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ABSTRACT: Breast milk serves as a vital source of essential nutrients for infants. However, human milk contamination via the
transfer of environmental chemicals from maternal exposome is a significant concern for infant health. The milk to plasma
concentration (M/P) ratio is a critical metric that quantifies the extent to which these chemicals transfer from maternal plasma into
breast milk, impacting infant exposure. Machine learning-based predictive toxicology models can be valuable in predicting chemicals
with a high propensity to transfer into human milk. To this end, we build such classification- and regression-based models by
employing multiple machine learning algorithms and leveraging the largest curated data set, to date, of 375 chemicals with known
milk-to-plasma concentration (M/P) ratios. Our support vector machine (SVM)-based classifier outperforms other models in terms
of different performance metrics, when evaluated on both (internal) test data and an external test data set. Specifically, the SVM-
based classifier on (internal) test data achieved a classification accuracy of 77.33%, a specificity of 84%, a sensitivity of 64%, and an F-
score of 65.31%. When evaluated on an external test data set, our SVM-based classifier is found to be generalizable with a sensitivity
of 77.78%. While we were able to build highly predictive classification models, our best regression models for predicting the M/P
ratio of chemicals could achieve only moderate R2 values on the (internal) test data. As noted in the earlier literature, our study also
highlights the challenges in developing accurate regression models for predicting the M/P ratio of xenobiotic chemicals. Overall, this
study attests to the immense potential of predictive computational toxicology models in characterizing the myriad of chemicals in the
human exposome.

■ INTRODUCTION
Breast milk is widely recognized as the optimal source of
nutrition for infants and provides numerous benefits to both
infants and the mother. Published studies, including studies by
Rollins et al.,1 have shown that breastfeeding contributes
toward a world that is healthier, better educated, more
equitable, and more environmentally sustainable. Breast milk is
also known to provide protection to the infant from health
complications such as cardiovascular disease, sudden infant
death syndrome, growth faltering, and inflammatory bowel
disease.2 Notably, breastfeeding has been shown to be
associated with reduced risk in mothers for premenopausal
breast cancer, ovarian cancer, retained gestational weight gain,
type 2 diabetes, myocardial infarction, and metabolic

syndrome.3 Moreover, breast milk is an eco-friendly and
cost-effective option compared to using infant formula.4

In spite of the benefits associated with breastfeeding, there is
a legitimate concern about the potential exposure of infants to
environmental chemicals (including drugs) through lacta-
tion.5,6 Pregnant women and lactating mothers are exposed to
a wide range of environmental chemicals via food, medication,
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personal care products, and environmental pollutants.7−9

Exposure to such chemicals can affect the health of both
mothers and the development of breastfed infants.10,11 Wild12

proposed the concept of “exposome” to describe the
nongenetic factors that influence the health and disease of an
individual, starting from the prenatal period. In essence,
exposome captures the sum total of all environmental
exposures that an individual experiences throughout their life
and the associated health effects.12−15 Consequently, due to
the potential impact on infant and maternal health, there is
significant interest in characterizing environmental chemicals
with high propensity to transfer from maternal plasma to

human milk, i.e., potential human milk contaminants in the
chemical exposome.5,6 In this direction, some of the authors of
this study had previously built an online knowledgebase,
ExHuMId,5 that compiles experimentally detected human milk
contaminants from published studies analyzing breast milk
samples from India.
Notably, experimentally measured milk-to-plasma concen-

tration (M/P) ratio is used to identify the equilibrium
concentration of a chemical in maternal plasma in comparison
to breast milk, and this M/P ratio is used as an indicator for
the propensity of a xenobiotic chemical to enter human
milk.16−18 In terms of environmental chemicals in the human

Figure 1. Schematic diagram summarizing the workflow to build the classification- and regression-based machine learning models to predict
xenobiotic chemicals with a high propensity to transfer from maternal plasma to human milk. This figure shows the key steps involved in data
curation, feature generation, data preprocessing, feature selection, and the training and evaluation of classification- and regression-based machine
learning models. The word clouds in this figure were generated using https://www.wordclouds.com.
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exposome, several studies have shown lipophilic substances to
have a high potential to transfer into human milk from
maternal plasma via passive diffusion.16−20 Furthermore, a
systematic analysis based on available M/P ratios for human
milk contaminants in ExHuMId revealed structural properties
of chemicals that can influence their transfer into human milk.5

In a nutshell, previous analyses have led to the realization that
the physicochemical properties of xenobiotic chemicals
influence their potential to transfer from maternal plasma to
human milk.5,16−20

Experimental measurement of a xenobiotic chemical’s
propensity to enter human milk is both a difficult task and
ethically impractical. Since the 1980s, there have been attempts
to predict the M/P ratio for xenobiotic chemicals, and the
initial studies were based on methods incorporating the
physicochemical properties of the chemicals while ignoring
clinical information or effects of active transport.21,22 Following
the initial attempts, several studies employing machine learning
algorithms and the quantitative structure−activity relationship
(QSAR) principle have been proposed.23−29 Such predictive
models have been built on the QSAR principle that the
biological or chemical activity of a compound can be
quantitatively related to its molecular structure and phys-
icochemical properties. For instance, Yap and Chen developed
a regression model based on a general regression neural
network and reported an R2 value of 0.677 and mean squared
error (MSE) value of 0.206 on test data.29 Katritzky et al. built
a predictive model by dividing a data set of 100 chemicals into
three subsets and reported an average R2 value of 0.763.27

