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Abstract: Abrin, a toxin isolated from the seeds of Abrus precatorius (jequirity pea) is considered a
biological threat agent by the Center for Disease Control and Prevention. To date, there is no effective
postexposure treatment for abrin poisoning, and efforts are being made to develop an efficient vaccine
and measures for postexposure therapy. Epitope mapping is widely applied as an efficient tool
for discovering the antigenic moieties of toxins, thus providing invaluable information needed for
the development of vaccines and therapies. Aiming to identify the immunodominant epitopes
of abrin, several neutralizing antiabrin polyclonal antibodies were screened using a set of 15-mer
peptides spanning the amino acid sequence of either the A or B subunits of abrin. Analysis of the
antibody-binding pattern revealed 11 linear epitopes for the A subunit and 14 epitopes for the B subunit
that are located on the surface of the toxin and thus accessible for antibody interactions. Moreover,
the spatial location of several of these epitopes suggests they may block the galactose-binding pockets
or the catalytic domain, thus neutralizing the toxin. These findings provide useful information and
suggest a possible strategy for the development and design of an improved abrin-based vaccine and
therapeutic antibodies.
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1. Introduction

Abrin, a toxin isolated from the seeds of Abrus precatorius (jequirity pea), belongs to the family
of Type 2 ribosome inactivating glycoproteins (RIP) [1]. As such, abrin consists of two subunits,
the enzymatic A-chain (ATA) that depurinates a specific adenine residue of the 28S ribosomal RNA of
the 60S subunit, thereby arresting protein synthesis; and the B-chain (ATB), a lectin that binds galactose
residues at the cell surface, thereby mediating toxin internalization into the cells [2,3]. Owing to its
high toxicity, relative ease of purification, and accessibility, abrin is considered a biological threat agent
by the Center for Disease Control and Prevention (CDC). Indeed, over the past decade, terrorist plots
involving the use of abrin as a biological threat agent were uncovered prior to their execution [4].

To date, there is no effective postexposure treatment for abrin poisoning, and efforts are made to
develop an efficient vaccine and measures for postexposure therapy [5]. Interestingly, abrin and ricin
toxin share a marked homology in their sequence (42% for their A-chain and 59% for the B-chain) [6],
and there is well-established body of knowledge on the immunodominant epitopes of ricin. However,
there is no known cross-reactivity between antibodies elicited against ricin and abrin [7], and hence no
shared neutralizing epitopes, reinforcing the need to map abrin epitopes. To date, only two neutralizing
epitopes of antiabrin monoclonal antibodies were identified, both located on the surface of ATA [8,9].
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Epitope mapping of the polyclonal antibodies in the sera of immunized animals is widely applied
as an efficient tool for discovering antigenic moieties of pathogens, and thus provides invaluable
information needed for the development of vaccines and therapies [10]. The aim of this work was
to provide, for the first time, epitope-mapping analysis of several antiabrin polyclonal antibody
preparations in order to identify the immunodominant epitopes on both subunits of the toxin.

2. Materials and Methods

2.1. Antibodies

Purified abrin was essentially prepared from Abrus precatorius seeds as described previously [9,11].
The immunization protocol of Serum R1 was described earlier [12], and that of Serum R3 (pooled from
several immunized rabbits) was detailed by Sabo et al. [13]. Serum R2 was derived from a pool of
rabbits that were immunized by three injections of alum-adsorbed abrin (4 µg per animal). M1 was
derived from mice (CD-1 females) previously immunized by three injections of alum-adsorbed abrin
(4 µg per animal), and the antibody-contained ascites fluid was collected and pooled.

2.2. ELISA Titer Determination

Determination of antiabrin antibody titers was performed as described before [12]. In short,
maxisorp 96-well plates (Nunc, Sigma-Aldrich, St. Louis, MO, USA) were coated overnight with
2 µg/mL of abrin in 50 mM pH 9.6 carbonate–bicarbonate buffer, washed, and blocked with PBST
buffer (0.05% Tween 20, 2% BSA in PBS). Antibodies were added and incubated in threefold dilutions
for one hour; the plates were then washed with PBST and incubated with the reporting antibody
(AP-conjugated-goat antirabbit or antimouse), and developed with substrate (p-nitrophenyl phosphate).

