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Abstract

Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A
strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to
infection with both human and avian influenza A viruses are one of the natural hosts where such reassortment events could
occur. Virological, histological and serological features of H5N1 virus infection in pigs were characterized in this study. Two- to
three-week-old domestic piglets were intranasally inoculated with 106 EID50 of A/Vietnam/1203/04 (VN/04), A/chicken/
Indonesia/7/03 (Ck/Indo/03), A/Whooper swan/Mongolia/244/05 (WS/Mong/05), and A/Muscovy duck/Vietnam/ 209/05 (MDk/
VN/05) viruses. Swine H3N2 and H1N1 viruses were studied as a positive control for swine influenza virus infection. The
pathogenicity of the H5N1 HPAI viruses was also characterized in mouse and ferret animal models. Intranasal inoculation of pigs
with H5N1 viruses or consumption of infected chicken meat did not result in severe disease. Mild weight loss was seen in pigs
inoculated with WS/Mong/05, Ck/Indo/03 H5N1 and H1N1 swine influenza viruses. WS/Mong/05, Ck/Indo/03 and VN/04 viruses
were detected in nasal swabs of inoculated pigs mainly on days 1 and 3. Titers of H5N1 viruses in nasal swabs were remarkably
lower compared with those of swine influenza viruses. Replication of all four H5N1 viruses in pigs was restricted to the
respiratory tract, mainly to the lungs. Titers of H5N1 viruses in the lungs were lower than those of swine viruses. WS/Mong/05
virus was isolated from trachea and tonsils, and MDk/VN/05 virus was isolated from nasal turbinate of infected pigs. Histological
examination revealed mild to moderate bronchiolitis and multifocal alveolitis in the lungs of pigs infected with H5N1 viruses,
while infection with swine influenza viruses resulted in severe tracheobronchitis and bronchointerstitial pneumonia. Pigs had
low susceptibility to infection with H5N1 HPAI viruses. Inoculation of pigs with H5N1 viruses resulted in asymptomatic to mild
symptomatic infection restricted to the respiratory tract and tonsils in contrast to mouse and ferrets animal models, where some
of the viruses studied were highly pathogenic and replicated systemically.
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Introduction

The genus Influenzavirus A (i.e. influenza A virus) contains

individual virus strains which have infected a broad spectrum of

avian and mammalian species. While wild aquatic birds are the

primordial reservoirs for all influenza A virus genes and subtypes,

distinct genetic lineages have become established in humans,

horses, and pigs [1,2]. Viruses of 3 different subtypes, H1N1,

H3N2, and H1N2, are circulating in swine worldwide (reviewed in

[3,4]). The origin and nature of swine influenza viruses vary on

different continents. Most swine influenza A viruses are reassor-

tants containing various combinations of genes originating from

human, avian and swine influenza A viruses [3,4]. This

emphasizes that pigs are susceptible to both human and avian

influenza viruses. Such susceptibility could possibly be explained

by the presence of cell surface receptors for both human and avian

influenza viruses on the epithelium of pig upper respiratory tract

[5]. These features enable pigs to be a possible intermediate host

or ‘‘mixing vessel’’, for the generation of pandemic influenza

viruses through reassortment [6,7]. The 1957 and 1968 pandemic

influenza viruses were reassortants which contained human and

avian influenza virus genes [8,9]. However, there is no proof for a

role of pigs in the generation of these pandemic viruses. The 1918

H1N1 ‘‘Spanish’’ pandemic influenza virus appears to have

entered both human and pig populations, although the epidemi-

ological evidence favors humans as the initial host [10]. There are

a number of reports of human infection with influenza viruses of

swine origin (reviewed in [4]). Thus, it is obvious that pigs are an

important link in the ecology of influenza A viruses and could be a

possible source of origin for human pandemic influenza.

Highly pathogenic avian influenza (HPAI) viruses of the H5N1

subtype are zoonotic agents that present a continuing threat to both

veterinary and public health (reviewed in [11]). Between 1996 and

2003, H5N1 HPAI viruses were isolated from poultry in Southern
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China [12,13] and Vietnam [14], and occasionally caused severe

disease in humans [13,15,16]. The situation changed in late 2003–

2004, when the H5N1 viruses expanded their geographic range,

resulting in unprecedented epizootics in poultry and new human

cases in eastern and southeastern Asia [17,18]. In May 2005, an

H5N1 disease outbreak in migratory waterfowl occurred at Qinghai

Lake in Western China, and signaled a possible wild bird component

to the spread of H5N1 in the region [19,20]. During 2005–2007,

H5N1 viruses spread throughout Asia, Europe, Middle East, North

and West Africa [21]. Outbreaks in poultry and cases of human

H5N1 disease with a high case fatality rate have continued through

2007 and into the beginning of 2008 [21,22].