Abraham et al. employed an artificial neural network to predict
the logarithmically transformed M/P ratios of chemicals and
reported a root-mean-square error (RMSE) of 0.109 on
internal test data and 0.09 on external test data.23 Fatemi and
Ghorbanzad’e developed a counter propagation artificial neural
network-based classification model and the authors reported an
accuracy of 100% on test data and 90% on external test data.25

Kar and Roy developed both classification and regression
models using linear discriminant analysis (LDA) and multiple
linear regression (MLR), respectively.26 For their regression
model, the authors obtained an R2 value of 0.7 on train data,
and for their classification model, the authors obtained an
accuracy of 56.82%, sensitivity of 63.16%, and F-score of
55.81% on test data. Wanat et al. developed a random forest
(RF)-based regression model and reported an R2 value of 0.29
on test data.28

Despite the availability of the above models, the prediction
of transfer into milk from maternal plasma for actively
transported drugs remains a challenging endeavor.30 The
primary aim of this study is to build accurate machine learning
models for predicting the high propensity of transfer of
xenobiotic chemicals from maternal plasma to human breast
milk by leveraging, to date, the largest curated data set of
chemicals with experimentally determined M/P ratios.
Notably, our approach upholds the three essential principles
of data science: repeatability, reproducibility, and replicability.
To accomplish this, we manually curated a data set of 375
chemicals along with their experimentally determined M/P
ratios from the previously published scientific literature (Table
S1). Thereafter, we computed 1875 molecular descriptors for
each chemical in our data set, and the computed descriptors
capture the structural and physicochemical features of the
chemical data set. Subsequently, we utilized the computed
descriptors for the chemicals as the features and known M/P

ratios as the target variable along with multiple machine
learning algorithms to build predictive models for the purpose.
Our workflow (Figure 1) led to reliable classification models
for predicting chemicals with a “high risk” of transfer from
maternal plasma to human milk. To assess the applicability and
generalizability of the built models, we validated our
classification models by leveraging a large external test data
set of 202 chemicals (Table S2), and this evaluation of an
external test data set highlighted the robustness of the results
obtained in this study. Additionally, we applied our best
performing models on the approved drugs and experimental
drugs to predict the propensity of a drug to transfer into
human breast milk. Overall, this study also takes a step toward
achieving FAIR31 compliance by publicly releasing our curated
chemical data sets and computer codes through the associated
GitHub repository (https://github.com/asamallab/M-by-P-
ratio-Pred).

■ RESULTS AND DISCUSSION
Workflow for Building Classification and Regression

Models. The aim of this study is to build machine learning
models to predict xenobiotic chemicals with a high propensity
to transfer from maternal plasma to human milk. First, we
build classification-based models that can accurately categorize
chemicals as either “high risk” or “low risk” of transfer from
maternal plasma to human milk. Second, we build regression-
based models that can predict the M/P concentration ratios for
xenobiotic chemicals. Figure 1 presents a schematic workflow
of the different steps undertaken in this study to build the
classification- and regression-based machine learning models.
To build the machine learning models, we leveraged a

curated data set of 375 chemicals with experimentally
determined M/P ratios compiled from Vasios et al.18 and
other published literature25,28,32,33 (Methods; Table S1). The
descriptors for chemicals are generated as described in the
Methods section. After descriptors are generated, the data are
divided into train and test sets, with target variables designated
for both classification and regression models (Methods).
Figure S1 shows the distribution of M/P ratios for the
complete data set of 375 chemicals, training set (300
chemicals), and internal test data set (75 chemicals). Prior
to training, data normalization and feature selection are
performed (Methods).
To build the classification models, we employed five

different machine learning algorithms, namely, support vector
machine (SVM), extreme gradient boosting (XGBoost), LDA,
multilayer perceptron (MLP), and RF (Methods). Following
the feature selection (Methods), to optimize our classification
models, we performed hyperparameter tuning using Grid-
SearchCV in Scikit-learn (Methods).34 For each of the five
different classification algorithms, we selected the top 1, 2, 3, 4,
and 5 ranked features and thereafter trained and evaluated the
corresponding model. The best outcome for the five different
classification algorithms is reported in Table 1. Notably, the
five different classification algorithms were also evaluated using
an external test data set of 202 chemicals that have been
experimentally detected in human milk (Methods; Table S2;
Table 1).
A regression algorithm is a statistical method that predicts

the continuous values of the dependent variable based on the
independent variables (features). To build the regression
models to predict the M/P ratio of a chemical, we employed
three different machine learning algorithms, namely, SVM,
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XGBoost, and RF (Methods). Upon completing feature
selection, to optimize our regression models, we also
performed hyperparameter tuning using GridSearchCV in
Scikit-learn (Methods).34 For each of the three different
regression algorithms, we selected the top 5, 10, 15, 20, 25, 30,
35, and 40 features and thereafter trained and evaluated the
corresponding model. The best outcome for the three different
regression algorithms is reported in Table 2.

