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Both acute and chronic antibody-mediated allograft rejection (AMR), which are directly
mediated by B cells, remain difficult to treat. Long-lived plasma cells (LLPCs) in bone
marrow (BM) play a crucial role in the production of the antibodies that induce AMR.
However, LLPCs survive through a T cell-independent mechanism and resist conventional
immunosuppressive therapy. Desensitization therapy is therefore performed, although it is
accompanied by severe side effects and the pathological condition may be at an
irreversible stage when these antibodies, which induce AMR development, are
detected in the serum. In other words, AMR control requires the development of a
diagnostic method that predicts its onset before LLPC differentiation and enables
therapeutic intervention and the establishment of humoral immune monitoring methods
providing more detailed information, including individual differences in the susceptibility to
immunosuppressive agents and the pathological conditions. In this study, we reviewed
recent studies related to the direct or indirect involvement of immunocompetent cells in
the differentiation of naïve-B cells into LLPCs, the limitations of conventional methods, and
the possible development of novel control methods in the context of AMR. This
information will significantly contribute to the development of clinical applications for
AMR and improve the prognosis of patients who undergo organ transplantation.

Keywords: antibody-mediated allograft rejection, naïve-B cell, memory-B cell, germinal center B cell, long-lived
plasma cell, B cell biology
INTRODUCTION

Experiments by using thymectomized mice or chickens conducted during the mid-1960s show that
T cell mediated immunity in tissue and organ allografts. Consequently, most immunosuppressive
therapies for preventing allograft rejection were targeted on T cells, and the studies of the in vitro
effects of immunosuppressive agents against the proliferating T cells significantly contributed to
controlling T cell-mediated rejection (TCMR) (1). Although T cells mediate the activation of the
humoral immune response to transplanted grafts through activating B cells, efforts to control
antibody-mediated allograft rejection (AMR) using conventional immunosuppressive therapy have
been still challenging until now (2–16).
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Therefore, further understanding of B cell biology related to
the differentiation of long-lived plasma cells (LLPCs) and the
regulation of the production of antibodies that induce the
development of AMR are required to improve disease prognosis.

During AMR development, naïve-B cells recognize donor-
specific human leukocyte antigen (HLA) and differentiate into
activated B cells. These activated B cells undergo negative selection
in germinal centers (GCs), and only cells with high affinity for
donor-specific HLA survive, subsequently differentiate into
memory B cells (MBCs) or migrate into the bone marrow (BM),
and differentiate into LLPCs. LLPCs maintain long-term donor-
specific HLA antibodies (DSAs) production (17–19) and
conventional immunosuppressive therapy is ineffective for
removing these PCs, because their survival is independent on
the activities of T cells and expression of CD20 is reduced on these
PCs (19, 20). Moreover, the intramedullary environment may
prevent these PCs from undergoing apoptosis induced by
desensitization therapy (21). Therefore, the development of
accurate and rapid techniques to evaluate humoral immune
activation targeting transplanted grafts, independent of
antibodies, are urgently required to control AMR.

Identifying of the antigen specificity of MBCs circulating in the
peripheral blood, as measured using an ELISpot assay or in vitro
assay system, will be useful to evaluate the activation of the
humoral immune response to donor-specific HLA antigens (22–
27). Furthermore, microarray techniques and next-generation
sequencing (NGS) may provide detailed information that will
contribute to therapeutic control of AMR, including the
identification of antibodies that injure transplants and individual
differences in patients’ susceptibilities to immunosuppressive
agents (28–36).

