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Abstract
In order to perform good kinetic experiments, not only the experimental conditions have to be optimized, but the evaluation
procedure as well. The focus of this work is the in-depth comparison of different approaches and algorithms to determine kinetic
rate constants for biomolecular interaction analysis (BIA). The different algorithms are applied not only to flawless simulated data,
but also to real-world measurements. We compare five mathematical approaches for the evaluation of binding curves following
pseudo-first-order kinetics with different noise levels. In addition, reflectometric interference spectroscopy (RIfS) measurements of
two antibodies are evaluated to determine their binding kinetics. The advantages and disadvantages of the individual approach will
be investigated and discussed in detail. In summary, wewill raise awareness on how to evaluate and judge results fromBIA by using
different approaches rather than having to rely on “black box” closed (commercial) software packages.

Keywords Reflectometric interference spectroscopy . Biomolecular interaction analysis . Binding kinetics . Association rate
constant . Pseudo-first-order kinetics

Introduction

The analysis of biomolecular interaction is a fascinating field of
research. Especially important is the analysis of binding kinetics,
which allows the determination not only of the thermodynamic
affinity constant, but also of the kinetic association and dissoci-
ation rate constants. The knowledge of these constants leads to a
deeper understanding of how biological systems function at the
molecular level, which can be very useful for pharmaceutical
research and rational design of therapeutics [1].

Biomolecular interaction analysis (BIA) aims to quantify in-
teraction patterns in order to describe events between biomole-
cules, e.g. antibody and its antigen. The analysis of binding
events is error-prone because of the user influence on experimen-
tal design, on the used analytical method, on the quality of mea-
surement, and on data evaluation. As one-to-one interaction is the

simplest model available, it is often applied. However, the exper-
imental setupmust be designed carefully tomake sure the chosen
mathematical model is applicable. Since it is a difficult task to
achieve good experimental design, there are reviews pointing out
that the quality of published biosensor work is often poor [2, 3].
But there are also publications demonstrating how good kinetic
analysis should be performed [4–6]. For example, a study with
different Biacore users showed that it is possible to obtain repro-
ducible kinetic constants with proper instructions [7].

The principle of BIA is to detect time-resolved specific inter-
action of an analyte in continuous flow with an immobilized
ligand [8]. Many papers determine binding constants or rates of
interactions in immunology [9, 10], drug screening [11, 12], or
even proteomics research [13, 14]. Especially suitable for BIA are
label-free techniques as they avoid disturbances from conjugated
markers or complex handling of radioactive material. Common
techniques to measure label-free binding are isothermal ti-
tration calorimetry (ITC) [15] or surface plasmon reso-
nance (SPR) [16]. SPR belongs to the direct optical
detection methods [17, 18] alongside integrated optical
grating coupler [19] or reflectometric interference spec-
troscopy (RIfS) [20]. They allow time-resolved measure-
ments yielding thermodynamic and kinetic information.
However, as mentioned in a recent review [21] matrix,
both instrumentation and flow influence measurements.
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Commercial software for data evaluation is available, e.g.
from Biacore [22], TraceDrawer [23], or Scrubber [24].
Besides, there is open-source software available like Anabel
[25] or EvilFit [26]. A problem when using available software
is that it is irrelevant whether the user understands what ex-
actly the software does, which might lead to wrong applica-
tion and consequently to false constants. The most important
question the user should ask himself is whether the assumed
model is correct. This requires an understanding of biomolec-
ular processes in the homogeneous phase, of transport pro-
cesses to or from the surface, and of the kinetic processes at
the biosensor [27]. RIfS belongs to the heterogeneous immu-
noassays; thus, the immune reaction takes place on a solid
phase with an immobilized component and ideally only ef-
fects at the surface are monitored.

Kinetic analysis of binding curves is a long-established
procedure. Often the complex binding process is reduced to
the reaction between the immobilized ligand and the analyte in
solution which represents one-to-one kinetics. This one-to-
one interaction can be described by pseudo-first-order kinet-
ics, if the analyte flows over the surface resulting in its con-
centration remaining constant. Assuming one-to-one interac-
tion, the rate and affinity constants can be easily calculated, if
the association and dissociation curves are measured for var-
ious analyte concentrations. Experimental conditions should
be adapted to avoid deviations from the pseudo-first-order
kinetic model as described in [5]. Mass transport limitation,
for example, can be reduced by using fast flow rates and by
reducing the immobilization level of the recognition element.
It can be verified by varying the flow rate [28].

For the calculation of the rate constants, different mathe-
matical approaches can be used: linear transformation of the
primary data by use of the derivative [9] or by use of the
integral of the binding curve, or the integrated rate equation,
which gives an exponential function [29]. There are several
factors that can prevent the binding curve to follow pseudo-
first-order kinetics: mass transfer [30], rebinding of analyte
[31], bivalency or even other orders of analyte, two-state re-
action [10], parallel reactions, or competing reactions [32].
Some of these effects can be ruled out by a careful experimen-
tal design, but it is also possible to apply more complex
models, if numerical integration in combination with global
data fitting is used [32, 33].

