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Simple Summary: Coral aquaculture is an innovative and sustainable aquaculture industry. Coral
husbandry can address ecological environment conservation needs and industrial demand for
corals. Many previous studies have confirmed that corals also belong to heterotrophic organisms.
Heterotrophic feeding is essential for overcoming nutrient deficiency. The preliminary results of this
study indicate that Goniopora columna have high levels of proteases, and artificial feeds containing
high protein can be used for feeding during aquaculture, which can increase the growth rate. In
conclusion, we have initially explored that Goniopora columna will have better growth by feeding
artificial PUFA rich in animal protein. In addition, the best feeding time is 6:00–12:00 in the morning,
when there is better digestion and absorption. It is hoped that this research will be helpful to the
development of coral aquaculture in the future.

Abstract: Nutritional requirements are critical in the process of coral aquaculture. In addition
to energy from symbiotic algae, corals obtain sufficient nutrition through heterotrophic feeding.
Microalgae and yeast are commonly used as nutritional supplements for many aquaculture organisms.
In addition, if artificial feed can match or improve upon the nutritional supplementation provided
by microalgae and yeast in the case of G. columna, then feeding this coral would be markedly easier.
Hence, this article preliminarily discusses feeds suitable for G. columna. In this study, artificial
PUFA rich in animal protein (R), Saccharomyces cerevisiae, Isochrysis galbana tml, and Nannochloropsis
oculate were fed to G. columna at quantities of 5% and 10% of body weight. Growth, survival, body
composition, and digestive enzymes were assessed. Regarding body composition, the coral’s protein
content is higher than that of carbohydrate or fat; thus, evaluating the heterotrophic nutrition of G.
columna by using protein absorption is appropriate. The protease content is also high in digestive
enzymes. Protein content, protease activity, and specific growth rate were significantly higher in the
R group than in other groups. The number of polyps in the groups fed R at 5% and 10% of body
weight increased by 40.00 ± 2.43 and 47.33 ± 0.89 number, respectively, significantly greater increases
than those achieved in the other groups (p < 0.05). Changes in body composition and digestive
enzymes over a 24-h period were compared to determine the optimal feeding time. Protein content
and protease activity increased markedly between 6:00 and 12:00. The experimental results suggest
that R can improve the activity of G. columna digestive enzymes and their protein and lipid content
in body tissue, shorten the cultivation time, and enhance the profitability of coral aquaculture.

Keywords: feeding; growth; digestive enzymes; Goniopora columna; scleractinian coral

1. Introduction

Coral reefs are considered the tropical rainforests of the sea because of their rich
species diversity [1,2]. However, coral reefs are deteriorating at an alarming rate due to

Animals 2021, 11, 3009. https://doi.org/10.3390/ani11113009 https://www.mdpi.com/journal/animals

https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0001-9368-1930
https://doi.org/10.3390/ani11113009
https://doi.org/10.3390/ani11113009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ani11113009
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani11113009?type=check_update&version=3


Animals 2021, 11, 3009 2 of 16

climate change, environmental pollution, and destructive fishing practices. Coral bleaching,
which can lead to species extinction, is increasingly occurring. Coral husbandry can
simultaneously address environmental conservation needs and the industrial demand
for corals. According to the Convention on International Trade in Endangered Species of
Wild Fauna and Flora (CITES), the total trade volume of Goniopora sp. from 2010 to 2020
accounted for 18% of the trade volume of all corals, amounting to US $7.2 million (CITES,
2021). Although the species has noteworthy ornamental value, research has indicated that
the mortality of Goniopora sp. in aquariums is as high as 95% [3]. Aquaculture of coral offers
an alternative to wild harvesting for the ornamental trade and shows considerable promise
for restoring reefs and preserving biodiversity [4]. Goniopora columna is a scleractinian
coral native to the western Pacific Ocean and the eastern and western Indian Ocean [2].
This reef-associated species, commonly known as a flowerpot coral, is primarily found
in intertidal coral reefs and often forms large groups in muddy waters. Its corallites are
>5 mm in diameter, and its polyps are large, fleshy, and long. Tubular creatures with
conical projections in the center of their tentacles, they live in seas rich with nutrients and
can supplement heterotrophic nutrition with polyp hunting. G. columna are considered a
heterotrophic coral. The autotrophic and heterotrophic nutrition of corals and the relative
importance of these sources in their energy balance have long been recognized as key
biological and ecological concerns. G. columna has both ecological and ornamental roles.
Therefore, their reefs must be efficiently restored and protected; this can be achieved
by determining the optimal culture conditions for G. columna. In addition to light and
water flow, the organic matter or feed in the environment plays a crucial role in coral
aquaculture [5].

Corals are heterotrophic organisms; heterotrophic feeding is essential for them if they
are to avoid nutrient deficiency. Corals exhibit several modes of feeding and acquire energy
from multiple sources [6]. In addition to obtaining nutrients from symbiotic algae, corals
can feed on marine plankton, which provide essential amino acids and other nutrients not
obtainable from symbiotic algae [6–9]. Numerous studies have reported that many species
of corals are also active heterotrophs, ingesting bacteria, particulate organic matter, and
even dissolved nutrients from water and mesozooplankton. Heterotrophy accounts for up
to 66% of the fixed carbon incorporated into the skeleton of a coral and meets 15–35% of
the daily metabolic requirements, contributing to the metabolic activity associated with
zooxanthellae [10–20] Regarding the feeding habits of the coral Montastraea cavernosa,
the larvae of copepods, amphipods, nemerteans, turbellarians, polychaetes, nematodes,
appendicularians, salps, decapods, and cirripedes have been discovered in the coral body
and planktonic algae [21] Studies have suggested that corals are polytrophic in nature [22].

