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Abstract

MicroRNAs (miRNAs) constitute novel biomarkers for various diseases. Accurate and quan-

titative analysis of miRNA expression is critical for biomedical research and clinical thera-

nostics. In this study, a method was developed for sensitive and specific detection of

miRNAs via dual signal amplification based on duplex specific nuclease (DSN) and hybrid-

ization chain reaction (HCR). A reporter probe (RP), comprising recognition sequence (3’

end modified with biotin) for a target miRNA of miR-21 and capture sequence (5’ end modi-

fied with Fam) for HCR product, was designed and synthesized. HCR was initiated by partial

sequence of initiator probe (IP), the other part of which can hybridize with capture sequence

of RP, and was assembled by hairpin probes modified with biotin (H1-bio and H2-bio). A

miR-21 triggered cyclical DSN cleavage of RP, which was immobilized to a streptavidin (SA)

coated magnetic bead (MB). The released Fam labeled capture sequence then hybridized

with the HCR product to generate a detectable dsDNA. This polymer was then dropped on

lateral flow strip and positive result was observed. The proposed method allowed quantita-

tive sequence-specific detection of miR-21 (with a detection limit of 2.1 fM, S/N = 3) in a

dynamic range from 100 fM to 100 pM, with an excellent ability to discriminate differences in

miRNAs. The method showed acceptable testing recoveries for the determination of miR-

NAs in serum.

PLOS ONE | https://doi.org/10.1371/journal.pone.0185091 September 25, 2017 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Ying N, Ju C, Sun X, Li L, Chang H, Song

G, et al. (2017) Lateral flow nucleic acid biosensor

for sensitive detection of microRNAs based on the

dual amplification strategy of duplex-specific

nuclease and hybridization chain reaction. PLoS

ONE 12(9): e0185091. https://doi.org/10.1371/

journal.pone.0185091

Editor: Pierre Busson, Gustave Roussy, FRANCE

Received: February 3, 2017

Accepted: September 6, 2017

Published: September 25, 2017

Copyright: © 2017 Ying et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This study was funded by The Basic

Work of Science and Technology Special of China

(NO.2013FY113600), National Key Technologies

R&D Program of China (No.2013BAD12B04),

Science and technology development plans of Jilin

Province (20150101105JC) and The National Key

Research and Development Program of China

(No.2016YFD0501000). The funders had no role in

https://doi.org/10.1371/journal.pone.0185091
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185091&domain=pdf&date_stamp=2017-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185091&domain=pdf&date_stamp=2017-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185091&domain=pdf&date_stamp=2017-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185091&domain=pdf&date_stamp=2017-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185091&domain=pdf&date_stamp=2017-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0185091&domain=pdf&date_stamp=2017-09-25
https://doi.org/10.1371/journal.pone.0185091
https://doi.org/10.1371/journal.pone.0185091
http://creativecommons.org/licenses/by/4.0/


Introduction

MicroRNAs (miRNAs) are a class of endogenous, short (19−23 nucleotides) single-stranded

non-coding RNAs, which serve as critical regulators of gene expression[1]. They play impor-

tant roles in diverse physiological processes and diseases[2]. Close associations of abnormal

miRNA expression and multiple human diseases, especially cancer have been described[3].

MiRNAs are therefore considered potential targets in disease diagnosis and therapy, represent-

ing a class of novel biomarkers for diseases such as cancers, and cardiovascular and autoim-

mune diseases[4]. Thus, simple, rapid, and sensitive miRNA detection methods are urgently

needed for further understanding of the biological functions of miRNAs, as well as early dis-

ease diagnosis and treatment.

The detection of miRNAs is hampered by their short length, sequence homology among fam-

ily members, low abundance in total RNA, and susceptibility to degradation[5]. Conventional

analytical methods, including Northern blot[6], microarrays and quantitative fluorescence

reverse transcription PCR (qRT-PCR)[7], next generation sequencing[8,9] are considered stan-

dard methods and widely utilized for miRNA analysis. However, these methods involve elabo-

rate, time-consuming, and expensive processes that require special laboratory equipments[10].