The endemicity of H5N1 HPAI virus in village poultry of Eurasia

and Africa [23], and the continuing appearance of individual human

cases have created a situation that may facilitate pandemic

emergence. However, to date, most cases of human infection with

H5N1 HPAI viruses have occurred through close contacts with

infected village poultry [24]. Human-to-human transmission of

H5N1 viruses has been inefficient and limited [11,24,25,26]. The

transmissibility of H5N1 viruses in mammalian models, such as pigs

and ferrets, has been inefficient [27,28,29]. There are potentially two

ways for H5N1 HPAI viruses to acquire efficient interhuman

transmissibility: 1) genetic reassortment with circulating human

influenza A viruses or 2) the accumulation of mutations during

adaptation in mammalian hosts [30,31,32]. Potentially, pigs could be

the natural host where either of these events could occur.

There are a number of reports of natural H5N1 HPAI virus

infection of animals taxonomically belonging to the order Carnivora

(i.e. domestic cats, tigers, leopards, dogs and stone martens)

[33,34,35,36,37]. Data on isolation of H5N1 viruses from pigs (Sus

scrofa, family Suidae, order Artiodactyla) has been very limited

[38,39,40]. Sero-epidemiological studies of Choi and co-authors

[27] show that 0.25% (8 of 3,175) of pig sera collected at

slaughterhouses in Vietnam in 2004 were seropositive from H5N1

virus infections. Studies of serum samples collected from pigs

during H5N1 poultry outbreaks in Korea during the winter season

of 2003 did not reveal any evidence of H5N1 HPAI virus infection

[41]. No virological or serological confirmation of infection was

observed in miniature pigs after experimental infection with A/

chicken/Yamaguchi/7/04 and A/duck/Yokohama/aq-10/03

(H5N1) viruses [42]. Inoculation of Yorkshire white piglets with

two Hong Kong 1997 H5N1 HPAI isolates, and two Vietnamese

and two Thai 2004 isolates resulted in mild to moderate infection

restricted mainly to the respiratory tract [43,27].

Since 2003, H5N1 viruses has evolved rapidly and formed 2

major clades and multiple subclades based on the HA sequences

phylogeny and antigenicity [18,44]. In the present study we infected

pigs with four H5N1 viruses representing clades 1 and 2, and

subclades 2.1, 2.2 and 2.3 (Figure 1). Virological, histological and

serological features of H5N1 infection in pigs were characterized and

compared with those caused by swine H3N2 and H1N1 viruses.

Results

Characterization of H5N1 viruses used for pig infection
In order to characterize the variety of H5N1 viruses, 4 strains

isolated from human, poultry and wild birds, A/Vietnam/1203/

04 (VN/04), A/Chicken/Indonesia/7/03 (Ck/Indo/03), A/

Whooper swan/Mongolia/244/05 (WS/Mong/05), and A/Mus-

covy duck/Vietnam/209/05 (MDk/VN/05) were chosen for this

study. Phylogenetic analysis of the HA gene sequences of the

H5N1 viruses showed that they represented clades 1 and 2, and

subclades 2.1, 2.2 and 2.3 (Figure 1), respectively. Analysis of

amino acid sequences of the HA revealed that all four viruses had

conserved amino acid residues that retained the receptor binding

of 2,3-NeuAcGal linkages predicted to confer affinity for avian cell

surface receptors [17,45]. The growth and infectivity of 3 viruses

were comparable in MDCK cells and embryonating chicken eggs

while titers of Ck/Indo/03 virus were lower (Table 1). All four

H5N1 viruses killed chickens after intranasal inoculation and

intravenous pathogenicity tests [46] indicating these viruses were

highly pathogenic for chickens.

Pathogenicity of H5N1 viruses was also characterized in mouse

and ferret models. Intranasal inoculation of 8-weeks-old female

BALB/c mice with 103 50% egg infective dose (EID50) of VN/04,

WS/Mong/05, and MDk/VN/05 viruses resulted in systemic

infection with 90–100% mortality. Ck/Indo/03 virus inoculated at

the same dose produced mild lung infection without serious disease

and mortality in mice. Only one H5N1 virus, VN/04, was highly

pathogenic in 4–6-month-old female ferrets producing severe

systemic disease with 100% fatality after intranasal inoculation of

106 EID50 of virus. Infection of ferrets with 106 EID50 of WS/

Mong/05 virus resulted in severe respiratory disease without

systemic infection and mortality, and was considered to be of

moderate pathogenicity. Viruses, Ck/Indo/03 and MDk/VN/05

were considered as low pathogenicity in ferrets causing mild or

asymptomatic respiratory infection in animals intranasally inocu-

lated with 106 EID50 of virus. The data on pathogenicity of H5N1

viruses are summarized in Table 1.

