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We examined the role of tumor necrosis factor (TNF-α) and its related signaling intermediates leading to apoptosis/proliferation
in the peripheral blood mononuclear cells (PBMCs) of RA patients. The constitutive expression of mRNA for TNF-α receptors
(TNFR-I and TNFR-II) and the adapter molecules, such as the TNF receptor-associated death domain protein (TRADD), Fas-
associated death domain protein (FADD), receptor interacting protein (RIP), and TNF receptor-associated factor 2 (TRAF-2)
were analyzed by reverse transcriptase-PCR (RT-PCR) in PBMCs from control and RA cases. PBMCs of RA patients showed
a significant increase in TNF-α and TNFR-I expression as compared with that from control subjects along with significantly
increased constitutive expression of TRADD, RIP, and TRAF-2 mRNA. There was a decrease in expression of FADD in RA patients,
but the difference was not significant as compared to controls. These data suggested enhanced signaling by the TNFR-I-TRADD-
RIP-TRAF-2 pathway and suppressed signaling by the TNFR-I-TRADD-FADD pathway in PBMCs of RA patients. However, the
regulatory mechanisms for TNF-α induced signaling may not be explained only by these pathways.

Copyright © 2006 Sunil Kumar Raghav et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

INTRODUCTION

Abnormal proliferation and/or persistence of synoviocytes
and inflammatory cells has long been described in inflam-
matory arthritis conditions, but only recently substantial at-
tention has been drawn to the relevance of abnormal apop-
totic processes in disease pathogenesis and treatment [1].
Rheumatoid arthritis (RA) is a chronic inflammatory disor-
der with autoimmune features that affects approximately 1%
of the world’s population. It is characterized by inflamma-
tion of synovial tissue and the formation of rheumatoid pan-
nus, which is capable of eroding adjacent cartilage and bone
causing subsequent joint destruction. Although the precise
etiology of the disease is unknown, genetic and environmen-
tal factors seem to be involved in its pathogenesis [2]. Previ-
ous studies have indicated that the relative risk of develop-
ing the disease in siblings of affected individuals (λs) is 2–17
times higher as compared to the general population, suggest-
ing the importance of genetic factors in rheumatoid arthritis
[3]. Recently we reported an association of mannose binding
lectin gene polymorphisms with the occurrence and disease
progression [4]. The association of TNF-αmicrosatellite with

susceptibility and progression of RA in our study population
was found to be distinct from other populations [5].

A broad array of macrophage and fibroblast cytokines,
including IL-1, IL-6, IL-15, IL-18, tumor necrosis factor
(TNF-α), granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), various chemokines, and many others, is pro-
duced by rheumatoid synovium. Increased hyperplasia of the
synovial membrane imposed by these proinflammatory cy-
tokines has been suggested to play a crucial role in disease
progression [6]. In rheumatoid arthritis, joint pathology has
been shown to be associated with high IL1-β and TNF-α pro-
duction and TNF antagonists have proven to be the most ef-
ficient therapy for RA thus far [6, 7].

TNF-α, a potent proinflammatory cytokine, is known to
regulate cell survival, death, and/or growth depending upon
the cell types [7]. The cytotoxic pathway involves interac-
tion of death domain-containing adapter molecules and cas-
pases leading to apoptosis, whereas the cell-protective path-
way involves activation of transcription factors, including
NF-kB [8]. TNF-α transduces its signals by binding with
TNF receptors, TNFR-I and TNFR-II (Figure 1). These two
receptors differ from each other, only by the presence of a
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Figure 1: An overview of the TNF-α signaling pathway leading to
apoptosis or proliferation of the cells.

conserved motif in the cytoplasmic tail called the death do-
main [9]. TNFR-I mediates most of the biological proper-
ties of TNF-α, such as programmed cell death and activa-
tion of NF-kB. Upon activation, the death domain serves
as a docking site for the death domain-containing adaptor
proteins such as TRADD (TNFR associated death domain)
through homotypic death domain interaction [10]. The re-
cruitment of caspase-8 or -10 via the complex of TRADD
and FADD (Fas-associated death domain) leads to the ac-
tivation of a caspase cascade resulting in apoptosis [8, 9].
Once TRADD binds to the TNFR-I, it can also lead to the re-
cruitment of RIP (receptor interacting protein) and TRAF-2
(TNF receptor-associated factor 2). RIP is a death domain-
containing kinase that is crucial for NF-kB activation [9].
TNFR-II lacks the death domain but the intracellular do-
main of this receptor contains a consensus motif that allows
binding to TRAF-2 [11]. TRAF-2 activates both NF-kB and
JNK (cJun N-terminal kinase) and mediates its antiapop-
totic effect [12]. Therefore, TNFR-II is involved in the an-
tiapoptotic effect of TNF-α, whereas TNFR-I involves both
apoptotic and antiapoptotic signaling [8]. NF-kB has been
implicated in linking inflammatory responses to an anti-
inflammatory pathway [13]. NF-kB is a ubiquitous transcrip-
tion factor that can be activated by proinflammatory agents,
such as TNF-α, IL-1β, LPS, oxidative stress [14]. In quies-
cent cells, NF-kB is sequestered in the cytoplasm by a set of
inhibitory molecules including I-kB. Upon stimulation by
any proinflammatory molecule the I-kB undergoes signal-
induced phosphorylation and subsequent degradation. Once
I-kB undergoes degradation, NF-kB translocates inside the
nucleus and regulates the transcription of various inflamma-
tion regulatory molecules [9].