To date, only a few studies have explored the nutrition and digestion of corals as well
as whether feeding is required to induce a growth rate conducive to large-scale artificial
cultivation. In coral aquaculture, asexual fragmentation is often used for propagation. The
partitioned coral colony tends to be small, and the nutrients provided by coral symbiotic
algae may be insufficient. Therefore, hunting heterotrophic nutrients to promote growth
and accelerate tissue repair is necessary. The growth and survival of artificially cultured
corals are affected by the quality of available nutrient sources [23]. Heterotrophic feeding
enhances the growth, calcification rate, and photosynthesis rate of coral and even affects
the symbiotic zooxanthellae [6,24–29]. Obtaining plankton from the ocean to feed coral
in an aquarium is unsustainable and economically inefficient. A common initial diet in
aquaculture comprises microalgae and yeast. Microalgae contain oil and unsaturated fatty
acids, which can improve the nutrition, growth, and survival rate of fish fry. Yeast can
provide nutritional supplement to promote the growth of some marine life and has also
been proven to strengthen nonspecific immune responses [30,31]. Until now, no studies
have evaluated the effects of microalgae, yeast, and artificial coral feed on G. columna
nutrition. This study involved experiments to determine such effects of microalgae, yeast
commonly used in aquaculture, and artificial coral feed. By analyzing the resultant body
composition, changes in digestive enzymes, and growth of G. columna, we evaluated the
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suitability of these feeds and the optimal feeding time to indicate how the growth rate of G.
columna during cultivation can be improved.

2. Materials and Methods
2.1. Biological Materials

G. columna (total of 100 colonies) was obtained from Coral King Coral Farm (Kaoh-
siung, Taiwan), a CITES-legal coral farm (no. FTS507W0153796), and were cultured in
an aquarium tank (60 × 35 × 30 cm) by using a recirculating filtered seawater system.
An HME Block 2 Series frame with purple light-emitting diode lights (400–430 nm; pho-
tosynthetically active radiation [PAR] 71.03 ± 0.21 µmol m−2s−1) was set 30 cm above
the glass aquarium’s water surface. The PAR was detected using an Apogee Instruments
MQ-510 underwater quantum meter (USA). The water quality was monitored daily during
the experiment and maintained at a safe level. When corals were moved to a tank, they
immediately produced abundant mucus to protect themselves from bacterial infection;
therefore, pump-generated water flow was used to remove mucus from the corals’ surface
and prevent hypoxia, which would affect the corals’ physiological metabolism, and tissue
necrosis caused by the slimy covering [9]. Therefore, a water pump should be installed
in aquariums to remove the mucus on the surface of corals by using water flow. After
the corals had adapted to their environment, they were artificially propagated through
fragmentation. In this study, after 2 months of acclimation and self-repair, healthy corals
were segmented into groups, with each colony containing five polyps; then, they were
fixed onto porous foundation stones by using coral glue. After approximately 72 h of tissue
repair, the polyps were fully extended (to assess the tissue repair) and the experiment was
started. All experiments were performed triplicate, and thus each group involved a total of
30 colonies.

2.2. Experiment One: Feed Composition and Feeding
2.2.1. Feed Source

The R diet contained a mixture of intact and hydrolyzed marine and terrestrial in-
gredients (commercial-in-confidence formulation, details not provided). The S, I, and N
feeds were employed as plant feeds in this study. Microalgae in stock cultures were grown
in a 2000 mL glass conical flask containing liquid Walne medium. High-temperature,
high-pressure sterilization was applied (121 ◦C for 30 min). The culture was then cooled
to 26 ◦C, and a fluorescence lamp with 12L/12D-h light–dark photoperiod was used for
irradiation. Subcultures were then formed by transferring 400 mL of solution with viable
microalgae cells to new medium every 1–2 months. The nutritional composition of all feeds
is shown in Table 1.

Table 1. Nutrient composition of the various feeds.

Nutritional Indicators R S I N

Protein
(µg)

76.67 a

−1.56
37.00 d

−1.33
66.00 b

−1.33
49.00 c

−0.67
Lipid
(µg)

6.00 c

−0.67
5.00 c

−1.33
32.00 a

−2
20.33 b

−1.56
Glucose

(µg)
22.00 b

−0.67
29.00 a

−0.67
0.63 c

−0.16
0.67 c

−0.11
R: artificial PUFA rich in animal protein; S: Saccharomyces cerevisiae; I: Isochrysis galbana tml; N: Nannochloropsis
oculata. Different letters indicate significant differences among groups (p < 0.05). Values are expressed as
means ± SDs (n = 3).

2.2.2. Coral Feeding

In the coral feeding assessment, microscopic examination of the corals 1 h after
feeding revealed the presence of microalgae and yeast in the corals’ body cavities, but the
R formulation could not be observed under a microscope because this commercial feed
was a liquid. This study evaluated the coral feed’s effects on nutrient uptake with reference
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to changes in the protein content of Psetta maxima L. levels by feeding plant proteins in
accordance with the experimental method of [32]. The feeding density of microalgae and
yeast was 5 − 6 × 105 cells/mL. When the density was too high, sterilized seawater was
used for dilution. Microalgae, yeast, and R are all liquid, so 10% (w/v) of coral tissue and
skeletal dry weight are used for feeding. Therefore, the protein, lipid, and carbohydrate
content of the experimental corals (in their body composition) were compared with those
of the unfed control group to determine whether food had been ingested. Protein, lipid,
and glucose analysis was performed 1 h after feeding.