In this paper, we compare evaluation tools using simulated
kinetic data and determine how they can cope with different
noise levels. Deviations from pseudo-first-order reaction ki-
netics can be ruled out when using simulated data allowing the
comparison of different evaluation approaches without being
flawed by device-specific error sources. In order to mimic real
measurement data, noise was added to the simulated data. The
effect of evaluating only a part of the association phase in
contrast to evaluating the entire association phase is examined.
In addition, these evaluation tools are used with experimental

data of two antibodies measured with RIfS for comparison in
order to apply the results of the evaluation of simulated data.
For real data, it is important to check whether the goal of
avoiding mass transport by reducing the immobilization level
of the recognition element is achieved. This paper should be a
guideline for BIA evaluation, point out what to look out for
experimentally, and help with interpretation and verification
of results.

Materials and methods

Materials

Common chemicals were purchased from Sigma-Aldrich
(Taufkirchen, Germany) or Fluka (Neu-Ulm, Germany). The
monoclonal IgG antibodies to amitriptyline (host mouse)
clone 202 and clone TU-11 were purchased from Aviva
Systems Biology Corporation (San Diego, USA) and
antikoerper-online.de (Aachen, Germany) respectively.
Poly(ethylene glycol) diamine (PEG-DA, MW 2000 Da)
and ɑ-methoxy-ω-amino PEG (PEG-MA, MW 2000 Da)
were purchased from Rapp Polymere (Tübingen, Germany).
Phosphate-buffered saline (PBS) consisted of 150 mM sodi-
um chloride and 10 mM potassium phosphate at pH 7.4. The
solution used for regeneration of the sensor surface was gua-
nidine hydrochloride (GdnHCl, 6 M, pH 1.5). RIfS glass
transducers (1 cm × 1 cm) consisting of a 1-mm glass sub-
strate with a layer of 10 nm Ta2O5 covered with 330 nm SiO2

on top were obtained from Schott AG (Mainz, Germany).

Surface chemistry for RIfS transducers

The RIfS experiments were performed as described in [20]. The
ligand nortriptyline (NRT)was immobilized on glass transducers
using amine-coupling chemistry based on [34] and similar to
[35]. The transducers (1 × 1 cm) were first cleaned for 30 s in
KOH (6 M) solution, then washed with H2O. Next, they were
cleaned and activated for 15 min using freshly prepared piranha
solution (3:2 conc. H2SO4:H2O2 (30%)). After washing the
transducers with H2O and drying under nitrogen, theyweremod-
ified with 3-glycidyloxypropyl-trimethoxysilane (GOPTS) for
1 h. The transducers were cleaned with acetone and dried under
nitrogen. The polymer mixture of PEG-DA and PEG-MA
(1:1000) for the kinetic analysis was bound covalently onto the
GOPTS layer using 20 μl PEG (4 mg/ml in dichloromethane
DCM). After reacting overnight at 70 °C, the transducers were
cleanedwithH2O and dried under nitrogen. The amino functions
of PEG-DAwere transferred into carboxyl functions using 10 μl
of dissolved glutaric acid (GA) (0.67 mg/μl GA in DMF). Each
transducer was covered with another transducer in a DMF
vapour-saturated chamber for at least 6 h. Afterwards, the trans-
ducers were cleaned with DMF and H2O and dried under
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nitrogen. Subsequently, NRT was immobilized on the sensor
surface using N,N′-diisopropyl-carbodiimide (DIC) and N-
hydroxysuccinimide (NHS) as coupling reagents. NHS
(150 mg) and DIC (302 μl) were dissolved in 1 ml DMF, and
the transducers covered with the solution in a DMF vapour-
saturated chamber for 4 h. After cleaningwith DMF and acetone,
and drying under nitrogen, the transducers were incubated with
NRT (2 mg/ml in H2O) in a water vapour-saturated chamber
overnight. Then, the transducers were washed and dried under
nitrogen.

Measurement

RIfS was chosen for the BIA experiments because we have the
best experience with this system and it allows the most experi-
mental modifications. It is based on interference of white light at
thin films [36]. At phase boundaries, part of the light is transmit-
ted and part is refracted. The reflected partial beams superimpose
resulting in an interference spectrum described in detail in [18,
36]. A change in optical thickness (nd; product of refractive
index and physical thickness), which might be caused by anti-
body binding to antigen immobilized on the surface, results in a
shift of the interference spectrum. Monitoring the optical thick-
ness over time allows time-resolved detection [20] and typical
binding curves are obtained.

To collect binding data, measurements are performed sim-
ilar to [35, 37, 38]. First, the transducer surface was flushed
with buffer (baseline). Then, different concentrations of the
analyte (33 to 500 nM (antibody 150 kDa)) in PBS pH 7.4
were injected at a flow rate of 0.5 μl/s at room temperature
without temperature control. The dimensions of the flow cell
are 50 μm channel depth, 1 mm channel width, and 4 mm
channel length. The complex was allowed to associate for
600 s and dissociate for 900 s. The sample and buffer were
separated by air to prevent diffusion decreasing the sample
concentration towards the end of the association and low sam-
ple concentration in the buffer during dissociation. The sur-
faces were regenerated with a 400 s injection of GdnHCl.
Finally, another baseline was measured by flushing the cell
with buffer again. Triplicate injections of each sample were
flowed over the surface in random order.