Performance of the Classification Models. We next
evaluated the performance of the five different classification
algorithms, namely, SVM, XGBoost, LDA, MLP, and RF,
which were used to build classification models in this study
(Methods; Table 1).
In Table 1, we present the accuracy of the classification

models on the (internal) test data of 75 chemicals. On train
data, the models exhibited varying levels of accuracy.
Specifically, SVM, XGBoost, LDA, MLP, and RF achieved an
accuracy of 83.67, 96.33, 76, 91.33, and 94%, respectively, on
train data. Moving on to (internal) test data (which is
independent of the train data), the five models SVM, XGBoost,
LDA, MLP, and RF achieved an accuracy of 77.33, 78.67,
69.33, 74.67, and 73.33%, respectively (Table 1). Although the
accuracy values are relatively high for the five models on
(internal) test data, it is important to consider other
performance metrics such as sensitivity, specificity, and F-
score.
Sensitivity measures a model’s ability to accurately predict

“high risk” chemicals. On (internal) test data, SVM achieved a
sensitivity of 64%, followed by MLP with 60%, RF with 56%,
XGBoost with 48%, and LDA with 24% (Table 1). Similarly,

specificity measures a model’s ability to accurately predict “low
risk” chemicals. On (internal) test data, XGBoost achieved the
highest specificity of 94%, followed by LDA with 92%, SVM
with 84%, MLP with 82%, and RF with 82% (Table 1). F-score
is a measure which combines precision and recall (sensitivity),
and thus, provides an overall measure of a model’s perform-
ance. On (internal) test data, SVM achieved the highest F-
score of 65.31%, followed by MLP with 61.22%, XGBoost with
60%, RF with 58.33%, and LDA with 34.29% (Table 1).
To summarize, in terms of accuracy, sensitivity, specificity,

and F-score, SVM and MLP showed higher performance on
(internal) test data. In contrast, LDA showed lower perform-
ance in terms of most evaluation metrics. In comparison,
XGBoost and RF achieved reasonable performance but were
slightly lower than SVM and MLP.
Figure 2 displays the confusion matrix for the five best

models corresponding to the five different classification
algorithms. The confusion matrix provides the true positive,
true negative, false positive, and false negative predictions by
the five different classification algorithms, namely, SVM,
XGBoost, LDA, MLP, and RF on the (internal) test data of
75 chemicals. Thus, the confusion matrix provides a fine print
of the performance of the classification models on (internal)
test data which concurs with the results presented in Table 1.
Furthermore, in addition to the evaluation metrics

mentioned above, we also computed the area under the
curve (AUC) values for the five different classification
algorithms. Note that the AUC values provide a measure of
a classifier’s ability to distinguish between the positive and
negative classes in a data set. Specifically, for the best
classification models obtained using SVM, XGBoost, LDA,
MLP, and RF, the AUC values were 0.82, 0.84, 0.71, 0.77, and
0.84, respectively. These results indicate that XGBoost, RF,
and SVM classifiers achieve high AUC values, and thus, are
better at discriminating between “high risk” and “low risk”
chemicals in test data. Figure 3a displays the receiver operating
characteristic (ROC) curves for the best models built by using
the five different classification algorithms.
Moreover, we employed the area under the precision−recall

curve (AUPRC) as another evaluation metric to assess the
performance of the five classification algorithms. Specifically,
for the best classification models obtained using SVM,
XGBoost, LDA, MLP, and RF, the AUPRC values were
0.69, 0.75, 0.57, 0.63, and 0.75, respectively. These results also
indicate that XGBoost and RF classifiers followed by SVM
achieve high AUPRC values, similar to the AUC value. Figure
3b displays the precision−recall curves for the best models
built using the five different classification algorithms.
Subsequently, we evaluated the generalizability of our best

classification models by leveraging an external test data set,
comprising 202 chemicals, with a high risk of transfer from
maternal plasma to human milk (Methods; Table S2). Note
that we checked the domain of applicability of data points in
the external test data set before evaluating our classification
models (Methods). In Table 1, we present the sensitivity of the
five different classification algorithms on an external test data
set. By comparing the performance of the five different
algorithms on an external data set, it is observed that SVM and
MLP achieved the highest sensitivity values of 77.78 and
77.22%, respectively, followed by LDA with 71.96%, RF with
68.89%, and XGBoost with 50.79% (Table 1). In other words,
these results indicate that SVM and MLP outperformed the
remaining three algorithms in accurately classifying positive

Table 1. Evaluation of the Best Classification Models Built
Using Five Different Algorithms to Categorize Chemicals
into “High Risk” or “Low Risk” Classes for Transfer from
Maternal Plasma to Human Milka

algorithm accuracy sensitivity specificity F-score

(internal)
test data
(%)

(internal)
test data
(%)

external
test data
set (%)

(internal)
test data
(%)

(internal)
test data
(%)

SVM 77.33 64 77.78 84 65.31
XGBoost 78.67 48 50.79 94 60
LDA 69.33 24 71.96 92 34.29
MLP 74.67 60 77.22 82 61.22
RF 73.33 56 68.89 82 58.33

aFor each model, the classification accuracy is listed for the (internal)
test data. The sensitivity is listed for both (internal) test data and the
external test data set, respectively. The specificity and F-score are
listed for the (internal) test data.

