by an involvement of the overac-
tive trigeminal afferent system with an increased CGRP
release, which in this context surprisingly has an inhib-
itory effect. The olfactory and trigeminal system are
functionally connected and trigeminal activation is
increased in patients with acquired anosmia (35). Part
of this interaction may occur in the nasal mucosa,
where it has experimentally been shown that CGRP
released from activated trigeminal fibres inhibits the
response of olfactory receptors to olfactory stimuli
(36). In addition, from tracer experiments in rodents
we know that trigeminal afferents innervating the
nasal mucosa and travelling through the ethmoid
nerve form collaterals innervating the olfactory bulb
(37). There is experimental evidence that these trigem-
inal endings contribute to inhibitory effects on neuro-
transmission within the olfactory bulb, again by CGRP
release (38). Thus, vigorous activation of trigeminal
afferents injured by SARS-CoV-2 may contribute to
both headache and concomitant anosmia.

In conclusion, the frequent association of headache
and anosmia in COVID-19 may originate with inflam-
matory responses in the nasal mucosa but probably
also requires the activation of meningeal nociceptors.
SARS-CoV-2 may penetrate the cribriform plate to
affect the meninges around the olfactory bulb.
Although this is still a hypothesis that should be further
investigated, CGRP released from activated trigeminal
afferents may therefore contribute to suppress the
olfactory functions in the nasal mucosa and the
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olfactory bulb in those patients experiencing simulta-
neously headache and anosmia
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