Simulation of kinetic data

Data were simulated using the 1:1 (Langmuir) binding model
of BIAevaluation 4.1.1 with ka = 1 · 104 M−1s−1 and
kd = 1 · 10−3s−1. The maximum analyte binding capacity
Rmax was set to 1 nm, and the bulk refractive index contribu-
tion RI was set to 0. The analyte concentrations for the simu-
lations were 500 nM, 333 nM, 167 nM, 133 nM, 100 nM,
67 nM, and 33 nM. The association and dissociation times
were set to 600 s and 900 s, respectively. A value was taken
every 5 s which is the same rate as in the RIfS measurements.

Noise was added by use of Matlab R2020b with an amplitude
of 0.01 nm and 0.001 nm using random numbers with the
following command where y is the simulated data and r the
amplitude of noise:

yNoisy ¼ yþ 2 � r � rand length yð Þ; 1ð Þ−2 � r � 0:5

The noise levels used were 0.001 nm and 0.01 nm, which is
1% of Rmax and about 1/14 of the smallest increase of optical
thickness (0.14 nm for 33 nM). 0.01 nm noise is very large in
comparison with real measurement data where the noise is
typically around 0.001 nm noise.

Furthermore, the residuals obtained by mono-exponential
fit of one of the experimental binding curves (67 nM clone
202, 25–525 s of the association phase) were added to the
simulated curve of the same concentration.

Data evaluation

Data evaluation was performed for the simulated and the ex-
perimental data. To evaluate the measured data, the first five
data points and the last 20 data points of the association were
left out (shown in Fig. S1). The methods used for the evalua-
tion of the association phase were mono-exponential fit, de-
rivative, and integration. The dissociation phase was evaluat-
ed with an exponential decay function and a linearization
method. In addition, the BIAevaluation software was used to
evaluate both phases. In order to compare how well different
methods calculate the true rate constants for simulated data,
relative deviations were calculated by

kcalculated−k true
k true

Association

The association phase was evaluated using three different
methods for three different areas of the association phase.
For simulated data, first, the entire association phase was eval-
uated, then the first half, and finally, the association until an
optical thickness of 0.5 nm was reached. For experimental
data, the part of the association phase where the derivative
showed linear behaviour was evaluated.

Mono-exponential fit

The data of the association phase were fitted with the
MnMolecular formula provided by Origin Pro 2021 (iteration al-
gorithm: Levenberg Marquardt) which is y = A(1 − e−k(x − xc)).
The theoretical integrated rate equation is

Γ tð Þ ¼ Γeq 1−e−kobs�t
� �
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where Γ(t) is the surface load capacity over time, Γeq the equilib-
rium surface load capacity, and kobs the observed binding rate
constant which also describes the curvature of the calculated fitting
curve. In the case of RIfS, the measured signal is the difference in
the optical thicknessΔnd.

kobs linearization

The calculated kobs for different concentrations are related to
the rate constants by kobs = ka · c + kd with the association
rate constant ka and the dissociation rate constant kd. By plot-
ting kobs vs. the antibody concentration, the association rate
constant is obtained by linear regression performed by Origin
(instrumental error weighting = 1/ei^2) where ka represents
the slope and kd represents the y-axis intercept of the linear fit.
For simulated data, error bars of kobs represent the standard
error of the fit, while for measured data, kobs values are calcu-
lated as the mean of the triplicate measurements where the
error bars indicate the standard deviation of the mean.

Derivative

For the evaluation by derivative, the derivative of the surface
load capacity dΓ(t)/dt (in this case d(Δnd)/dt) is plotted
against the Γ(t) (here Δnd) where kobs is obtained as the neg-
ative slope after linear regression.

dΓ tð Þ
dt

¼ ka � c � Γmax−kobs � Γ tð Þ

Integration

Integrating this rate equation gives

Γ t2ð Þ−Γ t1ð Þ
t2−t1

¼ ka � c � Γmax−kobs �
∫t2t1Γ tð Þdt
t2−t1

When starting from the beginningwith t1 = 0 andΓ(0) = 0,
this equation becomes

Γ tð Þ
t

¼ ka � c � Γmax−kobs � ∫
t
0Γ tð Þdt

t

The data of the association phase were integrated and di-
vided by the integration time interval to obtain the X data. The
integration ofΔnd was performed with Origin (mathematical
area). The difference between the optical thickness at the end
of the integration and at the start of the integration divided by
the time interval provided the Y data. A plot of Γ(t)/t vs.