2.2.3. Analysis of Coral Body Composition and Feed

In this study, in addition to analyzing the body composition analysis of the corals, feed
analysis was conducted for data comparison. Each group of feeds was centrifuged to obtain
1 mg as a sample for analysis. G. columna were sonicated and protein concentrations were
measured using a Bradford protein assay kit (Ameresco, Solon, OH, USA) with bovine
serum albumin as a protein standard. Lipids content analysis was performed using the
soxhlet extractor methods [33]. The total lipid weight was determined (±0.0001 g), and
the derived weight values were converted into micrograms (1 g = 1 × 106 µg). Glucose
detection is based on the Enzymatic, Colorimetric method (GOD/PAP) with glucose
oxidase, and 4-aminoantipyrine [34,35].

2.3. Experiment Two: Effects of Different Diets on Body Composition, Digestion Enzyme, Growth
and Survival of Coral
2.3.1. Experimental Conditions

In this study, artificial polyunsaturated fatty acid (PUFA) rich in animal protein (R;
i.e., a formulated diet combining animal protein and sodium alginate with probiotics),
Saccharomyces cerevisiae (S), Isochrysis galbana tml (I), and Nannochloropsis oculata (N) were
used as the feeds for the experimental groups; an unfed control group (C) was also included
in the study. The feeding density of microalgae and yeast was 5 – 6 × 105 cells/mL, and
the feeding amount was either 5% (denoted 5) or 10% (10) of the coral’s body weight (w/v),
such that the experimental groups are represented as R(5), S(5), I(5), N(5), R(10), S(10),
I(10), and N(10) and the control group as C, each with three respective replicates. The diet
formula was improved after reference to the work of [36–38]. We have studied this feed
and hope to successfully conduct large-scale G. columna culture. Each treatment group had
triplicate (with 10 colonies each) and a total of 30 colonies. The water quality conditions
were summarized in Table 2. The experiment lasted for eight weeks. After the experiment,
the initial and final weights were measured to calculate the specific growth rate (SGR),
body composition, digestion enzyme, zooxanthellae, and chlorophylla.

Table 2. Water quality conditions.

5% 10%

Water Quality
Conditions C R S I N R S I N

Temperature (◦C)
Salinity (PSU)

pHAmmonia nitrogen
(mg/L)

Nitrous acid (mg/L)
Nitric acid (PPM)
Calcium (PPM)

Magnesium (PPM)
Phosphate (PPM)

26.03 (0.24)
35.04 (0.22)

26.19 (0.14)
35.21(0.39)

26.20 (0.21)
35.12 (0.17)

26.32 (0.19)
35.21 (0.12)

26.31 (0.15)
34.22 (0.82)

26.21 (0.21)
35.21 (0.19)

26.03 (0.24)
35.12 (0.11)

26.47 (0.52)
34.20 (0.21)

26.93 (0.33)
35.04 (0.19)

8.01 (0.31)
0.04 (0.01)
0.02 (0.01)

8.03 (0.21)
0.04 (0.02)
0.02 (0.01)

8.12 (0.42)
0.04 (0.03)
0.02 (0.01)

8.05 (0.13)
0.05 (0.02)
0.01 (0.01)

8.21 (0.42)
0.04 (0.03)
0.02 (0.01)

8.21 (0.93)
0.04 (0.02)
0.02 (0.01)

8.04 (0.21)
0.04 (0.04)
0.02 (0.01)

8.21 (0.48)
0.03 (0.01)
0.02 (0.01)

8.21 (0.24)
0.03 (0.01)
0.02 (0.01)

0.20 (0.03)
409 (42.32)
1385(69.12)

0.18 (0.04)
415 (33.92)
1350(63.29)

0.30 (0.02)
410 (13.03)

1349 (31.03)

0.13 (0.02)
418 (20.03)

1320 (22.43)

0.05 (0.02)
424 (32.01)

1381 (53.22)

0.25 (0.08)
412 (34.21)

1351 (21.04)

0.20 (0.02)
427 (12.15)

1328 (31.26)

0.19 (0.04)
413 (30.21)

1365 (23.41)

0.20 (0.03)
410 (30.22)

1350 (30.34)
0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01)

Values are expressed as mean ± standard deviation (SD; n = 56 days); C: no feeding; R: artificial polyunsaturated fatty acid (PUFA) rich in
animal protein; S: Saccharomyces cerevisiae; I: Isochrysis galbana tml; N: Nannochloropsis oculate.
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2.3.2. Coral Feeding

After shaking the microalgae and yeast evenly, 20 µL was absorbed by a micropipette
(adjustable air-displacement pipette M25) and then used to calculate the number of microal-
gae and yeast cells with a hemocytometer [26]. The cultured microalgae and yeast were
first counted by hemocytometer, and then diluted with sterilized seawater to the desired
feeding density. The feeding density of microalgae and yeast was 5 − 6 × 105 cells/mL.
Microalgae, yeast, and R were liquid and fed 5% and 10% (w/v) of coral tissue and skele-
tal dry weight per day. Feeding occurred daily at 8:00, except in the case of the unfed
control group.

2.3.3. Determination of Coral Growth and Polyp Count

Coral growth was determined on the basis of total weight and polyp count as described
by [39,40]. We followed Hii et al. [6] by sampling and analyzing the different feed groups
1 h after feeding. We measured the tissue and skeletal dry weight. Algae were brushed and
the coral surfaces were dusted off and then placed on a plastic petri dish. Subsequently,
a coral’s weight was measured using an electronic balance. G. columna has a large polyp
that can be observed directly with the naked eye. Calculations were made once a week,
and photographs to record the number of new polyps were taken using a Canon EOS 750D
camera. The SGR of the coral was measured using the following formula:

SGR (% day−1) =

(
In(w f )− In(wi)

∆t

)
× 100 (1)

where wi is the initial weight of the coral (g), wf is the final weight of the coral (g) and ∆t is
the number of experimental days.