Clinical signs after inoculation of pigs with H5N1
influenza viruses

Groups of 2–3-weeks-old piglets were inoculated intranasally

with 106 EID50 of H5N1 viruses. Controls that demonstrate the

susceptibility of the animals to influenza virus infection, consisted

of two groups of piglets that were intranasally infected with 106

EID50 of swine H3N2, A/Swine/North Carolina/307408/04

(Sw/NC/04), and H1N1, A/Swine/Indiana/1726/88 (Sw/IN/

88) influenza viruses. Body weight of infected pigs was measured

daily and compared with that of mock-infected animals. No

changes in food consumption or behavior were observed in

inoculated animals. However, infection with swine influenza

viruses produced slight lethargy and listlessness on day 1 after

inoculation in one animal infected with H3N2 and in two animals

Author Summary

Highly pathogenic avian influenza A viruses of H5N1
subtype have spread through Eurasia and Africa with
continuing cases of human infection, suggesting the
potential to become a pandemic influenza virus. Pigs
which are susceptible to infection with both human and
avian influenza A viruses are one of the natural hosts
where a pandemic virus could be produced. In this study,
we characterized in a pig model the infection caused by
four H5N1 virus strains isolated from humans, poultry and
wild birds. We demonstrated that exposure of pigs
through the nose with H5N1 viruses or consumption of
meat from infected chickens resulted in infection with mild
weight loss. In contrast to mouse and ferret animal models
where some of viruses were highly pathogenic and
replicated in multiple organs, replication of H5N1 viruses
in pigs was restricted to the respiratory tract, mainly to the
lungs, and tonsils. Mild to moderate bronchiolitis and
pneumonia were observed in the lungs of infected
animals. Our results demonstrated that domestic pigs
had low susceptibility to infection and disease with highly
pathogenic H5N1 influenza A viruses.

Avian Influenza A (H5N1) Viruses in Pigs
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infected with H1N1 viruses. Pigs inoculated with H5N1 viruses,

MDk/VN/05 and VN/04, as well as those inoculated with H3N2

virus, Sw/NC/04, did not demonstrate remarkable differences in

body weight compared to control animals (Figure 2A, B, E).

However, weight loss of 5–15% was seen in pigs inoculated with

WS/Mong/05 and Ck/Indo/03 H5N1 viruses on days 1–4

(Figure 2C, D). The most severe, up to 25%, decrease in weight

was observed on day 3 in one animal infected with swine H1N1

influenza virus (Figure 2F).

Shedding of H5N1 viruses
To detect viruses and determine infective titers, nasal and rectal

swabs were collected from infected animals. None of the influenza

A viruses were detected in rectal swabs. Differences were observed

in nasal excretion among the H5N1 viruses: WS/Mong/05 virus

was detected in all 4 pigs on days 1 and 3 after inoculation, 3 of 4

pigs shed Ck/Indo/03 virus on days 1 and 3, VN/04 virus was

detected in nasal swabs of 3 pigs on day 1 and only in 1 pig on days

3 and 5, while MDk/VN/05 virus was not detected in nasal swabs

of inoculated pigs (Figure 3). Swine H3N2 and H1N1 viruses were

detected in all inoculated pigs on days 1, 3, and 5 (Figure 3). In

general, titers of H5N1 viruses in nasal samples collected on day 1

and 3 were similar, and were 2–3 log10 lower than those of swine

H3N2 and H1N1 viruses which were detected at the similarly high

titers (Figure 3).

Organ tropism of H5N1 viruses
To determine sites of viral replication, samples from 18 organs

and tissues (see Materials and Methods) were collected from

Table 1. Growth and pathogenicity of H5N1 viruses

Viruses Virus growth a Virus pathogenicity in

log10

EID50/ml
log10

TCID50/ml Mice b Ferrets c Chickens d

Ck/Indo/03 8.560 6.960.6 Low Low High

VN/04 9.560 9.260.1 High High High

WS/Mong/05 9.060 8.860.3 High Moderate High

MDk/VN/05 9.360.35 9.460.3 High Low High

aAll data are the mean6SD from three independent experiments.
b90–100% mortality in groups of 10 mice after intranasal inoculation with virus

dose of 103 EID50 was considered as high pathogenicity; no mortality and
disease signs after infection with similar virus dose was considered as low
pathogenicity.

cSevere systemic disease with mortality developed after intranasal infection
with virus dose of 106 EID50 was considered as high pathogenicity; severe
respiratory disease without mortality was considerate as moderate
pathogenicity, and mild or asymptomatic respiratory infection without
mortality as low pathogenicity.

dIntravenous pathogenicity tests [46] with all viruses killing 100% of inoculated
chickens indicative of HPAI viruses.

doi:10.1371/journal.ppat.1000102.t001

Figure 1. Phylogenetic relationships of the hemagglutinin (HA) gene of the influenza (H5N1) viruses. Sequences (nucleotides 77 to
1723) were analyzed by using the neighbor-joining method with 500 bootstraps. Phylogenetic tree was rooted to the HA gene of A/Goose/
Guangdong/1/96 (H5N1) virus. H5N1 viruses used in this study are shown in red. Abbreviations: BHGs, bar-headed goose; Ck, chicken; Dk, duck; Gs,
goose; HCr, house crow; MDk, muscovy duck; Qa, quail; WS, whooper swan.
doi:10.1371/journal.ppat.1000102.g001

Avian Influenza A (H5N1) Viruses in Pigs
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infected pigs on day 5 after virus inoculation. H5N1 influenza

viruses as well as swine H3N2 and H1N1 viruses were detected

only in tissues from the respiratory organs (Figure 4). All studied

H5N1 viruses were detected in the lungs of inoculated pigs. Lung

titers of WS/Mong/05 and MDk/VN/05 (detected in one of two

pigs) viruses were high and comparable with those of swine H3N2

and H1N1 viruses, while lung titers of Ck/Indo/03 and VN/04

(detected in one of two pigs) viruses were remarkably lower. MDk/

VN/05 virus was also detected in nasal turbinate of one infected

pig. The replication sites and titers of WS/Mong/05 virus, which

was detected in lungs, trachea and tonsils, were close to those of

swine H3N2 and H1N1 influenza viruses which were detected at

high titers in upper and lower respiratory tract (Figure 4).