In addition, the components of humoral immunity involved
in immune tolerance as well as in the repair of injured tissues are
attracting attention, particularly in the fields of autoimmune
diseases, severe infectious diseases, and others (37–42). Here, we
discuss the possibility of AMR control by referring to the
involvement mechanism of these components in the humoral
immunity-associated pathology and the possibilities of these
components as well as novel humoral immune monitoring in
solving the problems associated with conventional AMR control.
MOLECULAR PATHOPHYSIOLOGY
IN AMR

In the pathways or events leading to the development AMR,
molecules such as donor-specific HLA antigens, non-HLA
antigens, and self-antigens are recognized by antigen-presenting
cells (APCs) that express the major histocompatibility complex
(MHC) II on their surface. These latter molecules are presented to
follicular helper T cells (Tfhs) through the interaction of MHC II
with the T cell receptor (TCR), resulting in the activation of Tfhs
(17). The B cell receptor (BCR), which is expressed on the surface
of naïve-B cells, is activated through cross-linking to the
aforementioned antigens in a T cell-dependent manner, and B
cells monoclonally proliferate after stimulation by activated Tfhs
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in secondary lymphoid tissues. These activated B cells form GCs.
After immunoglobulin class switching, they undergo affinity
maturation and the cells with low affinity for foreign antigens or
high affinity for self-antigens undergo apoptosis as a negative
selection mechanism, followed by differentiation into MBCs or
LLPCs that bind these antigens with high affinity. MBCs migrate
to secondary lymphoid tissue to counter the ensuing invasion by
foreign antigens, and LLPCs persist and continue to produce
antibodies that induce AMR (17, 18, 43–45) (Figure 1).

Regarding the involvement of T cell in AMR development,
Tfhs reside in the peripheral secondary lymphoid tissues and
strongly promote the production of antigen-specific antibodies
through the support of the GC reactions. The B7 (CD80/86)
family of costimulatory molecules B7-1 and B7-2 binds to CD28
and cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) on
the surface of T cells binds more strongly to CD80/86 than to
CD28 to release control over the generation of Tfhs (2). Human
B7 homolog 1 (B7H-1) binds programmed death-ligand 1 (PD-
L1) expressed by activated T cells and inhibits T cell activation
through the interaction between PD-L1 and programmed cell
death1 (PD-1). Human B7 homolog 2 (B7H-2) binds inducible
T cell costimulator (ICOS) expressed by CD4/CD8 T cells to
increase the secretion of interferon (IFN)-g and interleukin (IL)-
10. ICOS-ligand is expressed on the surface of B cells and
supports their migration into B follicles (3, 4). In addition,
Thfs support the formation of the GC through the interaction
between CD40 and CD40-ligand (CD40-L) (5–9); and the G-
protein-coupled receptor sphingosine-1-phosphate receptor 2
(S1PR2) cooperates with CXCR5 to retain Thfs in the GC
(10). Members of the signaling lymphocyte activation
molecule (SLAM) family act to maintain stable contacts
between Tfhs and GC B cells to maintain the differentiation of
Thfs, formation of the GC, and proliferation and survival of
LLPCs and MBCs (11–16). In contrast, follicular regulatory T
cells (Tfrs) inhibit the production of IL-21 by Thfs, and the CTLA-
4-mediated signals cooperate with IL-10 and transforming growth
factor (TGF)-beta to support the inhibitory effect on humoral
immunity (48).

Macrophages (MPs) and natural killer (NK) cells also play an
important role in the development of AMR (49). MPs present
antigens to Tfhs via MHC class II, serve as a source of co-
stimulatory signaling and cytokines required for activation of T
cells, and subsequently activate B cells (50). Moreover, IgG DSAs
have been revealed to bind to Fc gamma receptor (FcgR) such as
FcgRIIIa on the cell membrane of MPs and NK cells, and
subsequently, these cells are activated. These activated cells produce
proinflammatory cytokines such as IFN-g, Tumor Necrosis Factor
(TNF), and granzyme B, which induce coagulation, inflammation,
vascular permeability, and leukocyte trafficking on the vascular
endothelium (51).