The tissue and skeletal dry weight and number of polyps were measured every 7 days.
SGRs as mean values with standard deviations (SDs) were calculated after the experiment.
After the experiment, to calculate the survival of the corals, the disappearance of polyps
was considered to indicate their death. The survival rates, expressed as means (%) with
SDs, were calculated using the following formula:

survival rate(%) =
(number of final living specimens)

(number of initial specimens)
× 100 (2)

2.3.4. Analysis of Zooxanthellae Density and Chlorophyll a

After the eight-week experiment, coral tissues were homogenized and zooxanthellae
density was calculated according to Titlyanov et al. [26] method. Chlorophyll a concen-
tration was determined by Hitachi U-2000 spectrophotometer at 630 nm and 664 nm in
reference to Levy et al. [41] and Titlyanov et al. [26] method. Calculated using an equation
developed by Jeffrey & Humphrey [42], the value represents how many micrograms of
chlorophyll a there are per gram of coral tissue.

2.3.5. Analysis of Coral Body Composition and Digestive Enzymes

For coral body composition test, please refer to materials and methods 2.2.3. Enzyme
extraction was performed using the method of Sun et al. [43]. Protease and lipase extrac-
tions were performed using 10 mM sodium citrate buffer (pH 7.0) in a cold environment.
Each coral was first rinsed in buffer solution and then added to 10 times the volume of
buffer solution, placed on ice for grinding, and subsequently centrifuged (10,000× g) at
4 ◦C for 10 min. Thereafter, the supernatant was collected and stored at −20 ◦C. Protease
content was analyzed using the method of Sun et al. [43], which involved adding 1 mL of
casein to 0.5 mL of enzyme extract, incubating the mixture for 15 min, and then adding
1.5 mL of 10% trichloroacetic acid. After centrifuging (6000× g) at 4 ◦C for 10 min, the
supernatant was collected and 5 mL of 0.55 M Na2CO3 and 1 mL of Folin phenol-staining
reagent were added. The absorbance value at 680 nm was observed. Lipase content was
analyzed using the method of Borlongan [44]. To 1.5 mL of olive oil, 1.5 mL of Tris–HCl
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(0.1 M buffer, pH 8.0) and 1 mL of enzyme extract were added, and the solution was then
shaken at 37 ◦C for 6 h. Thereafter, 95% alcohol was added to terminate the reaction, and
thymolphthalein containing 0.9% alcohol was used as the indicator. The mixture was
then titrated with 0.01 N NaOH until the solution turned brown. Amylase content was
analyzed using the method of Bernfeld [45]. To 0.05 M phosphate buffer solution (pH 7.0),
1 mL of 2% (w/v) starch solution was added, and the mixture was maintained at 25 ◦C
for 5 min. Then, the enzyme extraction was added and the mixture was left to react at
20–60 ◦C. Subsequently, 2 mL of dinitrosalicylic acid reagent was added before the reaction
was stopped in a boiling water bath for 5 min and the mixture then cooled. The absorbance
at 520 nm was measured, as per the maltose standard. Amylase activity was determined as
maltose content per milligram of protein per minute. At the end of the experiment, means
and SDs were calculated.

2.4. Experiment Three: Diurnal Change Analysis of Coral Body Composition and
Digestive Enzymes

G. columna were fed in an aquarium (60 × 35 × 30 cm) containing a recirculating
filtered seawater system. The photoperiod was set as 6/18-h light–dark. In this experiment,
R was used for feeding, feeding at the same time at the beginning of the experiment, feeding
10% (w/v) of the tissue and skeletal dry weight of coral. Samples were obtained every 6 h,
at 6:00, 12:00, 18:00, and 24:00. The corals’ body composition and digestive enzymes were
analyzed after sampling (n = 30 colonies). The purpose of this study was to determine at
which time of day corals should be fed to maximize digestion and absorption.

2.5. Statistical Analysis

Data were obtained from three independent experiments, and the final results are
presented as means ± SDs. One-way analysis of variance and Duncan’s multiple range
test were used to determine the statistical significance of G. columna nutrient composition,
growth, survival, digestive enzyme activity, and body composition. A p value <0.05 was
considered significant. All statistical analyses were performed using IBM SPSS version
20. These analyses were used evaluate the feeding efficiency and feed time of corals on
different foods.

3. Results
3.1. Experiment One: Feed Composition and Ingestion
Effects of Feed on Nutrient Intake

Protein, lipid, and glucose analyses were performed 1 h after feeding (Table 3) and
used to evaluate the changes in body composition of the corals after ingestion of feed
compared with the unfed control group. After the G. columna were fed R, S, I, and N for
1 h, various changes in their composition were immediately observed; their protein content
was 430.45 ± 12.30, 322.05 ± 11.22, 332.35 ± 13.12, and 325.43 ± 13.20 µg/mg, respectively.
The R-fed groups contained significantly more protein (p < 0.05) than the other groups.
The lipid content was higher in the I and N groups, but the differences compared with the
other groups were significant. The S groups contained more glucose.

The R feed contained the most protein (76.67 ± 1.56 µg/mg), the I and N feeds
contained the most lipids (32.00 ± 2.00 and 20.33 ± 1.56 µg/mg, respectively), and the
S feed was the highest in glucose (29.00 ± 0.67µg/mg) (Table 1). Therefore, the results
indicated that G. columna could increase some bodily nutrients through the intake of
different feeds.