∫t0Γ tð Þdt=t gives kobs as the negative slope. The integration
can be performed in two directions starting from the beginning
(Int f) or from the end of the association phase (Int b). In both
cases, a linear plot of the data is achieved with deviations from

linearity for the first values (Fig. 1). For simulated data with
0.001 nm noise, the first ten values after integration were
masked, for simulated data with 0.01 nm noise and experi-
mental data, the values to be masked were determined by
assessing which part of the data showed a linear behaviour.
The integration was also preformed starting where half of
the surface load capacity at the end of the association phase
was reached.

Dissociation

Data evaluation of the dissociation phase was performed with
an exponential fit and a linearization method. The theoretical
equation for dissociation is

Γ tð Þ ¼ Γ0e−kd�t

where Γ0 is the surface load capacity at the beginning of the
dissociation and kd is the dissociation rate constant. The used

functionwas ExpDecay1 in Origin y ¼ y0 þ A1e
−x−x0

t1 where kd
can be calculated from t1 by kd ¼ 1

t1
. y0 is the y-offset. Strict

one-to-one interaction assumes that all bound analyte mole-
cules can dissociate, but if the fitting function contains a y-
offset, it allows analyte molecules to stay on the surface and
thus describes back bonding.

For linearization, this function is transformed to

ln
Γ 0ð Þ
Γ tð Þ

� �
¼ kd � t

A plot of ln(Γ0/Γ(t)) vs. t gives kd as the slope.

BIAevaluation

For the evaluation with BIAevaluation, the beginning of the
association phase was set to zero on the x and y scale (X-
Transform, Y-Transform). The association phase was evalu-
ated from 100 to 500 s for simulated data and until an optical
thickness of 0.5 nm for clone 202 and 0.6 nm for clone TU-11
was reached. The dissociation phase was evaluated from 700
to 1400 s using Fit:Kinetics Simultaneous ka/kd and
Fit:Kinetics Separate ka/kd with the 1:1 (Langmuir) model.
For simultaneous ka/kd, BIAevaluation performs a global fit
of association and dissociation of all concentrations. The cho-
sen settings for the parameters were constant concentration;
global fit of ka, kd, and Rmax; and local fit of RI. For Separate
ka/kd, the dissociation phase is evaluated first. Settings were
global fit of kd with local fit of R0 and offset, t0 was set
constant to 605 s. Then, the obtained kd value is used as a
constant for the global fit of ka of the association phase with
constant concentrations and local fit of t0 and RI. For mea-
sured data, this setting for separate ka/kd resulted in too many
fitted parameters; thus, t0 was fitted globally.
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Results and discussion

Data evaluation of simulated data

The evaluation of simulated data allows the comparison of the
evaluation methods, if a perfect one-to-one interaction can be
safely assumed. The simulated binding curves are shown in
Fig. 2. It is obvious that data simulated with 0.001 nm noise
(Fig. 2b) represents data comparable to good kinetic measure-
ments because the noise is less than 1/100 of the equilibrium
surface load capacity of the smallest concentration, while data
with 0.01 nm noise (Fig. 2a) would be considered in need of
improvement of the experimental conditions.

Rate constants

For the simulated curves with 0.01 nm noise, ka values calcu-
lated by all methods are shown in Table 1. The calculated ka
values for the entire association deviate by less than 10% from
the correct value for all methods as shown in Fig. 3a. In order
to make a statement about the precision of the usedmethods, it

is considered which ones hit the correct value up to a deviation
of ± 5%. Both forward and backward integrations give ka
values deviating by less than 5% from the true value and the
BIAevaluation methods as well. If only the first half of the
association phase (300 s) is used for the calculation, all calcu-
lated ka values deviate by less than 5% from the true value
except for the backward integration. But if we take their stan-
dard errors of the fit into account, all used methods exceed a
5% deviation. (For BIAevaluation, the fitting region was not
varied.) If the selection of the fitting area is based on the
optical thickness and values are evaluated before reaching
0.5 nm, the calculated ka values with their standard errors of
the fit exceed a 10% deviation of the true ka value.

For the evaluation of the entire association phase, a ka value
deviating by less than 10% from the true value is obtained. As
a deviation of 10% from the true value can be considered
acceptable, it is concluded that all methods are in principle
suitable for calculating ka, even if the signal is very noisy.
The 5% deviation criterion shows that forward and backward
integrations of the entire association phase seem to be superior
to the evaluation by exponential fit and derivative in the case

Fig. 1 Evaluation by integration of the entire association phase of simulated data for 33 nM, with 0.01 nm noise integrated from the beginning (Int f, dark
grey) and from the end (Int b, red) with values deviating from linearity masked (light grey) (a) and for simulated data for 33 nMwith 0.001 nm noise (b)

Fig. 2 Simulated binding curves with 0.01 nm (a) and 0.001 nm noise
(b). Simulations were performed using the 1:1 (Langmuir) binding model
in BIAevaluation 4.1.1 for seven different analyte concentrations with

300 s baseline, 600 s association, and 900 s dissociation; random noise
with different amplitudes was added using Matlab
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Table 1 ka in 10
4 M−1 s−1

calculated with different methods
for different fitting regions for
simulated data with 0.01 nm
noise. The ka used for the
simulation was 104 M−1 s−1

Method Entire association
(0–600 s)