These shortcomings limit their application in point-of-care settings or resource-limited locations.

Currently, a variety of novel methods have been developed for miRNA detection, including col-

orimetric[11,12], fluorescence-based[13,14], bioluminescence-based[15,16], electrochemical[17–

19], surface-enhanced Raman spectroscopic[20], surface plasmon resonance[21], Nanopore[22],

and mass spectrometric[23] assays. Among them, lateral flow-based colorimetric assay, offers a

cost-effective, rapid, and convenient option for miRNA detection with no need of advanced

instruments. Nevertheless, lateral flow nucleic acid biosensor (LFNAB) is not satisfactory for

miRNA detection due to its poor sensitivity.

The duplex specific nuclease (DSN)-mediated signal amplification strategy was recently

developed for miRNAs detection, in which the original detection signal could be amplified lin-

early without changing target miRNA amounts[10]. DSN displays a high preference for cleav-

ing double-stranded DNA as well as DNA in DNA−RNA hybrid molecule, and is not effective

towards single-stranded DNA or single/double-stranded RNA. DSN shows a good ability to

discriminate between perfectly and non-perfectly matched duplexes, and does not need special

recognition sites[24]. DSN is well suitable for the detection of miRNAs based on the character-

istic of DNA cleavage in the DNA−miRNA heteroduplex. Due to its unique enzymatic charac-

teristics and great potential application in miRNA detection[10,25,26], DSN has attracted

increasing interest. Despite their remarkable advantages, such as simple methodology, fast

experimental protocols, and high specificity, the detection limits of DSN-assisted target recy-

cling methods need further improvement for miRNA detection. This could be achieved by

introducing a dual signal amplification process. Lv W et al demonstrated that the DSN-assisted

dual signal amplification strategy yields a detection limit as low as 7.3 fM based on DNA/

2-OMe-RNA chimeric probes (DR-CPs)[26]. Hao N et al reported a dual target-recycling

amplification strategy for sensitive detection of microRNAs based on DSN and catalytic hair-

pin assembly, with a detection limit as low as 5.4 fM[27]. In spite of the high sensitivity of

these two works, the application of electrochemiluminecence and fluorescence measurements

requires expensive equipments and materials, which limits their use in low-resource settings

or small scale laboratory. And in the latter work, the catalytic hairpin assembly, applied as the

second amplification, was initiated by the release of the cleaved probes from magnetic beads,

which means that the whole detection time is the sum of two amplification processes. How-

ever, comparable to other kit detections, the reagents of which can be prepared in advance,

this assay may require more time to complete the whole process.

LFNAB for microRNA detection and hybridization chain reaction
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Hybridization chain reaction (HCR), a signal enhancement technique that depends on the

autonomous self-assembly of two metastable hairpin structures (short DNA fragments)

through specific interactions, was used to generate a long nicked DNA double helix[28]. More-

over, HCR is an enzyme-free process, and has been widely applied for DNA detection with

PCR-like sensitivity[29–31]. Herein, based on miRNA-initiated DNA cleavage by DSN and

HCR cascade signal amplification, a lateral flow nucleic acid biosensor for visual and sensitive

detection of miRNAs was developed. In the present work, miR-21 was selected as target

miRNA. Hybridization chain reaction, served as the second signal amplification, can be pre-

pared in advance or at the same time with the DSN-assisted first amplification, and this saves

a tremendous amount of detection time. The proposed strategy could distinguish various

homologous sequences containing as little as a single base mismatch. Meanwhile, thanks to the

dual signal amplification strategy, the method allows for detection of the target miRNA in a

wide dynamic range of 100 fM to 100 pM and has a detection limit as low as 2.1 fM, rendering

this method advantageous for analyzing biological samples. Interestingly, this method was suc-

cessfully applied for analyzing RNA in serum, demonstrating its potential application in clini-

cal sample analysis.