3.2. Experiment Two: Effects of Different Diets on Body Composition, Digestion Enzyme, Growth
and Survival of Coral
3.2.1. Effects of Feed on Growth and Survival of G. Columna

After 8 weeks of cultivation, the polyp numbers, tissue and skeletal dry weight
measurements, and the SGRs of the corals were used to evaluate the growth of G. columna.
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As shown in Table 4, the numbers of polyps in the R(5) and R(10) groups were 40.00 ± 2.43
number and 47.33 ± 0.89 number, respectively, significantly higher than those in other
groups fed 5% or 10% of their body weight (p < 0.05). The S(5) and N(5, 10) groups had the
fewest polyps, with only 32 remaining after 8 weeks of culture. The R groups significantly
outgrew all the other groups (p < 0.05). The G. columna exhibited stunted growth when fed
the S, I, and N feeds. The changes in coral tissue and skeleton dry weights indicated that the
R(10) group demonstrated the greatest tissue and skeletal dry weight gain (12.93 ± 0.4 mg;
Figure 1). Figure 2 illustrates the SGR of the G. columna specimens. The SGRs of the R(5)
and R(10) groups were 1.3 times those of the S, I, and N groups (for both 5% and 10% of
body weight feeding). These results reveal that the selection of feed is crucial to G. columna
growth. The R feed enhanced the growth of G. columna. In each group, the survival rate
was 100%; no deaths were recorded. Thus, feeding with the R formulation effectively
promotes G. columna growth.

Table 3. Body composition of corals 1 h after being fed different aquaculture feeds.

Nutritional
Indicators

Feeding

C R S I N

Protein (µg/mg) 321.52 b

−11.51
430.45 a

−12.3
322.05 b

−11.22
332.35 b

−13.12
325.43 b

−13.2

Lipid (µg/mg) 1.10 b

−0.15
1.20 b

−0.11
1.40 b

−0.12
3.11 a

−0.21
2.85 a

0.14

Glucose (µg/mg) 1.11 c

−0.06
3.93 b

−0.31
4.82 a

−0.06
1.15 c

−0.12
1.14 c

−0.09
C: no feeding; R: artificial polyunsaturated fatty acid (PUFA) rich in animal protein; S: Saccharomyces cerevisiae; I:
Isochrysis galbana tml; N: Nannochloropsis oculata. Different letters indicate significant differences among groups
(p < 0.05). Values are expressed as means ± SDs (n = 30 colonies).

Table 4. Polyp number, zooxanthellae density, and chlorophyll a concentration of G. columna after 8 weeks of daily feeding.

Treatments Feed Zooxanthellae
(Cells×107 m2)

Chlorophyll a
(µg/cm2)

Initial Polyps
(Number ± 95%)

End Polyp
(Number ± 95%)

Net Increase
(Number ± 95%)

5%

C 3.71 (0.17) 53.22 (1.04) 5.00 (0.00) 33.00 (1.37) 28.00 (1.37)
R 4.05 (0.71) 54.29 (1.23) 5.00 (0.00) 40.00 (2.34) 35.00 (2.34)
S 3.79 (1.43) 53.73 (1.17) 5.00 (0.00) 32.67 (2.22) 27.67 (2.22)
I 3.98 (0.94) 53.98 (1.39) 5.00 (0.00) 34.00 (0.67) 29.00 (0.67)
N 4.12 (1.02) 54.05 (0.28) 5.00 (0.00) 32.33 (1.56) 27.33 (1.56)

10%

R 3.93 (1.76) 54.02 (1.32) 5.00 (0.00) 47.33 (0.89) 42.33 (0.89)
S 4.21(1.53) 53.69 (1.75) 5.00 (0.00) 35.35.00 (2.00) 30.00 (2.00)
I 4.27(0.92) 54.38 (1.43) 5.00 (0.00) 36.00 (0.67) 31.00 (0.67)
N 4.36(1.47) 54.64 (0.00) 5.00 (0.00) 32.67 (1.78) 27.67 (1.78)

C: no feeding; R: artificial polyunsaturated fatty acid (PUFA) rich in animal protein; S: Saccharomyces cerevisiae; I: Isochrysis galbana tml; N:
Nannochloropsis oculate. Values are expressed as means ± SDs (n = 30 colonies).

3.2.2. Influence of Different Feeds on Body Composition

To determine whether a selected feed affected the body composition of G. columna,
the various feeds (R, S, I, and N) were given to the corals at quantities of either 5% or
10% of their body weight per day. After 8 weeks of cultivation, the body composition of
the G. columna specimens was measured. Table 5 indicates that the protein content of the
corals sustained with R feed was 474.01 ± 23.00 and 486.78 ± 36.41 µg/mg for those fed
5% and 10% of their body weight, respectively; this content was significantly higher than
that of the other groups (p < 0.05). The lipid content of the R(5) and R(10) groups was
2.85 ± 0.13 and 3.02 ± 0.29 µg/mg, respectively, significantly higher than the values in the
other groups (p < 0.05). There was no significant difference in glucose content among all
treatments. According to body composition analysis, the protein content of G. columna is
166 and 370 times higher than that of lipid and glucose. Feeding high protein content of
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R helps G. columna to growth. According to the preliminary results, G. columna exhibits
notable potential to absorb protein nutrients, which could boost their growth.

Figure 1. Tissue and skeletal dry weight of G. columna after 8 weeks of daily feeding with various
aquaculture feeds. C: no feeding; R: artificial polyunsaturated fatty acid (PUFA) rich in animal
protein; S: Saccharomyces cerevisiae; I: Isochrysis galbana tml; N: Nannochloropsis oculata. Different
letters indicate significant differences among groups (p < 0.05). Values are expressed as means ± SDs
(n = 30 colonies).