1st half of
association (time)

Δnd<
0.5 nm

1st half of
association (Δnd)

2nd half of
association (Δnd)

Exp 0.966±0.017 0.95±0.03 0.94±0.06 – –

Der 1.02±0.06 0.97±0.12 1.10±0.15 – –

Int f 0.99±0.03 0.99±0.12 0.98±0.11 1.1±0.3 0.96±0.15

Int b 1.02±0.02 0.94±0.09 1.10±0.09 1.1±0.2 1.05±0.06

BIAsim 0.988±0.003 – – – –

BIAsep 0.990±0.018 – – – –

Fig. 3 Relative deviations of the rate constant from the true value and
their relative standard error of the fit for different evaluationmethods. The
relative deviations from the true association rate constant were calculated
for simulated data with 0.01 nm noise (a), with 0.001 nm noise (b) and
relative deviation of the dissociation rate constants from the true value for
simulated data with 0.01 nm noise (c), and with 0.001 nm noise (d). The
association rate constant was calculated by kobs linearization after
exponential fit (Exp) of the association phase, the derivative (Der), and
forward and backward integration (Int f, Int b) for different evaluation

areas (entire association phase (0–600 s), first half (0–300 s), and from the
beginning of the association phase until aΔ optical thickness of 0.5 nm is
reached (Δnd < 0.5 nm). Global fit was used for calculating ka and ka by
BIAevaluation with simultaneous ka/kd (BIAsim) and separate ka/kd
(BIAsep) for all concentrations. Dissociation rate constants were
calculated by an exponential decay (ExpDecay) function and a
linearization (Linear) with a global fit for all concentrations and for
500 nM
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of noisy signals. The reduction of the fitting region leads to
larger deviations from the true value and larger standard errors
as the amount of data points is reduced.

For less noisy signals (0.001 nm), association rate con-
stants are calculated correctly (less than 5% deviation) with
all methods as shown in Fig. 3b. Table 2 shows that the ka
value closest to the ka value simulated is clearly obtained, if
the entire association phase is evaluated with the
(mono-)exponential fit.

The dissociation rate constant is calculated correctly for all
methods. They show less than 5% deviation from the true
value for 0.01 nm noise (Fig. 3c), and less than 1% deviation
for 0.001 nm noise (Fig. 3d). The closest values in the case of
0.01 nm noise are obtained with the linearization method per-
formed for all concentrations and the BIAevaluation simulta-
neous ka/kd fit. With less noise (0.001 nm), the best results are
obtained with the BIAevaluation separate ka/kd fit,
BIAevaluation simultaneous ka/kd fit, and fitting an exponen-
tial decay function to the largest concentration 500 nM.

Derivative

It is very interesting that the linearization methods show larger
deviations especially when the part of the association evaluat-
ed is reduced. For the derivative, the noise largely affects the
evaluation as the derivative increases the noise. If the deriva-
tive d(Δnd)/dt is plotted against the Δ optical thickness, this
can result in problems with linear fit because the noise strong-
ly affects the calculation of the observed rate constant, espe-
cially for small concentrations. Smaller concentrations are
more affected by noise as the relative signal-to-noise ratio
(S/N) is smaller. When the derivative for noisy signals is plot-
ted against the signal (d(Δnd)/dt vs. Δnd plot) to obtain kobs
from the slope, a decreasing slope will become imperceptible
due to the noise (Fig. S2a). If the S/N is very low, the slope is
not significantly different from zero, showing that the evalua-
tion by derivative is less suitable for noisy data. This is sup-
ported by the kobs linearization. When comparing the kobs lin-
earization for the different methods (Fig. 4a), it becomes ob-
vious that the kobs calculated by derivative shows the largest

standard error of the fit, especially for small concentrations.
These problems do not occur if the S/N is large enough.

Integration

The integration method can better cope with noisy signals as
integration reduces noise. Figure 1 shows the integration of
the entire association phase for the lowest concentration
33 nM for both noise levels. Unlike the derivative, no problem
occurs with determining the slope for the data with 0.01 nm
noise (Fig. 1a), if enough data points in the beginning of the
integration are masked. The values calculated with forward
and backward integration merge seamlessly as shown in
Fig. 1b, which allows a nice control over a well-chosen eval-
uation area and cleanly determined slope.

However, especially for the first values of the integration,
the noise still affects the calculated values even for the highest
concentrations. The more the integration proceeds, the
smoother the obtained curves. The deviation of the first values
is less pronounced for the simulated data with less noise. But
for strong noise, there is still a large deviation from the true
values in the case of small concentrations. For the evaluation
by integration, the X values are the integrated curve divided by
the time interval of the integration. As the integration proce-
dure reduces noise, the X values are not much affected by the
noise in the signal. In contrast, the Y values represent the
difference between the optical thickness at the end of the in-
tegration and the optical thickness at the start, resulting in the
noise showing its effect in the Y values. When starting the
integration from the end where this difference is lower be-
cause the curve flattens, the noise will affect the calculated
values more, resulting in more values having to be masked
to perform good linear fits. The effect of integration smooth-
ing only shows after integration over a certain area. Therefore,
the first values in the integration method should be masked for
calculating kobs.