Materials and methods

Ethics statement

This study was approved by the Institutional Review Board of Academy of Military Medi-

cal Sciences. All the data analyzed in this study were de-identified to protect patient con-

fidentiality.

Materials and reagents

HPLC-purified microRNAs, oligonucleotide probes were synthesized by Takara Biotechnol-

ogy Co. Ltd. (Dalian, China). All oligonucleotide sequences are listed in S1 Table. RNase inhib-

itor and DEPC-treated water were obtained from Sangon Biotech Co., Ltd. (Shanghai, China).

Streptavidin-coated magnetic beads (SA-MB, 0.8 mm in diameter, 10 mg/mL) were purchased

from Bangs laboratories, Inc. (USA). DSN was obtained from Newborn Co. Ltd. (Shenzhen,

China). SA was purchased from Sangon Biotech Co., Ltd. (Shanghai, China). Colloidal AuNPs

were from Hualan Chemical Co., Ltd. (Shanghai, China). Anti-Fam antibodies, bovine serum

albumin (BSA)-biotin conjugate, were from Ruiqi Biotech Co., Ltd. (Shanghai, China). The

serum specimens were obtained from China-Japan Union Hospital of Jilin University, China.

All chemicals were from Sigma-Aldrich, Inc. (Saint Louis, MO, USA) and used without further

purification.

Preparation of LFNAB

LFNAB was designed, prepared and assembled as described previously[32], with some modifi-

cations. SA was added to 20 nm AuNPs (0.01%, m/v) at a final concentration of 18 μg mL-1 to

form colloidal gold particles-streptavidin (AuNPs-SA). The mixture was impregnated on the

absorbent pad of the biosensor. The anti-Fam mAb (4 mg mL-1) was coated on the surface of

a nitrocellulose (NC) filter membrane at 1 μL/cm as the test line (T line) and BSA-biotin con-

jugate was coated on the surface of the nitrocellulose membrane at 1 μL/cm as the control line

(C line). The concentration of BSA-biotin conjugate was 1.2 mg mL-1. The LFNAB was assem-

bled with the absorbent pad, the NC membrane (in the middle) and absorbent pad and was

then cut by the dipstick into 0.5 cm wide, 5 cm long pieces. All the strips were sealed in a plas-

tic bag and stored at room temperature until used.

LFNAB for microRNA detection and hybridization chain reaction
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Procedure for miRNA detection

The target microRNA triggered and DSN assisted signal amplification was prepared as

described previously[26], with some modifications. First, 5μL of the prepared SA-MB was

washed thrice, and mixed with 10μL reporter probe (50 nM) at room temperature for 1h. After

three times washing steps, 10μL DSN reaction mixture containing 1×DSN buffer (50 mM

Tris–HCl pH 8.0, 10 mM MgCl2 and 1 mM DTT), 0.2 U DSN, 8 U RNase inhibitor, and differ-

ent concentrations of target miRNA(the volume of the miRNA sample was 5 μL) was incu-

bated with magnetic beads at 60˚C for 60 min.

Next, the MBs were separated away from the reaction mixture using a magnetic separation

rack, and the solution (10μL) was transferred to a new centrifuge tube. Then, stop buffer (5μL,

20 mM EDTA) was added into the solution and incubated for 15 min. This was followed by

addition of 5μL HCR products containing H1-bio (2μM), H2-bio (2μM) and Initiator Probe

(0.4μM) for 2 h. Subsequently, the reaction mixture was incubated at room temperature for 15

min prior to the lateral flow strip assay. Twenty microlitres of the final products were applied

to the sample pad. During the assay, the solution migrated upward by capillary force; LFNAB

data was read after 10 min. Appearance of visible reddish purple lines in both control and test

lines was considered to represent positive target miRNA detection. A negative test result was

indicated by a reddish purple line solely at the control line. For quantitative analysis, the signal

strength of test/control (T/C) lines (peak areas) of the LFNAB was measured using the Image J

software[33].