Figure 2. Growth of G. columna after 8 weeks of daily feeding. C: no feeding; R: artificial polyunsat-
urated fatty acid (PUFA) rich in animal protein; S: Saccharomyces cerevisiae; I: Isochrysis galbana tml;
N: Nannochloropsis oculata. Different letters indicate significant differences among groups (p < 0.05).
Values are expressed as means ± SDs (n = 30 colonies).
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Table 5. Body composition of G. columna after 8 weeks of feeding with different aquaculture feeds.

Nutritional
Indicators

Treatments

C
R S I N

5% (I) 10% (II) 5% (I) 10% (II) 5% (I) 10% (II) 5% (I) 10% (II)

Protein
(µg/mg)

374.73 b

(11.50)
474.01 a

(23.00)
486.78 a

(36.41)
327.72 b

(21.80)
383.18 b

(12.60)
386.87 b

(12.60)
385.57 b

(19.80)
339.23 b

(12.14)
321.79 b

(8.85)
Lipid

(µg/mg)
1.96 b

(0.15)
2.85 a

(0.13)
3.02 a

(0.29)
1.65 b

(0.15)
1.72 b

(0.10)
1.98 b

(0.12)
2.13 b

(0.21)
1.69 b

(0.42)
1.64 b

(0.14)
Glucose
(µg/mg)

1.11
(0.06)

1.28
(0.20)

1.32
(0.22)

1.13
(0.07)

1.26
(0.06)

1.22
(0.09)

1.15
(0.12)

1.13
(0.07)

1.11
(0.09)

C: no feeding; R: artificial PUFA rich in animal protein; S: Saccharomyces cerevisiae; I: Isochrysis galbana tml; N: Nannochloropsis oculata.
Different letters indicate significant differences among groups (p < 0.05). Values are expressed as means ± SDs (n = 30 colonies).

3.2.3. Influence of Different Feeds on Digestive Enzymes

After the corals had been given different feeds (R, S, I, and N) for 8 weeks, their
digestive enzyme activity was measured. As detailed in Table 6, the protease activity of
the R(5) and R(10) groups was 1.57 and 1.67, 1.78 and 1.93, 1.69 and 1.71, and 1.51 and
1.52 times higher than that of S, I, N, and unfed control (C) groups, respectively. Similarly,
the lipase activity of the R(5) and R(10) groups was 1.21 and 1.27, 1.29 and 1.27, 1.34 and
1.36, and 1.21 and 1.28 times higher than that of their counterpart S, I, N, and C groups. No
significant differences in amylase activity were discovered among any of the groups. These
results indicate that R feeding can enhance protease and lipase activities (but not amylase
activity) in G. columna. Therefore, the intake of high-protein food is more conducive to
nutrient absorption in G. columna.

Table 6. Activity of digestive enzymes in G. columna after 8 weeks of feeding with different aquaculture feeds.

Test Items

Treatments

C
R S I N

5% (I) 10% (II) 5% (I) 10% (II) 5% (I) 10% (II) 5% (I) 10% (II)

Protease
(U/mg protein)

214.37 b

(11.22)
324.67 a

(26.68)
325.70 a

(34.88)
206.24 b

(7.31)
196.66 b

(12.13)
182.13 b

(42.85)
168.68 b

(30.17)
191.75 b

(35.94)
190.17 b

(33.92)
Lipase

(U/mg protein)
10.01
(0.80)

12.16
(0.52)

12.84
(0.43)

10.04
(0.39)

10.13
(0.37)

9.42
(0.64)

10.30
(0.42)

9.09
(1.30)

9.42
(0.64)

Amylase
(U/mg protein)

1.47
(0.08)

1.45
(0.15)

1.61
(0.24)

1.38
(0.43)

1.17
(0.54)

1.27
(0.08)

1.26
(0.06)

1.18
(0.52)

1.26
(0.58)

C: no feeding; R: artificial PUFA rich in animal protein; S: Saccharomyces cerevisiae; I: Isochrysis galbana tml; N: Nannochloropsis oculata.
Different letters indicate significant differences among groups (p < 0.05). Values are expressed as means ± SDs (n = 30 colonies).

3.2.4. Influence of Different Feeds on Zooxanthellae and Chlorophyll a

By observing the changes of zooxanthellae and chlorophyll A, it can be judged that
light energy or feed can provide nutrients to promote coral growth. As detailed in Table 4,
no significant differences in zooxanthellae density (approximately 4.0 × 107 cells m−2) or
chlorophyll a concentration (approximately 54 µg cm−2) were noted among the groups
fed different substances. Therefore, the experimental results showed that there was no
significant increase in the number of zooxanthellae, but feeding R could promote the
growth of coral.

3.3. Experiment Three: Coral Feeding Time Assessment

The present study suggested that the artificial feed R enhances the growth, body com-
position, and digestive enzyme activity of G. columna. Changes in the body composition
and digestive enzymes of G. columna were observed after feeding with R over a 24-h period.
By measuring the changes in digestive enzymes and body composition, the feeding time
most conducive to growth within coral aquaculture was evaluated. Figure 3 illustrates
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that the protein content of G. columna at 6:00, 12:00, 18:00, and 00:00 was 354.21 ± 21.64,
486.78 ± 23.12, 324.13 ± 21.03, and 321.49 ± 19.46 µg/mg, respectively. The protease
activity at 12:00 was 1.37, 1.50, and 1.51 times higher than that at 6:00, 18:00, and 00:00,
respectively. Lipid content was continually low (2.49–3.02 µg/mg). No significant differ-
ences in glucose content were observed among the four feeding times (1.02–1.38 µg/mg).
As shown in Table 7, the protease activity at 6:00, 12:00, 18:00, and 00:00 was 153.25 ± 20.32,
385.67 ± 16.48, 285.15 ± 17.12, and 167.85 ± 19.35 U/mg protein, respectively. The protease
activity at 12:00 was 2.52, 1.35, and 2.30 times higher than that at 6:00, 18:00, and 00:00,
respectively. No significant differences were observed in the lipase or amylase activity
among different feeding times. An in vivo comparison of the protease activity with protein
content suggested that the protein content was lower when the protease activity was lower.
The protein content and protease activity were both at their highest at 12:00 and both
decreased in the evening to their lowest values at 00:00. Therefore, the experimental results
suggest that the digestion and absorption of G. columna exhibit hour-to-hour changes across
the daily cycle. The most suitable feeding time for G. columna culture is between 6:00 and
12:00, during which the digestive enzyme activity gradually increases and the absorption
of nutrients from the feed is optimal.