The integration method offers a variety of possible starting
points. Integration can be started at the beginning of the asso-
ciation phase, but also at the end or in the middle. Figure 5
shows that using all data points (evaluating the entire associ-
ation phase) and starting in the beginning of the association

Table 2 ka in 10
4 M−1 s−1

calculated with different methods
for different fitting regions for
simulated data with 0.001 nm
noise. The ka used for the
simulation was 104 M−1 s−1

Method Entire association
(0–600 s)

1st half of
association (time)

Δnd<0.5 nm 1st half of
association (Δnd)

2nd half of
association (Δnd)

Exp 1.000±0.0014 0.998±0.004 1.005±0.006 – –

Der 0.993±0.004 0.988±0.008 0.972±0.008 – –

Int f 0.996±0.003 0.995±0.004 0.993±0.011 0.99±0.02 0.990±0.017

Int b 1.01±0.008 0.998±0.018 1.01±0.03 1.017±0.015 1.016±0.014

BIAsim 0.9920±0.0004 – – – –

BIAsep 0.9850±0.0008 – – – –
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phase give the best results for both noise levels. Starting the
evaluation in the middle where half of the finalΔnd is reached
towards the end (Int f second half) gets a ka value very close to
the true value for very noisy signals (Fig. 5a). Starting in the
middle and integrating towards the beginning of the associa-
tion phase come very close for less noisy signals (Int b first
half in Fig. 5b).

Having the previous argumentation in mind that noise
has less effect on the start of the integration where the
signal increase is large, it makes sense to start the inte-
gration where the signal increase is larger. Thus, the
integration should be started at the beginning or in the
middle where half of the final Δ optical thickness is
reached, but not at the end of the association phase.
For real experiments, choosing the middle as the
starting point would have the advantage that unwanted
effects of the fluidics that might occur in the beginning
of the association can be omitted.

Comparison of methods

The evaluation of simulated binding curves shows that
all considered methods are capable of calculating binding
constants as they provide rate constants close enough to
the true value. Table 3 shows a rating of the methods
related to different aspects. All methods provide very
good results, if the noise is small compared to the signal,
which should be the case, if the experimental design is
good. Only if the noise is very large compared to the
signal do some methods lack accuracy. The comparison
of very noisy and less noisy signal showed that the de-
rivative leads to large errors, if the signal is very noisy,
whereas the integration can better cope with noise. The
integration can deal best with noisy data, because the
integration method shows a smoothing effect. The
BIAevaluation software also gives values very close to
the true ka value for noisy data.

Fig. 4 kobs linearization for simulated curves obtained with different
evaluation methods for the entire association phase (0–600 s) with a
0.01 nm noise and b 0.001 nm noise. kobs were calculated by

exponential fit (Exp), by derivative (Der), and by integration starting
from the beginning of the association (Int). Error bars show the
standard error of the fit. ka is the slope

Fig. 5 Relative deviations of ka calculated by the integration method for different evaluation ranges from the true value for data with 0.01 nm noise (a)
and with 0.001 nm noise (b). Error bars indicate the relative error of the fit
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The evaluation of different parts of the association phase
shows that the best results are achieved when using the entire
association phase. Using only parts of the association phase
leads to a loss of information and thus to less precise results. In
contrast, when evaluating experimental data, it can be advan-
tageous to select the part of the association phase that matches
the model. Exponential fit and forward integration can better
deal with the reduction of the fitting area than derivative and
backward integration. In general, the choice of the evaluated
region is very important and as many data points as possible
should be included.

In the case of the integration method, it was necessary to
mask the first data points in the plot of Γ(t)/t vs. ∫Γ(t)dt/t in
order to obtain good results whereas the other methods did not
require additional data selection after the region for evaluation
was chosen.

When residuals of the curve fitting of an experimental
curve were added to a simulated binding curve, kobs was suc-
cessfully determined by mono-exponential fit, derivative, and
forward and backward integration (Fig. S3). The obtained kobs
values were sufficiently close to the simulated value deviating
by less than 10% (Table S1). Thus, it is concluded that these
evaluation methods should also be suitable for data with ex-
perimental noise. As the experimental data shown here can be
compared to the simulated data with simulated noise of an
amplitude of 0.001 nm with respect to their noise levels, sim-
ilar results are expected when evaluating binding curves to
which the residuals of experimental data are added.

Data evaluation of measured data

Example binding curves of the RIfS measurements are shown
in Fig. 6. To check if one-to-one interaction is applicable, the
natural logarithm of the derivative of the optical thickness of
the association phase ln(d(Δnd)/dt) can be plotted against
time, which should be linear [32]. In Fig. S4, these checks
are shown for an example 500 nM measurement. The plot is
linear for the association from 20 to 110 s for clone 202 and to
170 s for clone TU-11, respectively. For the dissociation
phase, ln(Γ(0)/Γ(t)) vs. time is plotted which deviates for both
antibodies from a linear curve.