Histopathological findings
Gross and microscopic lesions were observed in the respiratory

tract of all pigs inoculated with either avian or swine influenza

viruses. The extent and character of the lesions were variable

between pigs in a group, and among virus treatment groups. When

present, lesions were most often observed in the lungs. H5N1-

inoculated pigs had minimal to mild gross lesions. Microscopic

lung lesions included mild to moderate bronchiolitis and alveolitis

Figure 2. Pig weight changes during influenza virus infection. Shown are results for the two infected pigs for each virus treatment group
(pigs #1 and #2); compared to one of two independent control groups (control pigs #1 and #2, or control pigs #3 and #4). H5N1 influenza viruses:
MDk/VN/05 (A), VN/04 (B), WS/Mong/05 (C), and Ck/Indo/03 (D). Swine H3N2 (E) and H1N1 (F) influenza viruses.
doi:10.1371/journal.ppat.1000102.g002

Figure 3. Virus titer in nasal swabs of pigs during influenza
virus infection. Each data point represents the mean6SD virus titer
(log10 EID50/ml of sample media) from pigs positive for influenza virus.
Numbers of pigs sheding virus (of 4) are shown in each bar. The lower
virus detection limit is 100.5 EID50/ml.
doi:10.1371/journal.ppat.1000102.g003

Avian Influenza A (H5N1) Viruses in Pigs

PLoS Pathogens | www.plospathogens.org 4 July 2008 | Volume 4 | Issue 7 | e1000102



found on day 5 post inoculation. In addition, moderate

lymphocytic infiltration around peribronchiolar and perivascular

areas (Figure 5A), mild degeneration to necrosis of bronchiolar

epithelium, and moderate necrotic cell debris in the airways of

bronchioles and alveoli (Figure 5D) were observed. The upper

airways and bronchi were spared lesions. Immunohistochemically,

viral antigen was detected in bronchiolar epithelium (Figure 5B and

E). On day14 post-inoculation, there was no histological lesion in any

visceral organs including lungs. Viral antigens were detected only in

the lung of pigs inoculated with VN/04, WS/Mong/05 and MDk/

VN/05 viruses which were also positive on virus isolation. Based on

gross and microscopic lesions, the pathogenicity of the H5N1 viruses

could be ranked in the following order: WS/Mong/05, VN/04,

MDk/VN/05, and Ck/Indo/03.

By comparison, the respiratory lesions from pigs infected with

swine viruses (H3N2 and H1N1) were more severe and more

extensive than those from pigs infected with H5N1 viruses. The

lungs from pigs infected with swine viruses on day 5 had severe

bronchointerstitial pneumonia characterized by severe degenera-

tion and necrosis of bronchial epithelium and accumulation of

necrotic cellular debris within airway lumens (Figure 5G).

Consistently, viral antigen was conspicuously detected to bronchial

epithelial linings and cellular debris in the airway (Figure 5H). In

addition, the nasal cavities of pigs infected with H3N2 swine virus

showed mild vacuolar degeneration and necrosis of mucosal

epithelium; also, severe tracheobronchitis was observed in both

H3N2- and H1N1-infected pigs. Mild lymphocytic infiltration

around peribronchial areas was still evident in the lungs of swine

viruses-infected pigs on day 14 post-inoculation. However, no viral

antigen was detected in any tissues or organs on day 14 by

immunohistochemistry.

Recently, human infection with H5N1 viruses was reported to

produce apoptosis in alveolar epithelial cells and leucocytes in the

lungs [47]. To determine whether H5N1 viruses result in similar

lesions in pigs, lung sections adjacent to those confirmed for

presence of viral antigen from animals infected with H5N1 and

H3N2 influenza viruses were stained by TUNEL assay. Apoptosis

was frequently observed in proliferating cells, most likely

leukocytes and macrophages in the lungs of pigs infected with all

four H5N1 viruses. In general, the amount of cells with apoptosis

correlated with the severity of lesions produced by H5N1 viruses in

the lungs. The greatest numbers of stained cells were observed in

the lung samples from pigs infected with VN/04 (Figure 5C) and

WS/Mong/05 (Figure 5F) viruses. In contrast, very small, almost

negligible numbers of cells with apoptosis, comparable with those

in uninfected control lung samples, were observed in animals

infected with swine H3N2 virus (Figure 5I).