In aged humans, the role of TNF-α induced apoptosis in
decrease of T cells was examined by the expression of recep-
tors for TNF-α by peripheral blood lymphocytes [15]. In-
creased constitutive expression of TNFR-I and TRADD and

decreased expression of TNFR-II and TRAF-2 were observed
in lymphocytes from aged as compared with young controls.
These data suggest that increased TNF-α induced apoptosis
plays a role in T-cell deficiency associated with human aging.

TNF-α was reported to be present at high concentrations
in the blood and synovial fluid of RA patients. Therefore, dif-
ferential expression and selective usage of TNF receptors may
also work as a switch for TNF-α mediated signaling pathways
on peripheral blood mononuclear cells (PBMCs) of RA pa-
tients. An increased expression of TNFR-II as compared to
TNFR-I was also observed in synoviocytes as compared to
peripheral blood mononuclear cells [9].

This study was designed to investigate the downstream
signaling pathways of TNF-α in the PBMCs of RA pa-
tients. Expression of TNF receptors (TNFR-I and TNFR-II),
TRADD, FADD, RIP, and TRAF-2 were analyzed to under-
stand the mechanisms controlling apoptosis and prolifera-
tion in PBMCs of RA patients.

MATERIALS AND METHODS

Patients and controls

Blood samples from 27 patients diagnosed with rheumatoid
arthritis were collected at the Out-Patient Department of
Rheumatology, Army Hospital, Research and Referral, New
Delhi, India, after a thorough investigation by the rheumatol-
ogist. All patients fulfilled the American College of Rheuma-
tology classification criteria for the disease. The patients were
diagnosed under the supervision of the rheumatologists us-
ing their medical records stating the disease duration, dura-
tion of morning stiffness, presence of extra-articular man-
ifestations, presence of bone deformities, rheumatoid fac-
tor, and acute phase response (erythrocyte sedimentation
rate (ESR) and C-reactive protein (CRP)). The disease ac-
tivity score using DAS-28 [16] disease score calculator was
calculated on the basis of the number of tender joints in-
volved, number of swollen joints, ESR, and visual analogue
score (VAS) for general health as subjectively estimated by
the patients. The patients had an active form of the disease
but none of them were put on any disease modifying an-
tirheumatic drugs (DMARDs). Informed consent was ob-
tained from each patient and normal individual. Both the
control and case individuals were age, sex, and ethnicity
matched. Age in the control group was 40 ± 5 years and for
the RA patients was 45± 6 years. There were 15 females and
12 males in our cohort of RA patients. The procedures fol-
lowed were in accord with the ethical standards established
by the ethics committee of the Institute and the Army Hos-
pital. Samples from 30 healthy individuals served as con-
trols.

The blood samples were collected in the sterile vacu-
tainers with ACD-A buffer (Greiner Bio-One GmbH). Pe-
ripheral blood mononuclear cells (PBMCs) were immedi-
ately isolated from the blood samples using Histopaque-1077
(Sigma Chemicals, USA) by vendor recommended protocol.
The PBMC samples were stored at −80◦C without any freeze
thawing till the samples were further processed for RNA iso-
lation.
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Table 1: Primer sequences specific for the TNF-α and TNF-α mediated signaling genes used for the amplification of cDNA prepared from
the PBMCs of 27 RA patients and 30 healthy controls.