Table 2. Evaluation of the Best Regression Models Built
Using the Three Different Algorithms to Predict the M/P
Ratio of the Chemicalsa

algorithm R2 MSE

train data
(internal) test

data train data
(internal) test

data

SVM 0.6909 0.4460 0.0984 0.1978
XGBoost 0.9323 0.4785 0.02154 0.1862
RF 0.9277 0.4901 0.0230 0.1820

aFor each regression model, we report the R2 and the MSE value for
both train data and (internal) test data.
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instances in the external test data set. Moreover, the high
sensitivities achieved by SVM and MLP on the external test
data set suggest that these two algorithms are better capable of
capturing the relevant patterns and characteristics associated
with positive instances (“high risk” chemicals), even though
the train data is biased toward negative instances (“low risk”
chemicals).
Overall, we find that SVM- and MLP-based classifiers have

high predictive ability on both (internal) test data and external
test data sets, and thus, the two models are robust and
generalizable for the task of accurately predicting high-risk
chemicals in real-world scenarios (Table 1). Furthermore,
among the two models SVM and MLP, we believe that the
SVM-based classifier is the more promising model for the
classification of xenobiotic chemicals into “high risk” or “low
risk” of transfer from maternal plasma to human milk.

We applied the SVM- and MLP-based classifier to predict
the risk of approved and experimental drugs being transferred
into human breast milk. For this purpose, the approved and
experimental drugs were obtained from DrugBank35 and were
processed similarly to the chemicals in the external test set. 722
and 622 approved drugs were classified as “high risk” to
transfer into human breast milk by SVM and MLP,
respectively. Similarly, 1112 and 951 experimental drugs
were classified as “high risk” to transfer into human breast
milk (Tables S3 and S4).
Importantly, the above-mentioned results also highlight the

importance of assessing classifiers on external test data sets to
ensure the generalizability of the built models.36,37 In
particular, such an approach has practical implications while
developing reliable machine learning models for drug safety
assessment, environmental monitoring, and public health.36,37

Figure 2. Confusion matrix depicting the performance of the best classification models corresponding to five classification algorithms, namely, (a)
SVM, (b) XGBoost, (c) LDA, (d) MLP, and (e) RF on the (internal) test data of 75 chemicals. Note: TP, TN, FP, and FN stand for true positive,
true negative, false positive, and false negative.

Figure 3. ROC curve and precision−recall curve for evaluating the best models built using the five different classification algorithms. (a) ROC
curve plotted with sensitivity on the y-axis and 1-specificity on the x-axis. (b) Precision−recall curve plotted with precision on the y-axis and recall
(sensitivity) on the x-axis.
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Performance of the Regression Models. We next
evaluated the performance of the three different regression
algorithms, namely, SVM, XGBoost, and RF, which were used
to build models for the prediction of the M/P ratio of
xenobiotic chemicals (Methods; Table 2). For the best
regression models obtained using SVM, XGBoost, and RF,
the coefficient of determination (R2) values obtained on the
train and (internal) test data were (0.6909, 0.4460), (0.9323,
0.4785), and (0.9277, 0.4901), respectively. The obtained R2

values not only suggest a moderate level of prediction
performance but also indicate the possibility of overfitting,
whereby the models may be fitting the train data more closely
than the test data.
To the best of our knowledge, previous studies23,24,26−29 on

building regression-based models for predicting the M/P ratio
of xenobiotic chemicals have employed much smaller data sets
in comparison to our data set of 375 chemicals with known M/
P ratios, and moreover, in many of these published
studies,23,24,26 the authors have not reported the R2 value on
test data. Moreover, none of the previous studies on this topic
have published the source code of the developed predictive
models. Due to these reasons, it is difficult to compare the
performance of our regression models with those reported in
the previous studies.
In spite of our attempts to build a highly predictive

regression model for the M/P ratio of xenobiotic chemicals, we
were unable to improve the R2 values on the test data beyond
those reported in Table 2 using different regression algorithms.
In fact, other than SVM, XGBoost, and RF algorithms, we also
tried another machine learning algorithm, MLP, to build
regression models for prediction of the M/P ratio of xenobiotic
chemicals. However, MLP yielded highly unsatisfactory
regression-based models, and therefore, we decided not to
report the results from the MLP-based regression model in this
manuscript. We remark that the difficulty encountered by us in
developing a highly predictive regression model for the M/P
ratio of xenobiotic chemicals has also been faced by authors of
previous studies; in particular, this issue is well documented in
the published literature.23,27