Results and discussion

Principle of the miRNA assay

The principle behind the miRNA assay based on functional magnetic beads and DSN-assisted

dual signal amplification is described in detail in Fig 1. A report probe (RP), labeled with a bio-

tin group at the 30 terminus and a Fam group at the 50 terminus, consisting of a target miRNA

recognition DNA sequence (30 end) and a capture sequence (50 end) for HCR products was

rationally designed, This probe was first attached to the surface of SA-coated MBs through bio-

tin-SA interaction. Upon addition of target miRNA to the reaction, it hybridized with the

report probe to form a RP/miRNA duplex. Once the DNA/RNA heteroduplex was formed, the

target recognition sequence was selectively hydrolyzed by DSN. As a result, Fam-labeled cap-

ture sequence was released from SA-MB, forming a target-recycling amplification. Afterwards,

the MBs together with unreacted RPs were separated away from the reaction mixture using a

magnetic separation rack. The supernatant was followed by the addition of biotins labeled

HCR polymer and the released capture sequences hybridized with the rest of IP to form Fam-

labeled polymers as a signal output.

Visual detection of the formed polymers was performed using the LFNAB. SA-AuNPs and

the anti-Fam mAb were pre-immobilized on the conjugate pad and test zone of the LFNAB,

respectively. Biotins were pre-immobilized on the control zone. The LFNAB’s sample pad was

dipped into the mixture of running buffer and sample solution containing the polymers.

When the solution migrated by capillary action and passed the conjugate pad, it rehydrated

the SA-AuNP conjugates. The numerous biotin-attached double-helix DNAs of the polymers

reacted with SA on the AuNP surface to form HCR-biotin–SA-AuNP complexes, which con-

tinued to migrate along the strip. The complexes were then captured on the test zone through

specific reactions between the anti-Fam mAb (on test zone) and Fam-labeled initiator seq-

uence of the complexes. AuNP accumulation in the test zone was visualized as a characteristic

red band. The excess SA-AuNP conjugates continued to move, and were captured on the

LFNAB for microRNA detection and hybridization chain reaction
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control zone via reactions between biotin and SA on the AuNP surface, thus forming a second

red band. The presence of target miRNAs was determined by test line’s color, and semi-quanti-

tative detection of the target microRNA was based on the color depth of the detection line. In

the absence of target miRNA, RPs were not hydrolyzed by DSN, and no capture sequence frag-

ments were released to capture biotins-labeled HCR polymers; therefore, no red band was

observed in the test zone.

Optimal assay conditions

RP concentration. During the experiment, we find that a high concentration of RP results

in enhanced hybridization efficiency for HCR, but is also accompanied by a high background

signal in the absence of target miRNA. This may be accounted for the instability between the

overmuch RP and magnetic beads. Therefore, the concentration of the RP should be opti-

mized. Interestingly, the peak area ratio of test line to control line (PT/PC) for evaluating miR-

21 levels was more precious because it eliminated the effects of immunoreaction dynamics

parameters (the efficiencies of antibody-antigen interactions on test line and control line) [34].

As shown in Fig 2, background signals decreased as RP probe concentrations decreased from

80 to 50 nM. At a RP amount of 50 nM, no red line was observed on the strip in the absence of

the target. In addition, the signal showed the highest value in the present of the target miRNA

(100pM, 5μL). Thus, 50 nM of RP was used in subsequent experiments.