Gene Primer sequence Amplicon length (bp) Annealing temperature (◦C)

TNF-α
5′ CAGAGGGAAGAGTTCCCCAG 3′

325 60
5′ CCTTGGTCTGGTAGGAGACG 3′

TNFR-I
5′ ACCAAGTGCCACAAAGGAAC 3′

263 55
5′ CTGCAATTGAAGCACTGGAA 3′

TNFR-II
5′ GTT GGA CTG ATT GTG GGT GTG A 3′

454 60
5′ AGG GGC TGG AAT CTG TGT CTC 3′

TRADD
5′ GGTTCCTTCTGCGGCTATTGCTGA 3′

251 60
5′ TGAAACTGTAAGGGCTGGCTGTAA 3′

FADD
5′ CTGCCTTGGCAATTCTGTTATCAG 3′

267 60
5′ TGGCTGGGGTGGGGGTGGGGAGAC 3′

RIP
5′ TGGGAAAGCACTGGAAAAC 3′

200 55
5′ GTCGATCCTGGAACACTGGT 3′

TRAF-2
5′ ACCAGCCCAGTCCTCAGATTTCAGA 3′

346 60
5′ CTAGGAATGCTCCCTTCTCTCTCCAG 3′

First-strand cDNA synthesis and gene specific
polymerase chain reaction (PCR)

Total RNA was isolated from frozen PBMC samples by
EZ-RNA isolation kit (Biological Industries) using vendor
recommended protocol. The isolated RNA was dissolved
in DEPC (diethyl pyrocarbonate, Sigma Chemicals, USA)
treated deionized water and quantified. Two micrograms of
the total RNA were used to initiate the first-strand cDNA
synthesis using Advantage RT-for-PCR Kit (BD Clontech) by
following vendor’s recommended procedure. Control RNA
and the primers for G3PDH are included in the kit and were
used to validate the quality of cDNA synthesized for each re-
action. Gene specific primers were designed using the DNAS-
TAR software. Primer sequences specific for the TNF-α me-
diated signaling genes are presented in Table 1. The first-
strand cDNA was diluted 1 : 5 with the deionized water
and used for gene specific PCR reactions. The TNF-α me-
diated signaling genes were amplified with a DNA thermal
cycler (MJ Research, Perkin Elmer) using the diluted cDNA,
25 mM MgCl2, 1.25 mM dNTP, 10 pM each of the forward
and reverse primer and 2.5U of Taq DNA polymerase. After
an initial denaturation at 94◦C for 4 min, the amplification
was conducted for 35 cycles at 94◦C for 30 s, primer specific
annealing temperature (Table 1) for 30 s, 72◦C for 60 s and a
final extension for 7 min at 72◦C. The PCR product was visu-
alized on a 1.2% agarose gel. The density of each band (PCR
product) was measured using Image Scan and Analysis Sys-
tem (Alpha Innotech Corporation, USA) with Digidoc 1201
software.

Statistical analysis

All data presented represent the mean and standard error
(SE) for n determinations. Data analyses were performed us-
ing the World Wide Web available software. The density of

PCR product for each sample was measured and the relative
density mean (the value of the intensity of PCR product di-
vided by the intensity for G3PDH) was calculated. All pair-
wise multiple comparisons were made using the Student t-
test. The two tailed P values equal to or less than 0.05 were
considered significant. Means ± SD (standard deviation) of
the raw data used for normalization is presented in the re-
sults.

RESULTS

Expression of genes involved in the TNF-α
mediated signaling pathway

We analyzed the constitutive expression of the genes that are
involved in TNF-α mediated signaling in PBMCs of 30 nor-
mal healthy controls and 27 RA patients. We observed the
following significant differences in the gene expression pro-
file of the RA patients in comparison to the healthy controls.

Expression of TNF-α, TNFR-I, and TNFR-II genes

PBMCs from RA patients revealed a stronger expression of
TNF-α and TNFR-I mRNA than those from the controls
(Figure 2). There was a statistically significant difference (P <
0) between the expression of TNF-α in the RA patients (mean
± SD = 1.607 ± 0.39) with the healthy controls (mean ± SD
= 1.0215 ± 0.224). An increase (P < .0003) in the expres-
sion of TNFR-I was observed in the RA patients (mean ±
SD = 2.1289 ± 0.8117) as compared to the healthy controls
(1.398± 0.5428, mean ± SD, Figure 2). However, we did not
find an altered expression of TNFR-II gene in the PBMCs of
the controls/cases in our cohort. The level of the gene expres-
sion in the controls (mean ± SD = 1± 0) was similar to that
in the RA patients (mean± SD = 1±0) without any statistical
significance (P = .692).
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Figure 2: (a) Agarose gel (1.2%) showing gene expression profile of
TNF-α, TNFR-I, and TNFR-II from PBMCs of five representative
healthy controls and RA patients. G3PDH gene was used for esti-
mating the relative density of gene specific expression. (b) Relative
density mean (density of gene specific product/density of house-
keeping gene G3PDH) of 30 healthy controls and 27 RA patients
for the expression of the genes.