Antibody response after inoculation with H5N1 viruses
To confirm the infection, blood samples collected from pigs

prior to and two weeks after virus inoculation were examined in

hemagglutination inhibition (HI) and virus neutralization (VN)

tests with the homologous viruses to assess the seroconversion. Pre-

infection sera lacked antibodies detectable by HI or VN test with

H5N1 viruses, but small, almost negligible antibody titers

(presumably of maternal transfer origin) were observed only in

the HI test when using swine H1N1 and H3N2 viruses as the HI

test antigen (Table 2). By contrast, all pigs challenged with H5N1

viruses Ck/Indo/03 and WS/Mong/05 had specific antibodies in

HI and VN tests (Table 2) on day 14 post-inoculation. High

antibody titers were also observed in both HI and VN tests in

serum from 1 pig (of 2) inoculated with H5N1 VN/04 virus, and

very low titers of virus-neutralizing antibodies were detected in 1

pig (of 2) inoculated with H5N1 MDk/VN/05 virus. All animals

seroconverted after intranasal inoculation with swine H1N1 and

H3N2 viruses as evident by high levels of antibodies in both HI

and VN tests using the challenge viruses (Table 2).

Exposure of pigs to H5N1 virus through consumption of
meat from infected chickens

The consumption of raw or undercooked infected bird meat or

other products is one of potential means of transmission of H5N1

HPAI virus to humans [11,24] and several animals belonging to

order Carnivora [33–37,48]). To model this potential route of

infection, piglets in one group of 4 were fed breast and thigh meat

from chickens that died from infection with WS/Mong/05 H5N1

virus. The meat was chopped into small pieces approximately

4 cm62 cm60.5 cm in size and mixed with a limited amount of

pelleted diet. Each animal consumed approximately 100 g of meat

with infective virus titer 108 EID50/g. No disease signs such as

significant weight loss, changes in food consumption or behavior

abnormalities were observed in exposed pigs during the 14 day

observation period. Virus was detected in nasal swabs from 2 of 4 pigs

on day 3 only (Table 3). No virus was detected in rectal swabs. Two

pigs were euthanatized on day 5 after meat consumption and samples

from 18 organs and tissues (see Materials and Methods) were

harvested to determine virus distribution and histological lesion.

Infective virus was detected in nasal turbinate and tonsils of both

animals (Table 3). Microscopically, the organs or tissues lacked

histological lesions and viral antigen was not demonstrated. However,

virus-neutralizing antibodies to WS/Mong/05 virus were detected in

serum samples from both pigs collected on day 14 after consumption

of infected meat indicating infection had occurred (Table 3).

Discussion

It was proposed that expression of sialic acid receptors for

human and avian influenza viruses on epithelial cells of the trachea

[5], renders pigs susceptible to infection with both types of

influenza viruses [3,4,49,50]. Influenza viruses from pigs can be

transmitted to humans [3,4,51,52] as well as human viruses and

human/pig gene reassortant viruses can be isolated from pigs [53].

Recently, a H2N3 swine influenza subtype was reported in the

USA. It was an avian/swine reassortant virus that was pathogenic

Figure 4. Virus titer in pig tissues on day 5 after virus inoculation.
Each data point represents the mean and range virus titer (log10 EID50/
gram of tissue) from two pigs. The lower virus detection limit is 100.5

EID50/g. *-virus was detected in organs of one pig.
doi:10.1371/journal.ppat.1000102.g004
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in pigs and mice, and was transmitted among swine and ferrets

[54]. Thus, it seems possible to propose that H5N1 highly

pathogenic avian influenza viruses, which spread through Eurasia

and Africa, could reassort in pigs with currently circulating human

influenza viruses and/or adapt to efficient transmission in humans,

and acquire a pandemic potential.

In this study we characterized in a pig model virological,

histological, and serological features of infection with H5N1 HPAI

viruses representing major HA phylogenetic and antigenic clades

and subclades of currently circulating H5N1 viruses, i.e. clade 1

and clade 2, subclades 2.1, 2.2 and 2.3 (Figure 1). These viruses

differed in their pathogenicity in well characterized mammalian

Figure 5. Histopathologic findings in lungs of pigs on day 5 after virus inoculation. (A) Moderate lymphocytic bronchiolitis with slight
intra-luminal cellular debris (HE staining) and (B) viral antigen reaction in a single bronchiolar cell (IHC staining) in the lungs of pigs infected with VN/
04 (H5N1) virus. (D) Moderate bronchioalveolitis with moderately cellular debris in the airway of bronchioles and alveoli (HE staining) and (E) marked
viral antigen reaction in bronchiolar cells (IHC staining) in the lungs of pigs infected with WS/Mong/05 (H5N1) virus. (G) Severe bronchitis
characterized by degeneration and necrosis of bronchi epitheliums with severe intra-luminal cellular debris (HE staining) and (H) prominent viral
antigen reaction in the bronchial epitheliums and necrotic cellular debris (IHC staining) in the lungs of pigs infected with Sw/NC/88 (H3N2) virus.
Apoptosis frequently observed in proliferating leukocytes and macrophages in the lungs of pigs infected with (C) VN/04 and (F) WS/Mong/05 H5N1
viruses (TUNEL assay). (I) TUNEL assay of lungs from pig infected with Sw/NC/88 (H3N2) virus–a single cell affected with apoptosis.
doi:10.1371/journal.ppat.1000102.g005
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models, i.e. mice and ferrets (Table 1). Three of the H5N1 viruses