Fig 1. Schematic representation of the dual target-recycling amplification strategy for sensitive

detection of microRNAs based on duplex-specific nuclease and hybridization chain reaction with

lateral flow assay. The explanations of all acronyms were listed as follows: H1-bio, Hairpin probe1-biotin;

SA-MB, Streptavidin-magnetic bead; AuNPs, Au nanoparticles; SA-AuNPs, Streptavidin-Au nanoparticles;

BSA, bovine serum albumin; DSN, duplex specific nuclease; FAM, fluorescein isothiocyanates; anti-Fam

mAb, anti-FAM- monoclonal antibody.

https://doi.org/10.1371/journal.pone.0185091.g001
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DSN temperature. For the whole assay, the reaction temperature is a crucial factor influ-

encing both DSN activity and the stability of RNA/DNA hybrid duplexes. Thus, as an essential

experimental factor, the effect of reaction temperature on response of the strip biosensor was

first assessed by detecting 100 pM miR-21 at different temperatures (45˚C, 50˚C, 55˚C, 60˚C,

65˚C and 70˚C). A blank sample (without miR-21) at each temperature was setup at the same

conditions. As shown in Fig 3, PT/PC of the strip increased with reaction temperature ranging

between 45˚C and 60˚C in the presence of 100 pM miR-21, and slightly decreased at 60˚C to

70˚C (blue histogram in Fig 3). Furthermore, the background (green histogram, no miR-21)

was slightly increased with temperature. Therefore, 60˚C was considered the optimal reaction

temperature.

DSN incubation time. The process of signal amplification was strongly affected by incu-

bation time of DSN. As shown in Fig 4, optical response increased gradually with incubation

time (in the presence of 100 pM or 10 pM miR-21) at the early stage, peaking at 60 min; after-

ward, the same level was maintained, before a decrease occurred at 120 min. When the incuba-

tion time was over 120min, the released and FAM-labeled sequence for hybridization with

HCR products may be digested, which may lead to the decreased signal. Therefore, 60 min was

employed as optimal incubation time.

Assay sensitivity

We subsequently assessed the sensitivity of the proposed method by measuring miR-21 at vari-

ous concentrations under optimal conditions. As shown in Fig 5(A), test line intensity gradu-

ally increased with miR-21 concentrations in the range of 10fM–100 nM(the volume of all

target solution was 5μL). Fig 5(B) The logarithmic plot of miR-21 concentration vs. PT/PC

value was linear in a wide range of miR-21 concentrations, from 100 fM to 100 pM. The calcu-

lated limit of detection (LOD) was 2.1 fM according to the rule of three standard deviations.

Linear regression analysis of detection data yielded the following equation: PT/PC = 0.34763

+0.20132 logC, where PT/PC is the peak ratio of test line/control line, and C is miRNA-21 con-

centration in pM.

Fig 2. Effect of report probe concentration on response of the strip biosensor. PT and PC are peak

areas of test and control lines, respectively. The histograms represent PT/PC values in the presence of 100

pM miR-21 (blue) and without miR-21 (purple), respectively. Error bars are standard deviations from three

repetitive experiments.

https://doi.org/10.1371/journal.pone.0185091.g002
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In this technique, sensitivity was improved by as much as 3 orders of magnitude compared

to that of the DNA-gold nanoparticle probe-based assay[10], and 2 orders of magnitude com-

pared to that of the molecular beacon-based method[35]. In addition, the sensitivity of this

method was the same order of magnitude as those of dual target-recycling amplification assay

based on DSN and catalytic hairpin assembly (LOD:5.4 fM)[27] and DSN-assisted dual signal

amplification assay (LOD:7.3 fM)[26]. The high sensitivity achieved by these method mainly

relied on cascade amplification and the strong cleavage activity of DSN. However, the above

methods use electrochemical and fluorescent assays. These techniques require specific instru-

ments and the test procedures are complicated and are not applicable for POC tests. In the

Fig 3. Effect of reaction temperature on response of the strip biosensor. The histograms represent PT/

PC values in the presence of 100 pM miR-21 (blue) and without miR-21 (green), respectively. PT and PC are

peak areas of test and control lines, respectively. Error bars are standard deviations from three independent

measurements.