2.3. In Vitro Abrin-Neutralization Assay

Determination of antibody-neutralization potency was performed as described before [12]. In short,
Ub-FL cells (a kind gift from Professor Piwnica-Worms University of Texas, MD Anderson Cancer
Center, Austin, TX, USA) were seeded in 96-well plate (1.5 × 104 cells/well) and incubated over night
at 37 ◦C. Cell-culture medium was removed, and abrin (7 ng/mL) was added with serial dilutions of
antiabrin antibodies. Twenty-four hours later, cell-culture medium was replenished with fresh medium
containing proteasome inhibitor MG132 (Sigma, C2211 1 µM) for another hour. Cells were lysed by the
addition of 50 µL lysis buffer (Promega, E1941), and residual luciferase activity was determined.

2.4. Epitope Mapping

A set of 15 amino acid long peptides (Figure S1), overlapping one another by 10 residues and
spanning the sequence of either the A or the B subunits of abrin were produced by JPT Peptide
Technologies (Berlin, Germany). Each peptide was biotinylated at the N-terminus and modified by
glycine amide at the C-terminus. Lyophilized peptides were reconstituted using 100% DMSO and
further diluted in PBST. Maxisorp 96-well microtiter plates were coated overnight with 5 µg/mL
streptavidin, washed and blocked as described above. Peptides (5 µg/mL in PBST) were then added
for 20 min, the plates were washed, and antiabrin antibodies diluted in PBST were added for 1 hour
of incubation. Plates were then washed with PBST and incubated with the detecting antibody (AP
conjugated goat antirabbit or antimouse) and developed with substrate (p-nitrophenyl phosphate).

3. Results

3.1. Characterization of Polyclonal Antiabrin Antibodies

As an initial step, we analyzed the binding properties of several polyclonal antiabrin-antibody
preparations. These included ascitic fluid derived from mice immunized with purified abrin adsorbed
on alum hydroxide (M1) and hyperimmune serum from rabbits immunized with abrin with Freund’s
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adjuvant (R1), abrin adsorbed on alum hydroxide (R2), or abrin adsorbed on alum hydroxide, followed
by Freund’s incomplete adjuvant (R3).

To this end, binding of the different preparations to the toxin was assessed by ELISA, and the
half-dilution values (Dil50) [13] were determined. Although all four preparations were found to bind
abrin with high affinity (Dil50 of ~10,000 and above), the binding values of R1 and R3 were significantly
higher than those of R2 and M1 (Table 1). Next, we in vitro determined the neutralizing potency of each
preparation and assessed their ability to prevent abrin from arresting luciferase synthesis. Residual
intracellular luciferase levels were measured, and the maximal dilution that allowed neutralization of
50% of abrin activity (ED50) was determined (Table 1). Overall, there was a positive correlation between
the binding properties and the neutralization potencies of the tested preparations, where antibodies
that exhibited high binding also possessed high PD50 values.

Table 1. Characteristics of antiabrin antibodies.

Serum Binding (DIL50) a Neutralization (ED50) b B:N

R1 110,000 22,600 4.9
R2 27,000 8800 3.1
R3 153,400 112,300 1.4
M1 9000 960 9.4

a Half-dilution values of sera in ELISA towards abrin; b serum dilutions that neutralize 50% of abrin activity in vitro.

Interestingly, the proportion of the neutralizing antibodies in overall antiabrin antibodies
(expressed as the ratio between binding and neutralization; B:N) in each preparation varied by
up to sevenfold (1.4 to 9.4). Different vaccination strategies using the homologous toxin ricin elicited
antibodies directed against the sugar moieties of the toxin to different degrees [14]. While antisugar
antibodies increased the overall binding titer toward the toxin, they did not contribute to toxin
neutralization. It may, therefore, follow that differences between B:N ratios reflect differences in the
fraction of antisugar antibodies in various antiabrin preparations, an issue that we intend to assess in
the future. Taken together, these results indicate that antiabrin preparations represent diverse sets of
antibodies and are therefore suitable for fingerprinting the immunodominant epitopes of abrin.