replicated systemically in mice and caused high mortality, but only

one caused high mortality in ferrets. In contrast all four viruses had

similar low pathogenicity in intranasally inoculated pigs. In pigs,

the H5N1 viruses replicated only in the respiratory tract with no

evidence of systemic infection. All four H5N1 viruses replicated in

lungs of inoculated pigs and resulted in moderate or mild

bronchiolitis and alveolitis. WS/Mong/05 and MDk/VN/05

H5N1 viruses were also detected in upper respiratory tract tissues

(trachea) and tonsils. In contrast to the other studied H5N1

viruses, titers and organ distribution of WS/Mong/05 (clade 2,

subclade 2 of H5 HA) in inoculated pigs were most similar to those

seen with the swine H3N2 and H1N1 viruses.

With the exception of severity, the type and location of virus-

induced lesions in the lower respiratory tract of H5N1-infected

pigs were similar to those observed in humans [11]. However, viral

antigens in pigs infected with H5N1 viruses were detected

immunohistochemically in bronchiolar epithelial cells only, in

contrast to reported patterns of H5N1 virus attachment to type II

pneumocytes in pig, ferret and human lungs [55,56], and human

cases there viral antigens were observed in ciliated and nonciliated

tracheal epithelial cells [57] and type II pneumocytes [57,58].

Interestingly, lung infection of pigs with H5N1 viruses resulted

in apoptosis in proliferating leucocytes and macrophages while

infection with swine influenza viruses did not, although greater

severity of histological lesions were noted with swine influenza

virus infections. As we did not find apoptosis in alveolar epithelial

of H5N1-infected pigs, our finding only partially resembles the

observations of Uiprasertkul and co-authors [47] where frequent

apoptosis was identified in alveolar epithelial as well as in

proliferating leucocytes in lungs of humans who died in the course

of H5N1 virus infection. Our observation suggests tissue

pathogenesis of avian H5N1 and swine H3N2 viruses in pigs

might be different and such differences could underlay the lower

efficacy of replication of H5N1 HPAI viruses in pigs.

Serological studies with pigs showed very low pre-challenge levels

of antibodies detectable only in HI test with swine H1N1 and H3N2

influenza A viruses (Table 2). Such antibodies most likely represented

maternal transfer. Studies in a mouse model demonstrated that

antibodies to human influenza A viral neuraminidase N1 could

partially protect animals from lethal infection with H5N1 viruses

[59]. This observation raised a concern that maternal antibodies to

N1 could influence the course of H5N1 infection in pigs and was the

reason for including H1N1 swine influenza virus challenge.

However, the antibodies to H1N1 virus did not interfere with

H1N1 swine influenza virus replication in pigs challenged with Sw/

IN/88. Furthermore, the antibodies to H3N2 virus did not inhibit

replication of H3N2 swine influenza virus. From the current

experiments, the detection of H5N1 virus replication and presence of

specific serum antibodies against H5N1 virus implies that the low

levels of H1N1 antibodies did not significantly interfere with H5N1

virus replication in the respiratory tract of pigs.

Overall, the results of this study indicate that commercial piglets

can support replication of H5N1 HPAI viruses, but their

susceptibility to infection is low. The course of H5N1 virus infection

in pigs was almost asymptomatic which could delay or prevent

diagnosis of H5N1 infection in pigs. The infected pigs shed H5N1

virus, but the viral titers were lower and time of shedding was shorter

in comparison with H1N1 and H3N2 swine influenza viruses. In

addition, there was individual strain variation following infection of

pigs with different H5N1 viruses. Intranasal inoculation with MDk/

VN/05 (subclade 2.3) produced infection detected by a single

seroconversion and no virus recovery from nasal cavity, while

inoculation with VN/04 virus (Clade 1) produced a seroconversion

in one of two pigs and low titers of virus were found in nasal cavity on

day 1 in 3 pigs. By contrast, the virus isolated from wild migratory

birds, WS/Mong/05 (subclade 2.2) infected all pigs in the group,

and tissue tropism and titers of this virus were similar to those of

swine influenza viruses. However the individual susceptibility of pigs

to influenza infection is highly variable. As the number of animals in

this study was minimal and not suitable for statistical evaluation, we

can not exclude that differences observed among the H5N1 viruses

are the result of variations in individual susceptibility of pigs.

In addition, consumption of chicken meat infected with high

titers of virus (1010 EID50/pig) produced a subclinical infection in

pigs. The presence of virus in tonsils and the upper respiratory

tract suggests that contact between the infected meat and

oropharynx initiated infection, most likely through the tonsil.

During the 2003 H7N7 poultry outbreak in the Netherlands,

infections were detected in pigs on farms with infected poultry, and

in some instances, the pigs had been fed broken eggs from the

infected chickens [60]. This suggests consumption of infectious

virus in raw or uncooked contaminated product can potentially

transmit the virus to mammals.