Expression of TRADD and FADD genes

The representative RT-PCR gels demonstrating the expres-
sion of TRADD and FADD genes from control and RA cases
are shown in Figure 3. As evident, there was a statistically sig-
nificant increase in the expression of TRADD gene (P < 0) in
the RA patients (mean ± SD = 1.919± 0.581) in comparison
to the normal healthy controls (mean± SD = 1.312±0.2885).
However, the FADD gene was observed to be equally ex-
pressed in both the cases and the controls (patients mean ±
SD = 1.497± 0.782, controls mean ± SD = 1.7816± 0.360).

Expression of RIP and TRAF-2 genes

On analyzing the expression of RIP and TRAF-2 genes in the
controls and RA patients (Figure 4), we observed an increase
in the expression of both the RIP (P = 0.0123) and TRAF-2
genes (P = 0) in RA patients (RIP: mean ± SD = 2.9799 ±
1.4946, TRAF2: mean ± SD = 1.942 ± 0.564) as compared
to the healthy controls (RIP: mean ± SD = 2.0966 ± 0.9343,
TRAF2: mean ± SD = 1.1944± 0.582).

DISCUSSION

Rheumatoid arthritis (RA), an autoimmune disease, is char-
acterized by chronic inflammatory symptoms leading to
damage of synovial tissue and joints. Proinflammatory cy-
tokines like TNF-α reportedly contributes to the pathogene-
sis of rheumatoid arthritis [17]. In support of such reports
we also observed an overexpression of TNF-α gene in the
PBMCs of RA patients as compared to the healthy controls.
TNF-α is associated with various cell signaling systems via
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Figure 3: (a) Gene expression profile of TRADD and FADD from
PBMCs of representative healthy controls and RA patients. (b)
Relative density mean (density of gene specific product/density of
housekeeping gene G3PDH) of 30 healthy controls and 27 RA pa-
tients for the expression of TRADD and FADD genes.
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Figure 4: (a) Agarose gel (1.2%) showing gene expression profile
of RIP and TRAF-2 from PBMCs of five representative healthy con-
trols and RA patients. (b) Graph showing the relative density mean
of 30 healthy controls and 27 RA patients for the expression of RIP
and TRAF-2 genes.

two types of cell surface receptors, TNFR-I (p55) and TNFR-
II (p75) [8, 10]. TNFR-I is involved in both proapoptotic
and antiapoptotic signaling via the interaction with TRADD-
FADD and TRADD-RIP-TRAF-2, respectively, [10]. Both
TNFR-I and Fas-mediated apoptotic pathways use FADD as
a common conduit [18] for the activation of apoptotic sig-
naling. In contrast, TNFR-II is involved in an antiapoptotic
effect of TNF-α via TRAF-2 [8].
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The present study, for the first time, demonstrates that
the PBMCs of RA patients showed an overexpression of
TNFR-I and TRADD genes in comparison to the healthy
controls; however, only a mild increase in TNFR-II expres-
sion was observed. Overexpression of TRADD results in
apoptotic cell death via TNF-α induced activation of caspases
as reported in many cell lines [19]. We observed a similar
expression of the FADD gene among the RA patients and
the healthy controls. This result indicates that the TNF-α-
TRADD/FADD induced apoptotic pathway is not being fol-
lowed in the PBMCs of the RA patients.

We observed a constitutive expression of TNFR-II gene
in both the controls and the RA patients without any statisti-
cal significance. This nullifies any significant overexpression
of the TNFR-II mediated proliferative/antiapoptotic pathway
in the RA patients. However the TRAF-2 and RIP genes in the
PBMCs were significantly over expressed among the RA pa-
tients. This demonstrates a significant overexpression of the
antiapoptotic pathway in the PBMCs of the RA patients in
contrast to the healthy individuals.

Our observations of increased TRAF-2/RIP expression in
PBMCs suggest that an increased TRAF-2/RIP may result in
TNF-α induced proliferation via NF-kB-dependent pathway.

In conclusion, PBMCs of the RA patients are observed
to be more susceptible to TNF-α induced proliferation as
compared to control subjects and are associated with a de-
creased expression of molecules (FADD) involved in apop-
totic pathways. Increased expression of TNF-α in the PBMCs
and increased susceptibility of these cells to TNF-α induced
antiapoptosis may play a role in the pathogenesis of the dis-
ease.

The present study therefore supports the notion that the
changes in the expression of TNF-α associated downstream
molecules are more complicated than the expression of TNF-
α/TNF receptors. This is probably caused by the complex reg-
ulatory mechanisms including cross talks with other signal-
ing pathways that function in association with TNF-α medi-
ated signaling pathways.
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