3.2. Immunodominant Epitopes of Abrin Subunit A

To characterize the polyclonal antibody response toward abrin, a set of 15-mer biotinylated
peptides were prepared spanning the amino acid sequence of either the A or the B subunits of abrin,
each peptide overlapping with the previous peptide by 10 amino acids, thus resulting in a set of 49
and 52 peptides for ATA and ATB, respectively (full sequences listed in Figure S1). The four antiabrin
antibody preparations were first reacted with the ATA set of peptides and the binding to each peptide
was determined. Since the peptides overlap each other, the epitope was considered positive only if it
appeared in at least two successive peptides. The reactivity of Serum R1 toward ATA revealed the
most diverse epitope recognition (Figure 1) that could be assigned to 11 sequences (Table 2).

Table 2. ATA immunodominant epitopes.

Epitope No. Epitope Sequence ATA Residue Number

1 EDRPI 1–5
2 KQFIEALR 18–25
3 IPVLP 36–40
4 TNAYV 71–75
5 GTQSY 81–85
6 DYLFTGT 96–102
7 GLQALT 130–135
8 QPDAAMISLE 186–195
9 QESVQD 206–211

10 PVIVD 226–230
11 CNPPN 247–251
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binding in each well was determined. 
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The three-dimensional structure of ATA is classically divided into three folding domains: 
Domain 1 spans Residues 1–109, Domain 2 spans Residues 110–197, and Domain 3 spans Residues 
198–251 [6]. According to this division, Domains 1–3 contain 6, 2, and 3 of the identified epitopes, 
respectively (Figure 2A). 

Figure 1. Binding of antiabrin sera to enzymatic A-chain (ATA) peptide array. Set of 15-mer biotinylated
peptides spanning amino acid sequence of A subunit of abrin were immobilized on microtiter plates
and incubated with antiabrin antibodies R1 (black), R2 (red), R3 (purple), or M1 (green). Plates were
then washed, AP-conjugated secondary antibody was added, and antibody binding in each well
was determined.

The three-dimensional structure of ATA is classically divided into three folding domains: Domain 1
spans Residues 1–109, Domain 2 spans Residues 110–197, and Domain 3 spans Residues 198–251 [6].
According to this division, Domains 1–3 contain 6, 2, and 3 of the identified epitopes, respectively
(Figure 2A).

While Serum R3 exhibited the highest titer and neutralization potency, it seems that it did not
interact with any of the linear ATA epitopes (Figure 1). From the overall peptide-binding pattern,
a response toward five epitopes could be deduced, all of which are shared with R1 (epitopes 1–3, 8,
and 9). There was a significant response of Serum R2 with Peptide 44 that might suggest that there
is another epitope located within that sequence. However, since this serum did not recognize the
adjacent peptides that largely overlapped in the sequence, we could not relate the high response to a
novel epitope. In contrast to these findings, the murine antiabrin antibodies reacted with only one
major epitope (overlapping epitope 3) and Serum R3 did not react with any of the ATA peptides. These
results may suggest that the ATA epitopes of these sera are mainly directed against nonlinear epitopes.

The location of the 11 ATA epitopes within the crystal structure of abrin is shown in Figure 2B.
As expected from antibody epitopes, all 11 epitopes are located on the solvent-exposed surface of the
toxin. In the majority of the cases, the exposed residues represent the full amino acid sequence of the
predicted epitope. However, in some cases (i.e., Epitopes 3 and 10), only part of the assigned target
epitope is located on the surface of the toxin, suggesting that, for these epitopes, amino acid residues
that are in direct contact with the antibody are restricted, while other residues that are seemingly
inaccessible are mainly responsible for maintaining the epitope 3D structure.