As the check for one-to-one interaction shows, one-to-one
interaction cannot be assumed for the entire association phase.
The derivative plotted vs. time is linear for a part of the asso-
ciation in the beginning, indicating that in this part using the

model for pseudo-first-order reaction kinetics is possible. This
simple model allows the comparison of the antibodies.

In the dissociation phase, a deviation from linearity is ob-
served as shown in Fig. S4c and d, too. This shows that the
criteria for a pseudo-first-order model are not completely met.
Nevertheless, the deviation is rather small; the data only show
a slight curvature.

This deviation from pseudo-first-order kinetics in the dis-
sociation might be caused by the avidity of the antibody. If the
antibody is bound to the surface with both paratopes, the dis-
sociation will not follow pseudo-first-order kinetics and it
might be possible that the antibody does not completely
dissociate.

Even though the immobilization level was reduced to
achieve low amounts of antigen on the surface and the flow
rate was fast (30 μl/min), one-to-one interaction is not appli-
cable. This result shows how difficult it is to design the exper-
iment in the right way. A reason for the deviation could be the
bivalency of the antibody or inhomogeneities. In this case, it
was impossible to immobilize the antibody instead of the an-
tigen because the binding of the antigen is too small to detect.
Thus, avidity effects cannot be ruled out. Nevertheless, high-
quality binding curves were obtained and evaluated.

The plot of the derivative vs optical thickness shows that in
the beginning of the association, the derivative can be approx-
imated by a linear fit (Fig. S5a and c). For larger concentra-
tions, it seems as if there is a kink in the derivative when an
optical thickness of 0.5 nm for clone 202 and 0.6 nm for clone
TU11 is reached. This linear part of the derivative was used
for a linear fit to obtain kobs. In the kobs vs. c plot shown in Fig.
S5b and d, the kobs values for all concentrations lie on a
straight line. Only the smallest concentration shows a larger
deviation than the others for clone 202.

Evaluating the part of the association where the derivative
shows linear behaviour with the model for pseudo-first-order
kinetics is reasonable as for this part a one-to-one interaction
can be assumed. The linearity of the kobs vs. c plot confirms
that this model can be used.

If only the part of the association phase where the deriva-
tive is linear is evaluated (Δnd < 0.5/0.6 nm), the obtained
values for ka are significantly larger than if the entire associa-
tion phase or the first half (time) is evaluated.When looking at
the derivative of the large concentrations, it becomes obvious
that evaluating more than the part up to the kink will lead to
lower kobs values for these concentrations, while the kobs

Table 3 Rating of evaluation
methods for the calculation of the
association rate constant

Method Exp Der Int f Int b BIAevaluation

Robustness against noise − − + + + + +

Robustness against choice of evaluated region + − + − Not examined

Independence of masking of data + + − − +
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values for the small concentrations will remain the same as
these concentrations do not reach an optical thickness of 0.5 or
0.6 nm. As only the larger kobs values will decrease, this re-
sults in smaller slope when plotting kobs vs. c, and consequent-
ly to a smaller ka value. Fitting the entire association phase
gives the average rate constant.

The kink in the derivative might be caused by an inhomo-
geneous surface, with some easily accessible surface sites to
which the antibody can bind faster and some surface sites that
are harder to reach and to which the antibody only binds when
the easily accessible sites are occupied. This would mean that
the antibody binds to different surface sites with different rate
constants. Until a certain optical thickness is reached, the
faster rate constant dominates.

The association rate constant was calculated with different
methods for the part of the association phase showing linear
behaviour in the derivative, and the obtained results for the ka
values are shown in Fig. 7. For both antibodies, the methods
exponential fit, derivative, and forward integration provided
the same ka values, for clone 202 on average 2.4 ∙ 104 M−1 s−1

and for clone TU-11 on average 1.9 ∙ 104 M−1 s−1. The back-
ward integration and BIAevaluation simultaneous ka/kd fit
gave smaller ka values, whereas the BIAevaluation separate
ka/kd fit gave larger ka values. In both cases, the maximum ka
value, which was calculated with 2.8 ∙ 104 M−1 s−1 for clone
202 and 2.6 ∙ 104 M−1 s−1 for clone TU-11, were obtained by
the BIAevaluation separate ka/kd fit. All evaluation methods
show that clone 202 has a larger association rate constant than
clone TU-11, except the evaluation method BIAevaluation
simultaneous ka/kd fit. The minimum ka value was for both
antibodies calculated with the BIAevaluation simultaneous
ka/kd fit with 1.3 ∙ 104 M−1 s−1 for clone 202 and
1.5 ∙ 104 M−1 s−1 for clone TU-11.