While our regression models achieve moderate R2 values on
(internal) test data, our classification models reported in the
previous section achieve high accuracy on (internal) test data.
Therefore, we decided to evaluate our best regression models
for their ability to perform classification on (internal) test data.
Note that if a regression model predicts the M/P ratio of a
chemical to be ≥ log 2, then the chemical belongs to the “high
risk” category, else the chemical belongs to the “low risk”
category. We find that our best regression models for SVM,
XGBoost, and RF achieve a classification based on the
regression accuracy of 90.67, 95.33, and 95.33%, respectively,
on train data, and 74.67, 72, and 73.33%, respectively, on
(internal) test data (Table 3). We also evaluated the sensitivity,
specificity, and F-score of the classification based on regression
models (Table 3). The sensitivity, specificity, and F-score for
SVM were 60, 82, and 61.22%, respectively, for XGBoost were
64, 76, and 60.38%, respectively, and for RF were 68, 76, and
62.96%, respectively (Table 3). Overall, the results from
classification based on regression signify that the models
perform reasonably well in categorizing the M/P ratio of
xenobiotic chemicals into the two classes “high risk” and “low
risk” on (internal) test data.
We also evaluated the classification based on regression on

an external test data set. Prior to this evaluation, we applied a

domain of applicability approach to ensure that the external
test data set falls within the range of applicability for our
models (Methods). On the external test data set, SVM,
XGBoost, and RF achieved a sensitivity of 60.58, 65.89, and
75.97%, respectively (Table 3). These results underscore that
the RF model exhibits the highest sensitivity on both (internal)
test data and external test data sets, indicating its effectiveness
in correctly detecting positive instances (“high risk” chem-
icals). In comparison, the XGBoost model displayed
reasonable sensitivity, while the SVM model showed
comparatively lower sensitivity (Table 3).
Overall, we find that the regression models achieve moderate

R2 values, while the classification based on regression models
displays reasonable performance on classification of xenobiotic
chemicals into “high risk” and “low risk” categories. These
results also highlight the complexity and challenges associated
with accurate prediction of the M/P ratio of xenobiotic
chemicals and emphasize the need for further research toward
creation of improved experimental data sets in order to
enhance model performance. Lastly, we remark that none of
the three regression-based models for classifying the M/P ratio
of xenobiotic chemicals, in terms of classification accuracy on
the (internal) test data and external test data set, could
outperform the SVM-based classification model, which was
solely developed for the classification task (Table 1; Table 3).
We applied the classification based on RF regression to

predict the risk of approved and experimental drugs to transfer
into human breast milk. 709 approved drugs and 1082
experimental drugs were classified as “high risk” to transfer into
human breast milk by classification based on RF regression
(Tables S3 and S4).

Comparison with Earlier Models. In this subsection, we
compare the performance of models built in this study with
previously published models for the prediction of chemicals
with a high propensity to transfer from maternal plasma to
human milk. Earlier works employed both classification and
regression to make such predictions.
Fatemi and Ghorbanzad’e built a counter propagation

artificial neural network-based classification model using a
train data set of 124 chemicals.25 When evaluated on a test
data set of 20 chemicals, this model yielded 100% test
classification accuracy (Table S5). While this may seem
promising, the reported 100% test classification accuracy on a
small test data set necessitates further investigation of the
generalizability of this model. Kar and Roy built an LDA-based
classification model using a train data set of 97 chemicals.26

When evaluated on a test data set of 88 chemicals, this model

Table 3. Evaluation of the Classification Based on
Regression Models Built Using the Three Different
Algorithms to Predict the M/P Ratio of the Chemicalsa

algorithm accuracy sensitivity specificity F-score

(internal)
test data
(%)

(internal)
test data
(%)

external
test data
set (%)

(internal)
test data
(%)

(internal)
test data
(%)

SVM 74.67 60 60.58 82 61.22
XGBoost 72 64 65.89 76 60.38
RF 73.33 68 75.97 76 62.96

aFor each model, the classification accuracy is listed for the (internal)
test data. The sensitivity is listed for both (internal) test data and the
external test data set. The specificity and F-score are listed for
(internal) test data.
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had a test classification accuracy of 56.82%, test sensitivity of
63.16%, and test F-score of 55.81% (Table S5). In the present
study, we recognized the importance of a larger data set in
improving classification performance. Therefore, we compiled
and curated a larger data set of 375 chemicals with known M/P
ratios, of which 300 chemicals are used as train data and 75
chemicals are used as (internal) test data. Notably, by
evaluating our classification models on the (internal) test
data of 75 chemicals (which are not part of the train data), we
showed that our SVM-based classification model achieved a
test classification accuracy of 77.33%, test sensitivity of 64%,
and test F-score of 65.32%, which is a significant improvement
over the model developed earlier by Kar and Roy (2013).26

Moving on to earlier publications on regression-based
prediction of xenobiotic chemicals with a high propensity to
transfer from maternal plasma to human milk, we find that
there is limited reporting of regression R2 in such previous
studies (Table S6). Agatonovic-Kustrin et al. developed a
genetic neural network-based model to predict the degree of
drug transfer into breast milk using a data set of 60 drugs and
their experimentally derived M/P ratios, and the authors
reported an R2 value >0.96 on train data and a root-mean-
square (RMS) value of 0.425 on test data for their best
model.24 Yap and Chen built their model using train data of
102 chemicals and test data of 20 chemicals, and they reported
a test R2 of 0.677 and test MSE of 0.206 (Table S6).29