The toxicity of abrin stems from its catalytic activity that causes irreversible depurination of a
specific adenine nucleotide within the 28S rRNA, thereby leading to the cessation of cellular-protein
synthesis and eventually to cell death. This catalytic activity is mediated at the active site cleft within
the A chain that consists of five residues (Y74, Y113, E164, R167, and W198) [6]. Though these residues
map to noncontiguous sites within the linear sequence of abrin (Figure 2A), they cluster together
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to form the active site region (Figure 2B). It was, therefore, of interest to determine whether any of
the mapped epitopes are located in the vicinity of the active site. Indeed, active-site Residue Y74 is
part of Epitope 4, and that this epitope resides at the surface of the active site. It is thus tempting to
assume that the antibody binding to this epitope blocks the active site, thereby directly neutralizing
the catalytic activity of abrin. This notion may be supported by the study by Bagaria et al. [15] that
mapped the epitope of an antiabrin monoclonal neutralizing antibody, D6F10. This antibody binds to
Residues T112, G114, and R118 that are located also at the surface of the active site, contrapositioned to
Epitope 4.Antibodies 2020, 9, x FOR PEER REVIEW 5 of 10 
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of sera that reacted with each epitope (pale to darkest for 1 to 3 sera, respectively). (B) Crystal structure 
of abrin (PDB 1abr; ATA in pale blue and enzymatic B-chain (ATB) in light brown). Immunodominant 
epitopes color-coded and numbered; catalytic domain in orange. 
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Figure 2. Immunodominant epitopes on ATA. (A) Linear depiction of ATA subunits folding domain
(1–3) and amino acid residues (marked by asterisks) comprising catalytic domain. Location of
immunodominant epitopes (1–11) marked as shaded boxes, whereas shading tones represent number
of sera that reacted with each epitope (pale to darkest for 1 to 3 sera, respectively). (B) Crystal structure
of abrin (PDB 1abr; ATA in pale blue and enzymatic B-chain (ATB) in light brown). Immunodominant
epitopes color-coded and numbered; catalytic domain in orange.

As mentioned earlier, very little is known about the targets of antiabrin-neutralizing antibodies; in
fact, only two such epitopes, both located on ATA, have been described so far—epitopes of antibodies
D6F10 (discussed above) and A7C4 ([9]. By using a set of toxin mutants, the authors concluded that
Residues T82, G83, H85, D103, and H105 are crucial for the binding of this antibody. Here, we found
that these residues are members of two of the identified immunodominant epitopes, Epitopes 5 and 6,
respectively. Not surprisingly, in the folded form of the toxin, these two epitopes are adjacent to each
other (Figure 2B), and they are positioned distal to the active site; however, to induce cell death, ATA
needs to interact with other proteins en route to the cytoplasm (as was shown in detail for ricin subunit
A [15]. It is, therefore, possible that binding antibodies to Epitope(s) 5 and/or 6 may interfere with one
or more abrin:protein interactions required for ATA cytotoxic performance.
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3.3. Immunodominant Epitopes of Abrin Subunit B

Using the same strategy described above, the four antiabrin antibody preparations were allowed
to interact with peptides spanning the amino acid sequence of the abrin B subunit (ATB). In this case,
all four preparations interacted with the peptides (Figure 3), and 15 binding epitopes were identified
overall (Table 3). Sera R1 and R3 exhibited diverse recognition with 13 shared epitopes (1–8, 10–13,
and 15), whereas Serum R3 also interacted with Epitopes 9 and 14. Unlike the lack of interactions
between Serum R2 and ATA, this serum was found to interact with two ATB epitopes, 7 and 9.
The murine-derived antiabrin antibodies (M1) interacted with Epitopes 7, 12, and 15. The observation
that all sera interacted with ATB epitopes, while only a limited number of these sera interacted with
ATA epitopes, may imply that ATB is more immunogenic than ATA.Antibodies 2020, 9, x FOR PEER REVIEW 7 of 10 
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Figure 3. Binding of antiabrin sera to ATB peptide array. Set of 15-mer biotinylated peptides spanning
amino acid sequence of B subunit of abrin were immobilized on microtiter plates and incubated
with antiabrin antibodies R1 (black), R2 (red), R3 (purple), or M1 (green). Plates were then washed,
AP-conjugated secondary antibody was added, and antibody binding in each well was determined.

Table 3. ATB immunodominant epitopes.