Figure 3. Cont.
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Figure 3. Changes in body composition of rich-animal-protein-fed (R-fed) G. columna over a 24-h
period: (A) protein, (B) lipid, and (C) glucose content. Values are expressed as means ± SDs
(n = 30 colonies).

Table 7. Changes in digestive enzymes of R-fed G. columna over a 24-h period.

Test Items
Time (Hour)

6 12 18 24

Protease
U/mg protein 153.25 (20.32) c 385.67 (16.48) a 285.15 (17.12) b 167.85 (19.35) c

Lipase
U/mg protein 4.01 (0.08) c 10.16 (0.52) a 9.06 (0.42) b 4.39 (0.12) c

Amylase
U/mg protein 0.95 (0.21) 1.29 (0.11) 1.17 (0.08) 1.04 (0.16)

Different letters indicate significant differences among groups (p < 0.05). Values are expressed as means ± SDs
(n = 30 colonies).

4. Discussion

Among ornamental corals, G. columna is an industry favorite. The scarcity of data on
the effects of various coral feeds and corals’ nutritional requirements renders feeding within
coral aquaculture difficult [6]. G. columna cultures can be influenced by environmental
factors, and quantitative feeding can enhance the growth of polyps. Our results revealed
that G. columna gained effective sustenance from the R formulation. The R(10) group
exhibited an increase in polyp numbers that was significantly greater than those of the
other groups. No significant difference in daily growth rate was observed among the
control group and S, I, and N experimental groups. At present, limited studies have
investigated the nutrition of corals, and corals are usually cultured as small polyps. Because
of the small size of these segmented corals, the coral symbiotic algae cannot provide their
own nutrition, and nutritional sources are often lacking under the conditions of artificial
cultivation, affecting the growth and survival rates of the cultivated corals [23]. In one
study, feeding Artemia salina nauplii to Galaxea fascicularis resulted in a high feeding rate but
did not improve coral growth, which may have been related to the body composition of the
A. salina [6]. In addition, the caliber of G. columna is only 50–100 µm; hence, absorbing large
feed organisms is impossible. Therefore, the size of a coral’s caliber should be considered
during selection of feed. Among the feeds used in the present study, S. cerevisiae, I. galbana
tml, and N. oculata could all be microscopically observed in the corals’ body cavities, and
changes in body composition after feeding were also noted. We evaluated the nutrient
absorption efficiency of corals on the basis of changes in body composition after providing
G. columna with different feeds. The results suggested that the body composition of G.
columna was affected by the feed given, with the experimental groups differing from
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the unfed control group. This may have been because different feeds contain different
nutrients. Therefore, the results indicated that G. columna could increase some bodily
nutrients through the intake of different feeds.

In addition to the feed quantity, the attractiveness of different feeds to G. columna
may also affect the coral’s feeding habits. R is a liquid feed with particles approximately
1 µm in size. Thus, in addition to the composition of R, which was more suitable for G.
columna absorption, the size of the feed particles may have been relevant. G. columna fed
daily with R at 5% or 10% of its body weight exhibited enhanced protease activity and
protein content, but the zooxanthellae density and chlorophyll a concentration remained
unaffected. Overall, the results indicate that R feeding at a daily quantity of 5% or 10% of
the coral’s body weight provides the optimal culture conditions for G. columna.

We analyzed the protein, lipid, and glucose content of the feed, as shown in Table 6.
The protein content was highest in the R feed (76.67 ± 1.56 µg), I had the highest fat content,
and S had the highest glucose content. G. columna body composition analysis indicated that
R contained the most protein and the least carbohydrates. The protein content and growth
efficiency were higher in the R-fed groups than in the other groups. Heterotrophic feeding
is essential for corals to overcome any nutrient deficiency because nitrogen, phosphate,
vitamins, and other trace elements are not synthesized through autotrophic feeding [6].
Raz-Bahat et al. (2017) [46] reported that the actinopharynx and mesenterial filaments are
pivotal digestive systems in stony corals, and consideration of the digestive enzymes and
chymotrypsinogen is crucial to elucidating the digestive system functionality of Stylophora
pistillata. Therefore, corals can obtain nutrition through ingestion of food. Most stony corals
can obtain 40–95% of base energy through the host [47,48]. Corals are also opportunistic
heterotrophic feeders, exploiting several trophic pathways simultaneously [49]. Corals
are known to range between the activities of a primary herbivore, producer, carnivore,
detritivore, and consumer of dissolved nutrients [20,49]. These heterogeneous roles provide
corals with myriad nutrients, such as phosphorus and alternative forms of lipids not
provided by photosynthesis [20]. Our results suggest that feeding G. columna with R leads
to considerable growth; by contrast, feeding it microalgae and yeast does not assist the
growth of G. columna.