Katritzky et al. built a QSAR model by dividing a data set of
100 chemicals into three subsets.27 Three training data sets
were prepared by considering the combinations of any two
subsets, and thereafter, equations were obtained for each
training data set. These equations were then used to predict
the log(M/P) values for the corresponding test data sets.
Katritzky et al. calculated the R2 obtained in the three test data
sets and reported an average R2 of 0.763 (Table S6).27

Abraham et al. employed an artificial neural network to predict
the logarithmically transformed M/P ratios of chemicals by
using a data set of 179 drugs and environmental pollutants, of
which 135 chemicals were in the train data, 22 chemicals were
in the test data, and further 22 chemicals were in the external
test data.23 For the best model, Abraham et al. reported an
RMSE of 0.056 on train data, 0.109 on test data, and 0.09 on
external test data.23 However, Abraham et al. did not report the
R2 values for their model.23 Kar and Roy developed regression
models using MLR and a data set consisting of 97 chemicals in
the train data and 88 chemicals in the test data.26 For their
regression model, the authors obtained an R2 value of 0.7 on
train data. However, Kar and Roy did not report the R2 value
for their regression model on test data.26 Wanat et al. built
their model using train data of 58 chemicals and test data of 25
chemicals, and they reported a test R2 of 0.29 (Table S6).28 We
remark that the above-mentioned previously published studies
developed their regression models using relatively smaller data
sets (in comparison to our models), and this may restrict the
domain of applicability and limit the generalizability of the
earlier published models. Additionally, the earlier studies also
acknowledged the difficulty in achieving high test R2 values due
to limited experimental data and the challenges associated with
prediction of the M/P ratio for chemicals.23,27 Among the
three regression-based models developed in this study, our RF-
based model achieved a test R2 of 0.49 and an MSE of 0.1820
on the (internal) test data (Table 2). Thus, our results align
with the limitations mentioned in earlier efforts, wherein

previous studies also encountered challenges in achieving high
R2 values on test data.
It is also worth noting that many previous studies on this

subject do not adequately describe the methods (including
technical information) used to build predictive models. This
lack of transparency, along with limited reporting of train and
test data sets and unavailability of codes for previous models,
hindered direct comparison of our models with earlier works.
To facilitate future research in this direction, our study
provides detailed documentation of the technical aspects and
methods employed to build the predictive models, and
moreover, we have made the train data, test data, external
test data set, and codes for the built models openly accessible
via our GitHub repository: https://github.com/asamallab/M-
by-P-ratio-Pred.
Overall, the present study highlights the significance of the

chemical data set size in building machine learning models for
both classification and regression tasks. Furthermore, our study
shows the importance of an external test data set in evaluating
the generalizability of built models. By utilizing a much larger
train and test data of 375 chemicals plus an external test data
set of 202 chemicals, we created classification- and regression-
based models with better performance in terms of predicting
the propensity of chemicals to transfer from maternal plasma
into human milk.

■ CONCLUSIONS
In this study, we built and evaluated multiple machine learning
models with the aim of classifying xenobiotic chemicals into
“high risk” and “low risk” classes for potential transfer from
maternal plasma to human milk based on M/P concentration
ratios of chemicals. We find that our SVM-based classifier
outperforms other classification models in terms of different
evaluation metrics (Table 1; Figure 2). In particular, the SVM-
based classifier on (internal) test data achieved a specificity of
84%, recall (sensitivity) of 64%, and F-score of 65.31%.
Furthermore, from the confusion matrix, it can be seen that the
SVM-based classifier achieves higher true positives and fewer
false positives (Figure 2), and this suggests that the model is
less likely to misclassify a “high risk” chemical as a “low risk”
chemical. Importantly, based on evaluation of an external test
data set, our SVM-based classification model is found to be
generalizable, which further strengthens the validity of our
approach. In brief, these results attest to the potential of our
SVM-based classification model to serve as a valuable tool for
predicting environmental chemicals whose exposure could
pose a high risk to maternal and infant health. Notably, such
computational toxicology models can serve as valuable
alternatives to traditional methods for chemical risk assessment
and have the potential to significantly accelerate the pace of
characterizing the chemical exposome.
In an effort to support open science, we have made our

complete workflow, train and test data sets, and computer
codes for the built models publicly available via a GitHub
repository. We believe that this will enable other researchers to
reproduce our work without reinventing the wheel and,
moreover, facilitate future efforts to leverage our results
along with new information to build better predictive models.
While we were able to build highly predictive classification

models, we encountered difficulties in developing regression
models for predicting the M/P ratio of chemicals. Despite our
best efforts, our best regression models for predicting the M/P
ratio could achieve only moderate R2 values on (internal) test
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data (Table 2). This issue has been acknowledged by previous
efforts in this direction and could be attributed to several
factors including the lack of sufficient data to build the models
and the influence of environmental factors on the out-
come.23,27 Interestingly, while the best regression models
achieved moderate R2 values for predicting the M/P ratio of
chemicals, the same regression models performed well in
classification based on regression (Table 2; Table 3). However,
our best model for classification based on regression could not
outperform the SVM model built solely for the classification
task. Based on our results, future efforts in this direction may
consider exploring different approaches to build separate
models for the two tasks, regression, and classification.
Overall, our study attests to the potential of machine