https://doi.org/10.1371/journal.pone.0185091.g003

Fig 4. Effect of incubation time on response of the strip biosensor. PT/PC values were obtained by

detecting 100 pM miR-21 (blue) and 10 pM miR-21 (green), respectively. Error bars are standard deviations

from three independent measurements.

https://doi.org/10.1371/journal.pone.0185091.g004

LFNAB for microRNA detection and hybridization chain reaction

PLOS ONE | https://doi.org/10.1371/journal.pone.0185091 September 25, 2017 7 / 12

https://doi.org/10.1371/journal.pone.0185091.g003
https://doi.org/10.1371/journal.pone.0185091.g004
https://doi.org/10.1371/journal.pone.0185091


present study, colorimetric analysis is a simple process because samples can be monitored

with the naked eye. In addition, colorimetric assays are amenable to point-of-care (POC) test-

ing. The whole procedure can be completed in 150min (HCR products can be prepared in

advance).

Specificity

Due to short length and sequence similarity among miRNAs, a challenge for miRNA assays is

the ability to identify individual members. Specificity of the miRNA assay was evaluated by

detecting a target sequence and single-, two, three, and four bases mismatched sequences (S2

Table). After repeated testing, positive results were only obtained with target DNA, while no

red line was observed with the mismatch RNAs (Fig 6). These results demonstrated that the

proposed technique is particularly attractive for detecting specific miRNA sequences.

Assays for exogenous miRNA spiked into serum

The commonly-used biosensors are usually inefficient when detecting proteins in complex

biological samples (such as serum), since the natural system contain ubiquitous endogenous

components producing a high signal background. Here, we assessed the ability of this sensor

to detect target miRNA in human serum. Serum was used instead of hybridization buffer to

achieve the desired concentrations of the target miR-21 (1, 10, and 100 pM) and other steps

were same to the miRNA detection in buffer solution. PT/PC was measured in five replicates,

and shown in S3 Table as averages and respective RSD percentages. MiR-21 concentration in

freshly-collected serum samples was assumed to be zero, because its concentration in serum

from non-cancerous individuals is lower than the detection limit obtained in the newly-devel-

oped assay. These results showed that the interference of serum could be overcome. This result

indicated that this strategy had a promise in practical application with great accuracy and reli-

ability for miRNA detection.

Fig 5. (A) Photographs of detection results of strips with different miR-21 concentrations. (Left) Images

were recorded with a scanner. (Right) Corresponding optical responses of red bands on the strip. Peak

areas were analyzed with the Image J software. (B) Calibration curve of miR-21 sensing system. The

curve was plotted as PT/PC vs logarithmic value of miR-21 concentration. Inset shows a linear relationship

between PT/PC and the logarithm of miR-21 concentration. PT and PC are peak areas of test and control lines,

respectively. Error bars are standard deviations from three independent measurements.

https://doi.org/10.1371/journal.pone.0185091.g005
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Conclusion

In summary, lateral flow immunoassay biosensor for detecting miRNAs based on dual

amplification strategy of duplex-specific nuclease and hybridization chain reaction offers a

versatile platform for rapid, sensitive, and practical detection of miRNAs. First, the whole

detection process can be accomplished in 2.5h with simple steps. Second, dual signal ampli-

fication greatly increases sensitivity and lower the limit of detection to as low as 2.1 fM.

Furthermore, the assay exhibits an excellent discriminatory ability even for highly similar

miRNA sequences with a single base difference. Finally, this protocol is successfully imple-

mented for serum samples. Thus, this system is promising for application in biological

research and clinical diagnosis.

Supporting information

S1 Table. The sequences used are as follows (5’-3’). In RP, complementary sequence for

miR-21 is underlined, capture sequence is italicized; In IP, initiator sequence for HCR is bold,

complementary sequence for capture sequence is italicized.

(DOC)

S2 Table. The sequences used are as follows (5’-3’).

(DOC)

S3 Table. Analysis of miR-21 in serum by the strip biosensor.

(DOC)
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