Yeast is a common live feed in aquaculture [50,51]. Different yeast cell walls have
different components (e.g., β-glucan and oligosaccharide), and are commonly used as in
fish diets or to replace fish meal [31,52–55]. Brewer’s yeast can replace 50% of the fish
meal content in Dicentrarchus labrax feed [31]. Feeding 25% brewer’s yeast can replace
casein and improve the growth and feed conversion rate of rainbow trout (Oncorhynchus
mykiss), whereas feeding 50% will affect palatability and the feeding rate [56]. The present
study’s results indicate that using yeast as a feed for G. columna does not significantly
increase growth, which may be related to the influence of yeast cell walls, lignocellulosic
biomass, and the most abundant carbohydrate at the time of coral digestion [57,58]. Kim
et al. (1998) [59] contended that tough cell walls are the main constraint on yeast’s use as
an aquaculture feed. Therefore, corals’ ability to digest live yeast or absorb sugars may
require further research.

According to the nutritional research on microalgae, I and N are rich in DHA and
EPA, respectively [60,61]. Living microalgae constituents such as PUFAs, vitamins, sterols,
and carbohydrates have key nutritional value [62]. Factors influencing the bioutilization of
microalgae include its size, shape, digestibility, biochemical composition, enzyme activity,
and toxins as well as the target organism’s requirements for feeding [63]. Microalgae grown
to the late logarithmic growth phase typically contain 10–20% lipid, 5–15% carbohydrate,
and 30–40% protein [64]. Our results indicated no significant increase in the protein, lipid,
or glucose content of G. columna specimens after 8 weeks of being fed I or S microalgae. The
lipase and amylase content of the corals were also low, which may have led to an inability
to metabolize fat and starch, thereby limiting the main cause of growth. In addition,
the cell wall of microalgae generally comprises cellulose, which presents a challenge to
bioaccessibility because of its low digestibility [61]. The microalgae I has cell diameter of
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approximately 3–5 µm, whereas the cell diameter of N is approximately 2–4 µm [65]. The
mouth diameter of G. columna is 50–100 µm; therefore, G. columna can comfortably ingest
these two feeds. Corals are coelenterates—whatever food they cannot digest after initial
ingestion is excreted from their mouths. We observed microalgae in the coral’s body 1 h
after eating, implying that the coral had swallowed the microalgae. Therefore, the results
suggest that corals cannot digest microalgae after swallowing them, explaining the lack
of significant increase in growth. Excessive feeding may cause excessive nutrients in the
water and cause algae growth af-fects the growth of coral. Therefore, the feed selected in
coral aquaculture should be one that can be quickly absorbed and does not pollute the
water. During our study, the ammonia nitrogen and nitrite in the water were measured,
and none of the experimental groups’ water contained more than the standard levels.

The 24-h observation of G. columna body composition and digestive enzyme activity
(Figure 3) indicated that the protein content of the coral was highest at 12:00, measuring
486 ± 23.15 µg/mg, and was significantly lower at 18:00, 00:00, and 06:00, measuring
324.13 ± 21.03, 321.49 ± 19.46, and 345.21 ± 21.64 µg/mg, respectively. The digestive
enzyme protease activity also exhibited marked variation throughout the day; at 6:00, 12;00,
18:00, and 00:00, its registered activity was 153.25 ± 20.32, 385.67 ± 16.48, 285.15 ± 17.12,
and 167.85 ± 19.35 U/mg protein, respectively. The comparison of other aspects of digestive
enzyme activity and protein content in the body (Figure 3 and Table 7.) indicated that low
protein content occurs when digestive enzyme activity is low; when protein content is at its
highest (12:00), the digestive enzyme activity is also its highest. Digestive enzyme activity
was decreased at 18:00, at which point the protein content was also decreased, and finally
when the digestive enzyme activity decreased to its daily low at 00:00, the body protein
content was also at its lowest. Hence, the protein content increased to its highest level
within 6 h of feeding, and the digestive enzyme activity decreased after 6 h, suggesting that
the digestion time was within 6 h. According to Sebens and Koehl (1984) [66], digestion
times vary among coral species. The digestion time of Alcyonium siderium fed zooplankton
is approximately 4–6 h. The hydrocoral Millepora complanata reportedly completes digestion
of its prey in approximately 24 h [12]. G. fascicularis begins to digest food 10 min after
ingestion and finishes within 180 min [6]. Studies have failed to thoroughly determine
the key role of light or food in corals’ physiological metabolism and growth. Light is a
crucial factor in the physiology of coral symbiotic zooxanthellae and critical for the growth
and maintenance of zooxanthellate coral in captivity [67,68]. Therefore, the digestion and
absorption properties of corals change from day to day. When managing large-scale G.
columna aquaculture, the establishment of definite feeding times is critical; we noted that
the optimal feeding time for G. columna is between 6:00 and 12:00. At this time, higher
protease activity aids digestion, metabolism, and absorption.

5. Conclusions

The coral aquaculture industry has gradually attracted attention, and feeding G.
columna with the R(10) formulation can improve its growth and significantly improve its
protein content compared with other feeds. The optimal feeding time is between 06:00
and 12:00, when the activity of digestive enzymes is highest and maximal benefit can
obtained from the absorption of nutrients in ingested food. Our observations suggest
that feeding with R can increase the number of coral polyps from 5 to 40 number over
2 months, accelerating the growth rate of G. columna. We expect our findings to be applied
in coral farming enterprises. At present, the CITES-certified Taiwan Coral king Coral King
Coral Farm (Kaohsiung, Taiwan) feeds corals with the R formulation between 6:00 and
12:00 daily, recording an annual output of up to 20,000 G. columna colonies, all housed in
150 × 60 × 30 cm tanks.
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