The main question resulting from the current study is why this

experimental mammalian host has lower susceptibility to infection

as compared to ferrets and mice? It is possible, that further

detailed studies of immunopathogenesis of H5N1 infection in pigs

will reveal the mechanism of such resistance. This knowledge

could be extremely useful for new approaches for treatment of

H5N1-induced disease and for the design of new antivirals.

Table 3. Exposure of pigs to WS/Mong/05 H5N1 virus
through consumption of meat from infected chickens

Virus titers in
nasal swabs on
day 3 (log10

EID50/ml) a
Organ titers on day 5
(log10 EID50/ml) b

Serum antibody titer
(VN test) to WS/Mong/
05 virus

Nasal
turbinate Tonsils

Pre-
exposure

Post-
exposure

2.6360.49 2.6360.18 2.8860.18 ,20 80

aVirus was detected in nasal swabs from 2 of 4 pigs on day 3 only.
bVirus was detected only in nasal turbinate and tonsils of 2 pigs killed on day 5

after consumption of infected chicken meat.
doi:10.1371/journal.ppat.1000102.t003

Table 2. Pig pre- and post-exposure serum antibody titers

Pigs infected
with: Antibody titers to challenge virus

Pre-infection sera Post-infection sera a

HI test VN test HI test VN test

Ck/Indo/03 ,10 ,20 10–160 (2) 80–1280 (2)

VN/04 ,10 ,20 320 (1) 1280–5120 (1)

WS/Mong/05 ,10 ,20 10–80 (2) 80–320 (2)

MDk/VN/05 ,10 ,20 ,10 20–40 (1)

Sw/NC/04 10–20 ,20 160–320 (2) 640–2560 (2)

Sw/IN/88 20 ,20 640 (2) 640–1280 (2)

aThe number of pigs (of 2) positive for antibodies against the challenge virus is
shown in brackets.

doi:10.1371/journal.ppat.1000102.t002
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Materials and Methods

Viruses and cells
H5N1 viruses A/Chicken/Indonesia/7/03 (Ck/Indo/03) and

A/Whooper swan/Mongolia/244/05 (WS/Mong/05) were iso-

lated at Southeast Poultry Research Laboratory from field samples

by passage in 10-day-old embryonating chicken eggs. Human

isolate of H5N1 highly pathogenic avian influenza virus, A/

Vietnam/1203/04 (VN/04) was obtained from World Health

Organization collaborating laboratories in Asia through National

Institute of Allergy and Infectious Diseases, National Institutes of

Health (NIAID, NIH), Bethesda, MD, USA. H5N1 virus A/

Muscovy duck/Vietnam/209/05 (MDk/VN/05) was provided by

Dr. Nguyen Van Cam from National Center for Veterinary

Diagnosis, Hanoi, Vietnam. Swine H3N2 virus A/Swine/North

Carolina/307408/04 (Sw/NC/04) and H1N1 virus A/Swine/

Indiana/1726/88 (Sw/IN/88) were obtained respectively from

National Veterinary Services Laboratories, Ames, Iowa, USA and

the University of Wisconsin, Madison, Wisconsin, USA. Virus

stocks were produced by passage in 10-day-old embryonating

chicken eggs. H5N1 viruses Ck/Indo/03, WS/Mong/05, MDk/

VN/05 were the 2nd chicken embryo passage and VN/04 isolate

was the 4th chicken embryo passage after isolation. The allantoic

fluid from infected eggs was harvested, divided into aliquots, and

stored at –70uC until it was used for experiments. The infectivity of

stock viruses was determined in 10-day-old embryonating chicken

eggs and in Madin-Darby canine kidney (MDCK) cells according

to standard procedures. The 50% egg infective dose (EID50) and

the 50% tissue culture infectious dose (TCID50) values were

calculated by the Reed-Muench method [61]. All experiments

with live H5N1 viruses were performed in a biosafety level 3

agriculture (BSL-3AG) biocontainment facility, and all personnel

were required to use respiratory protection when working with live

viruses or infected animals.

MDCK cells were obtained from the American Type Culture

Collection (Manassas, VA) and were cultured in Dulbecco’s

Modified Eagle’s Medium supplemented with 5% fetal bovine

serum.

Experimental infection of pigs
Two to three weeks-old male castrated piglets (Landrace6Large

White cross) were purchased from a local commercial farm. The

pigs did not receive any vaccines on the production farm. In the

BSL-3AG animal laboratory facilities pigs were housed in HEPA-

filtered isolation units at a constant 27uC. Three to five days were

taken to acclimatize animals to the facility. Piglets were feed with

commercially available pelleted diet in amounts prescribed by the

manufacturer to fulfill all dietary needs. Animal experiments were

conducted according to the protocols approved by the Institutional

Animal Care and Use Committee based on the applicable laws

and guidelines. Each virus treatment group consisted of 4 pigs that

were anesthetized with the intramuscular injection of ketamine

(20 mg/kg) and xylazine (2 mg/kg) mixture and inoculated

intranasally with virus dose of 106 EID50 in 2 ml of PBS (1 ml

in each nostril). Control pigs (two separated groups of 2 animals)

were inoculated with 2 ml of sterile PBS. The pigs’ body weights,

temperatures and feed consumption were monitored daily, starting

1 day before inoculation and ending on day 11 after inoculation.