learning models in predicting xenobiotic chemicals with a high
propensity to transfer from maternal plasma to human milk
while also highlighting the challenges associated with
developing accurate regression models for predicting the M/
P ratio of such chemicals. While our classification models gave
promising results, further investigation is needed to improve
the accuracy of the regression models. Future efforts to build
models with improved prediction power could explore the use
of additional features such as genetics, food and lifestyle,
physicochemical properties, environmental exposure, and
toxicokinetic information or incorporate more sophisticated
algorithms such as deep learning.

■ METHODS
Chemical Data Set. In this study, we compiled from the

published literature a curated data set of 375 chemicals (Table
S1), consisting of xenobiotic chemicals (mainly, drugs), with
known experimentally determined M/P concentration ratios.
The majority (368) of the chemicals in our data set were
compiled from Vasios et al.18 and information on few
additional chemicals was obtained from other publica-
tions.25,28,32,33 For 4 chemicals in our data set, the M/P ratios
were available from multiple publications, and in such cases,
the mean of the reported M/P ratios for a chemical across
publications was used. In a few instances, we did not include
chemicals with a known M/P ratio in the published literature
as the computation of the molecular descriptors (or features)
failed for them. We have also annotated the 375 chemicals with
ClassyFire-based chemical kingdom, superclass, class, and
subclass (Table S1).38

For our curated data set of 375 chemicals with known M/P
ratios, we obtained the two-dimensional (2D) structures from
PubChem.39 We converted the 2D structures of these 375
chemicals to their corresponding three-dimensional (3D)
structures as follows. Using RDKit, we first embedded a
chemical in the 3D space by employing the ETKDG method.40

Thereafter, the 3D structure of a chemical was energy
minimized using the MMFF94 force field in RDKit.
Subsequently, we computed the molecular descriptors for the
375 chemicals in our data set using PaDEL version 2.21.41 A
total of 1875 molecular descriptors were computed for each
chemical using PaDEL, including topological, geometric,
electrostatic, and several other types of descriptors. Note that
the 2D structure of a chemical was used to compute one-
dimensional (1D) and 2D descriptors, while the 3D structure
was used to compute 3D descriptors in PaDEL. The computed
descriptors were used as features to build machine learning
models.

In this study, we build both classification and regression
models to predict the propensity of a chemical to transfer from
plasma to milk. For the classification models, chemicals with
the M/P ratio ≥1 were designated as “high risk” while the
remaining chemicals with the M/P ratio <1 were designated as
“low risk”, following previously published studies.18,25,26 For
the regression models, we treated the M/P ratio of chemicals
in our data set as a continuous variable. A logarithmic
transformation was used to reduce the skewness in the
distribution of M/P ratios for chemicals in our data set. Note
that a constant value of 1 was added to the M/P ratio of each
chemical in our data set before logarithmic transformation in
order to avoid undefined logarithmic values for chemicals with
the M/P ratio equal to 0.
To build the classification and regression models, our data

set of 375 chemicals (250 chemicals categorized as “low risk”
and 125 chemicals categorized as “high risk”) with
experimentally determined M/P ratios was randomly split
into two sets with 80% of the data in the train set and the
remaining 20% of the data in the test set (Table S1). Note that
the initial data set of 375 chemicals exhibited an imbalanced
distribution of chemicals, with a 2:1 ratio between “low risk”
and “high risk” classes. During the process of splitting the data
into the train and test set, we preserved the ratio between the
“low risk” and “high risk” chemicals in both the train and test
set. Moreover, we have also performed an analysis of the
chemical structural diversity of the train and internal test data
set based on the Soergel distance using MACCS key
fingerprints.42 The intralibrary distance within the train and
internal test set was found to be 0.70 and 0.67, respectively.
The interlibrary distance between the train and internal test
data set was found to be 0.69. This highlights that the train and
internal test data sets were equally diverse among themselves
and between them.
In addition to this train and test data set (together consisting

of 375 chemicals with M/P ratios), we also compiled an
external test data set of 202 chemicals from Karthikeyan et al.,5

Lehmann et al.,6 and Neveu et al.,43 which have been
experimentally detected in human breast milk samples
(Table S2). Since the 202 chemicals in the external test data
set have been experimentally detected in human breast milk
samples, they were categorized as “high risk” chemicals and
thereafter used for the validation of classification models.
However, the M/P ratio for these 202 chemicals in the external
test data set has not been reported in the literature, and thus,
the external test data set cannot be used to evaluate the
regression models. For the 202 chemicals in the external test
data set, we obtained the 2D structures from Karthikeyan et
al.5 Thereafter, we followed the same procedure as described
above for the 375 chemicals to generate the 3D structures and
compute the 1875 molecular descriptors for the 202 chemicals
in the external test data set.