Epitope No. Epitope Sequence ATB Residue Number

1 VRIGG 16–20
2 VDVYD 26–30
3 NGYHNG 31–36
4 DRLEE 46–50
5 WTLKSDK 54–60
6 YAPGSYV 74–80
7 IWDNGT 97–102
8 MGGTLTV 119–125
9 QGWRTGN 134–140
10 VTSIS 146–150
11 QAQGSNVWMAD 158–168
12 DGSI 183–186
13 WVKFNDGSI 221–229
14 KGSDPSLKQ 241–249
15 QIWLTLF 261–267
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ATB comprises two homologous globular domains [6], each containing a galactose-binding pocket.
These domains can be further divided into four subdomains (Figure 4A), where a hydrophobic core is
formed by Subdomains α, β, and γ, while Subdomain λ connects the two globular domains. Overall,
mapped epitopes are distributed over the entire length of ATB, with Subdomain 1β being slightly more
populated with interacting epitopes when compared to the 3 subdomains.Antibodies 2020, 9, x FOR PEER REVIEW 8 of 10 
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We characterized for the first time the polyclonal antibody response towards abrin, and 
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the possibility to identify a wide coverage of epitopes. It is possible, however, that these antibody 
preparations also target nonlinear epitopes that cannot be identified by current method applied in 
this study. As abrin is considered an imminent biothreat agent, there is an ongoing effort to develop 
effective countermeasures to this toxin. Epitope mapping of the polyclonal antibodies in the sera of 
immunized animals enhances our knowledge regarding the antigenic moieties of abrin and provides 
important information for the development of such countermeasures. Indeed, two of the identified 
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Figure 4. Immunodominant epitopes on ATB. (A) Linear depiction of two ATB subunit homologous
globular domains and amino acid residues comprising galactose-binding pockets of each domain
(marked by asterisks). Location of immunodominant epitopes (1–15) marked as shaded boxes, whereas
shading tones represent number of sera that reacted with each epitope (pale to darkest for 1 to 4 sera,
respectively). (B) Crystal structure of abrin (PDB 1abr; ATA in pale blue and ATB in light brown).
Immunodominant epitopes color-coded and numbered; galactose-binding pockets in green.

Visualization of the 15 epitopes on the crystal structure of abrin revealed that all but one are located on
the surface of the toxin, securing their accessibility to antibody binding (Figure 4B). Epitope 12, however,
is buried deep within the molecule, thus raising the question about its role as an antibody epitope.
A possible explanation may rely on the fact that the sequence of this epitope (DGSI) also appears as a
part of Epitope 13 (WVKFNDGSI) that is located at the surface of the toxin. It is thus possible that the
antibodies that interacted with the peptides encompassing Epitope 12 were originally raised against
Epitope 13.

As the main activity of ATB is to bind galactose moieties located on the cell surface and thus
mediate toxin uptake, it was of interest to examine whether any of the identified ATB epitopes play
a role in abrin neutralization by blocking its ability to bind galactose. ATB contains two potential
galactose-binding sites, N51 and N260, for Subdomains 1 and 2, respectively [6]. In addition, on the
basis of structure similarities to ricin, two residues (in each subdomain) were assumed to be involved
in hydrogen bonding to the sugar (D27 and W42 for Domain 1; D239 and W253 for Domain 2; Figure 4).
Indeed, the galactose-binding pocket of Domain 1 seemed to be populated by several of the ATB
epitopes. First, sugar-binding Residue D27 is a part of Epitope 2, and Epitopes 4 and 8 surround
the binding pocket. As for Domain 2, it appears that Epitope 14 is in close proximity to the second
galactose-binding pocket, and can thus also be regarded as a putative neutralizing epitope. Although
the main function of the ATB is to bind the cell membrane, it is highly possible that it also has a role in
intracellular trafficking (mainly in the early endosomes) where it may interact with other proteins.
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Therefore, other epitopes, though located distally to the galactose-binding pockets, might also play a
role in antibody-mediated abrin neutralization.

4. Conclusions

We characterized for the first time the polyclonal antibody response towards abrin, and identified
the immunodominant epitopes of each of the toxin’s subunits. By screening with antibodies derived
from two animal species (rabbits and mice) by different vaccination strategies, we increased the
possibility to identify a wide coverage of epitopes. It is possible, however, that these antibody
preparations also target nonlinear epitopes that cannot be identified by current method applied in
this study. As abrin is considered an imminent biothreat agent, there is an ongoing effort to develop
effective countermeasures to this toxin. Epitope mapping of the polyclonal antibodies in the sera of
immunized animals enhances our knowledge regarding the antigenic moieties of abrin and provides
important information for the development of such countermeasures. Indeed, two of the identified
ATA immunodominant epitopes were previously shown to be the target of neutralizing monoclonal
antibodies. In the future, the neutralization potency of the novel epitopes identified in this work
(especially on ATB) will be evaluated. To conclude, the findings of this study provide useful information
as part of an overall strategy to design improved vaccines and countermeasures to abrin.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4468/9/2/11/s1.
Figure S1: Sequences of 15-mer peptides of ATA and ATB used for binding screening assay.
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