Collection of samples, virus detection and titration
Nasal and rectal swabs were collected 3 or 4 days before the

infection and on day 1, 3, 5, 7, 9, and 11 after virus inoculation.

Swabs were tested in 10 day-old embryonating chicken eggs to detect

and titer virus (lower detection limit, 100.5 EID50/ml). Before the

titration, each sample of allantoic fluid that was positive in a

hemagglutination test was confirmed to be influenza A virus positive

by solid phase ELISA assay (BinaxNow, Scarborough, ME). Virus

titers were expressed as log10 EID50 per 1 ml of swab media. Two

pigs from each group were euthanatized on day 5 after virus

inoculation and the following organs and tissues were collected

during the necropsy: nasal turbinate, tonsils, trachea, lungs, olfactory

bulbs, brain (transverse section through mid-cerebrum, thalamus,

cerebellum/pons and medulla oblongata), heart, whole blood

(collected in sterile PBS to prevent clotting), spleen, liver, stomach,

pancreas, small intestine (upper part of duodenum and middle part

of jejunum), large intestine (rectum), kidney, adrenal glands,

diaphragm, and skeletal muscle. Tissues were weighed and grounded

in sterile PBS with antibiotics to prepare 10% homogenates. Samples

were injected into 10 day-old embryonating chicken eggs for virus

detection and titration as described above.

Serological assays
Pigs were bled one day before and on day 14 after virus

inoculation. To destroy non-specific inhibitors, serum samples

were heat inactivated at 56uC for 30 min and treated with 10%

chicken red blood cell (CRBC) for 60 min at 4uC. Serum antibody

titers were determined in hemagglutination inhibition (HI) test

with 0.5% CRBC and virus neutralization test (VN) in MDCK

cells according to standard procedures described previously [29].

Virus infective dose of 100 TCID50 was used for VN test; MDCK

cells were incubated for 72 h at 37uC.

Histological analysis and immunohistochemistry
Tissues samples collected at necropsy on day 5 and 14 after virus

inoculation were preserved in 10% neutral buffered formalin. After

fixation, the tissues were routinely processed and embedded in

paraffin. Sections were cut at 5 mm and stained with hematoxylin

and eosin. Duplicate sections were cut and immunohistochemically

stained using a mouse-derived monoclonal antibody (P13C11)

specific for type A influenza virus nucleoprotein antigen as the

primary antibody. The procedures used to perform the immuno-

histochemistry followed those previously described [62,63]. Fast red

was used as the substrate chromagen, and slides were counterstained

with hematoxylin. Two to five sections of each organ was stained

with hematoxylin and eosin and their immunohistochemically

stained duplicates were analyzed.

Apoptosis analyses
Lung sections from infected and control animals were analyzed

for apoptosis by using the terminal deoxynucleotidyl transferase-

mediated dUTP-biotin nick end-labeling (TUNEL) assay (In Situ

Cell Death Detection Kit, POD, Roche, Mannheim, Germany),

according to the protocol provided by the manufacturer, and slides

were counterstained with hematoxylin.

Virus sequencing and phylogenetic analysis
Viral RNAs were extracted from the allantoic fluid by the use of

Trizol LS reagent (Invitrogen Inc., Carlsbad, CA). Standard

reverse transcription-PCR was performed by use of a One-Step

RT-PCR kit (QIAGEN, Valencia, CA) with primers specific for

influenza virus HA of H5 subtype. The primer sequences and

amplification conditions used are available upon request. The

PCR products were separated in an agarose gel by electrophoresis,

and amplicons of the appropriate sizes were subsequently excised

from the gel and extracted by use of a QIAGEN gel extraction kit.

Sequencing was performed with a PRISM Ready Reaction

DyeDeoxy Terminator cycle sequencing kit (Perkin-Elmer, Foster
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City, CA) run on a 3730 automated sequencer (Perkin-Elmer).

DNA sequences were completed by using the Lasergene sequence

analysis software package (DNAStar, Madison, WI). The nucle-

otide sequences of WS/Mong/05 and MDk/VN/05 HA genes

have been deposited in the GenBank database under accession

numbers EU723707 and EU723708 respectively.

Reference sequences of the HAs of H5 subtype were uploaded

from the Influenza Sequence Database at Los Alamos National

Laboratory (www.flu.lanl.gov) [64]. Sequences (nucleotides 77 to

1723) were compared by ClustalW alignment algorithm by using

BioEdit Sequence Alignment Editor (www.mbio.ncsu.edu/BioEdit/

bioedit.html). To estimate phylogenetic relationships, we analyzed

nucleotide sequences by the neighbor-joining method with 500

bootstraps by using PHYLIP (the PHYLogeny Inference Package)

version 3.65 (http://evolution.gs.washington.edu/phylip.html).
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