As the evaluation methods (mono-)exponential fit, deriva-
tive, and integration all give similar rate constants, it can be
concluded that the assumption of pseudo-first-order kinetics
was justified. It is quite surprising that the two evaluation
methods provided by the BIAevaluation software gave differ-
ent results. The BIAevaluation software with its global fitting
routines does not provide consistent data in this case. As all

Fig. 6 Example RIfS measurements for each concentration of antibody clone 202 (a) and clone TU-11 (b). The baseline with PBS was followed by the
injection of multiple analyte anti-amitriptyline antibody concentrations (association) and the dissociation of the antibody in PBS

Fig. 7 Association rate constants calculated with different methods for
antibody clone 202 (a) and clone TU-11 (b). The evaluated area was
based on the linear behaviour in the derivative, i.e. until a Δ optical
thickness of 0.5 nm was reached for clone 202 and 0.6 nm for clone

TU-11. Methods used were mono-exponential fit (Exp), derivative
(Der), forward and backward integration (Int f, Int b), simultaneous ka/
kd fit in BIAevaluation 4.1.1 (BIAsim), and separate ka/kd fit in
BIAevaluation (BIAsep). Error bars show the standard error of the fit

670 Conrad M. et al.



methods except BIAevaluation simultaneous ka/kd fit show a
larger ka value for antibody clone 202, it is concluded that this
antibody associates faster.

To obtain the dissociation rate constants, all concentrations
and the highest concentration were evaluated with four
methods. The dissociation rate constants calculated by expo-
nential fit and BIAevaluation with separate ka/kd fit for
500 nM are five to seven times larger than those calculated
by other methods (Fig. 8). The average kd value obtained with
the exponential fit and the BIAevaluation separate ka/kd fit for
500 nM is 1.3 ∙ 10−3 s−1 for clone 202 and 1.4 ∙ 10−3 s−1 for
clone TU-11, while the average kd value obtained with the
other methods is 2.3 ∙ 10−4 s−1 for clone 202 and
2.5 ∙ 10−4 s−1 for clone TU-11.

The difference between using the exponential decay func-
tion and the other methods is that the y-offset in the fitting
function allows back bonding. This means that not all anti-
bodies need to dissociate from the surface. If only the 500 nM
concentration is used for the BIAevaluation separate ka/kd fit,
the fit performed is basically the same as with the exponential
decay function in Origin. BIAevaluation also has an offset
implemented in its function which then allows the antibody
not to fully dissociate. As the number of fitted parameters
cannot exceed 31 in BIAevaluation, this offset was set to a
global fit instead of a local fit as in Origin. If this global fit is
performed for all concentrations, this fit effectively leads to
the offset being very small as the best value for all concentra-
tions has to be found. If it is locally fitted on the other hand,
larger offsets are obtained for the higher concentrations. The
smaller dissociation rate constants obtained with the other
methods show the result that is obtained if the antibody has
to dissociate completely. All in all, the kd values obtained for
the two antibodies show that they do not significantly differ in
dissociation.

The calculation of rate constants for experimental data
shows that different rate constants are obtained for different

methods, but they are in a similar order of magnitude. If no
strict one-to-one interaction can be assumed, but the data is
still evaluated with this model, an average rate constant is
obtained. The rate constant that more adequately describes
the pseudo-first-order association rate constant is calculated
by selecting only the linear part of the derivative as the fitting
region. A linear slope for a part of the association phase indi-
cates that during this time the interaction follows the one-to-
one model which allows the calculation of ka for this part.

Conclusion

In summary, we show that different methods can be used for
the evaluation of binding curves. The evaluation of simulated
binding curves shows that different methods can be used to
calculate the correct binding rate constants. The obtained ka
values when using linearization methods (derivation and inte-
gration) show larger deviations from the true values than other
methods. Calculations by derivative and backward integration
are less reliable since they are affected by noise. The values
closest to the true ka value are obtained using BIAevaluation
or by forward integration of the entire association phase for
very noisy data. For simulated data with noise in the range of
real measurements, the values closest to the true ka value are
obtained using the fit with an exponential function or by eval-
uating with the forward integration followed by a kobs linear-
ization. Thus, the integration is strongly recommended.

For experimental data, association and dissociation rate
constants can successfully be determined although no strict
pseudo-first-order kinetic could be assured. Adapting the
fitting region shows a change in the association rate constant.
On the basis of the derivative, the part of the association where
pseudo-first-order kinetics is followed is selected and evalu-
ated. The rate constants calculated with different methods are
of the same order of magnitude. Finally, the results here

Fig. 8 Dissociation rate constants kd calculated with different methods for
antibody clone 202 (a) and antibody clone TU-11 (b). kd was calculated
with an exponential decay function (ExpDecay), a linearization method
(Linear), the separate ka/kd fit in BIAevaluation 4.1.1, and the

simultaneous ka/kd fit in BIAevaluation for all concentrations and the
highest concentration 500 nM. Error bars indicate the standard
deviation of the fit

671Comparison of methods for quantitative biomolecular interaction analysis



suggest that looking at the derivative is very important as
different rate constants become visible and it allows the selec-
tion of the part that follows pseudo-first-order kinetics.
Evaluation with different methods of the same part of the
association phase gives the same ka value for exponential fit,
derivative, and integration.

The results show that it is important not to rely on black
box software, but instead to critically assess the data. We hope
that this work will aid other researchers to generate more reli-
able data from BIA without having to rely on proprietary
solutions.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00216-021-03623-x.
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