Feature Selection. Each chemical in our data set has 1876
features including the dependent variable (M/P ratio). After
randomly splitting the data set of 375 chemicals into the train
set with 80% of the data and the test set with the remaining
20% of the data, we first removed the features with zero
variance in the train set. Thereafter, the train and test sets were
scaled using StandardScaler in Scikit-learn.34

While building classification models, we used BorutaPy, a
wrapper built on the RF-based classifier, to implement feature
selection.44,45 Notably, BorutaPy takes into account multi-
variable relationships and considers all features that are
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relevant to the dependent variable. The method involves taking
a copy of the original features and shuffling them to create
shadow features. These shadow features are concatenated with
the train set to find the importance of individual features using
the Z-score.45 If the importance of a feature is greater than the
maximum importance of the shadow features, then such a
feature is retained. Otherwise, the feature is considered
unimportant and is dropped while building the classification
models. While building regression models, we used the RF
method within Scikit-learn to select the important features.46

Machine Learning Algorithms. In this study, we
implemented several machine learning algorithms, namely,
SVM, XGBoost, LDA, MLP, and RF, to build classification and
regression models. The selection of these specific algorithms
was informed by their well-established efficacy in the field of
computational toxicology, particularly regarding their demon-
strated use in predicting M/P ratios. In this subsection, we
provide a concise overview of the algorithms employed here.
SVM is a supervised machine learning algorithm used for

classification and regression tasks. It maximizes predictive
accuracy and addresses overfitting by finding an optimal
hyperplane that maximizes the margin between training
examples and class boundaries.47−49 SVM can handle both
binary and multiclass classification tasks and can also handle
nonlinear data by introducing a new dimension. The
robustness and accuracy of such models can be improved
through hyperparameter tuning. Additionally, there is a trade-
off between correctly classified points and maximization of the
margin. Support vector regressor (SVR) is a similar technique
used for regression tasks and aims to find the hyperplane that
maximizes the margin distance between data points by
approximating the relationship between inputs and continuous
targets. SVR is particularly effective for handling nonlinear and
high-dimensional data.
XGBoost is a widely used machine learning algorithm for

classification and regression tasks.50 It combines weak learners,
known as base learners, to create a stronger learner by
iteratively minimizing the overall error. XGBoost offers
advantages such as high accuracy, fast execution speed,
regularization techniques, and flexibility compared to other
popular algorithms.51

LDA is a computationally efficient machine learning
algorithm that is used for classification. LDA optimizes class
separation by maximizing the variance between classes and
minimizing the variance within classes through a linear
discriminant function. It assumes Gaussian probability density
functions with the same covariance for each class. LDA
projects data onto a lower-dimensional space by maximizing
the distances between the means of the classes while
minimizing the within-class variance.52 LDA has advantages,
such as handling high-dimensional data, generative modeling,
and dimensionality reduction. However, the method has
limitations such as assumptions of linearity and normal
distribution of data, which may not hold in all cases.53

RF is a versatile machine learning algorithm used for
classification and regression tasks. It consists of multiple tree
predictors, where each tree’s outcome is influenced by a
random vector sampled independently across all trees in the
forest.46 In classification, the class predicted by the majority of
trees determines the final result, while in regression, the final
prediction is the average of predictions from all of the trees. RF
excels in handling high-dimensional data sets and produces

stable predictions.46,54 However, the computational cost of this
algorithm increases when modeling large data sets.

Hyperparameter Tuning in Algorithms. Hyperpara-
meter tuning is a technique used to exhaustively search for the
best parameters among a given set of parameters for an
algorithm to build predictive models. Hyperparameters of an
estimator (algorithm) are a set of parameters that control the
learning of the training data and determine the performance of
the model on the test data. A notable challenge during model
selection is to find the right combination of the hyper-
parameters for an estimator from the available hyperparameter
space. In this study, we used GridSearchCV in Scikit-learn for
hyperparameter tuning.34 In GridSearchCV, for an estimator
and a set of hyperparameters, we performed hyperparameter
tuning using repeated 10-fold cross-validation. Subsequent to
hyperparameter tuning, the final model is trained based on the
best set of parameters obtained from GridSearchCV. Table S7
lists the best sets of parameters obtained from GridSearchCV
for the different estimators used in this study. Table S8 lists the
final set of top-ranked features, which are used to build the
classification and regression models in this study.

Domain of Applicability. In the Setubal workshop
report,55 the applicability domain (AD) of a QSAR model is
defined as “The AD of a (Q)SAR is the physico-chemical,
structural, or biological space, knowledge or information on
which the training set of the model has been developed, and
for which it is applicable to make predictions for new
compounds. The AD of a (Q)SAR should be described in
terms of the most relevant parameters, i.e., usually those that
are descriptors of the model. Ideally, the (Q)SAR should only
be used to make predictions within that domain by
interpolation and not extrapolation”. In other words, the
prediction made by a QSAR model is reliable or acceptable
only if the chemical in the test data lies in the AD of the model.
Therefore, the domain of applicability can be used to better
understand the scope of a predictive model.
In this study, we employed the standardized approach

proposed by Roy et al. to find whether the chemicals in our
test data fall within the AD of the built models for classification
and regression.56
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