Regarding the involvement of the complement pathway in
AMR development, the humoral immune response to thymus-
dependent (TD) antigens requires complementary activation,
which is required for the localization of the antigen and C3
ligand to follicular dendritic cells (FDCs). These events maintain
the long-term memory function of B cells (52).
July 2021 | Volume 12 | Article 682334
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As the detailed involvement mechanism in B cell activation
and proliferation, the interaction of C3 fragments with CD21 is
required for the internalization of antigens by B cell and their
presentation. CD21 is a receptor that binds to complement C3d
and Epstein–Barr virus and is expressed by mature B cells and
FDCs. CD-21 plays a crucial role in B cell activation (53). The
internalized antigen is presented to T cells by MHCs II and I,
and it then activates T cells (54–57). Therefore, complement
activation is required for the uptake of antigen by B cell and
Frontiers in Immunology | www.frontiersin.org 3
inhibiting CD21-mediated signal with polyclonal antibodies
significantly inhibits antigen uptake and presentation.
Furthermore, B cell uptake of C3d-coated antigen and
engagement of the BCR and CD21 by C3d-opsonized antigen
is required for the formation and maintenance of the GC and
differentiation of MBCs into PCs (57, 58). CD35, an antagonist of
CD21, inhibits B cell activation (59), and the CD21/CD19/Target
of the Antiproliferative Antibody-1 (Tapa-1) receptor reduces
the threshold of survival of follicular B cells and serves as a
FIGURE 1 | The pathway of naïve-B cell differentiation into plasma cell in the context of AMR development. We show how immunocompetent cells are involved in
the onset of AMR, focusing on B cells. Naïve-B cell recognises donor-specific HLA antigen and present the antigen peptides from MHCII to T cell receptor and
activate T cells. The activated T cells regulate the growth and survival of B cells through the production of IL4, 6, 7, 10, 21, TNF-a, IFNg, etc (46). Activated B cell
migrates to secondary lymphoid tissue, class-switches to IgG and then undergoes gene conversion and hypersomatic mutation in the germinal center to have a high
affinity for donor-specific HLA antigen. These cells migrate into the bone marrow and differentiate into long-lived plasma cells, and keep producing IgG DSAs for a
long term. Furthermore, TLR 7/9 is expressed on the surface of naïve-B cells. TLR7 plays an important role in T cell activation and germinal center B-cell development
(24). TLR9 recognizes the CpG motif and supports the survival and proliferation of B cells through IL-6 production and T cell activation (47). T cells regulate B cells’
activation and sustain the interaction between follicular helper T cells and germinal center B cells through the association between the B7 family and CD28, ICOS, PD-1,
CTLA-4 expressed by B cells, and CD 40 ligand and CD40 expressed by B cells. Regarding macrophages and natural killer cells function as antigen-presenting cells and
induce B cells and T cells activation. IgG-type DSA binds to Fcg on the macrophages and natural killer cells’ surface and activates them. Complement activates adaptive
immunity against thymus dependent antigen, or it activates the membrane attack complex and induces inflammation and tissue damage on vascular endothelial cells,
thereby supporting the onset of AMR. AMR, Antibody-mediated allograft rejection; APRIL, A proliferation-inducing ligand; BCR, B cell receptor; CD40L, CD40 ligand;
CTLA-4, Cytotoxic T-lymphocyte associated antigen 4; DSA, Donor-specific HLA antibody; FcgR, Fc gamma receptor; IFN, Interferon; ICOS, Inducible T-cell co-
stimulator; MHC, Major histocompatibility complex; PD-1, Programmed cell death – 1; TNF, Tumor Necrosis Factor; TLR, Tool-like receptor.
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unique signal that promotes their survival in the GCs, which, in
turn, contributes to adaptive immunity (52).

Therefore, complement activation indirectly induces the
development of AMR through B cell activation or directly
induces inflammation and damage in vascular endothelial cells
through formation of the membrane attack complex (60).
CHALLENGES OF CONVENTIONAL
AMR CONTROL

Although the pathway described in “MOLECULAR
PATHOPHYSIOLOGY IN AMR” is inhibited by immunosuppressive
therapy, AMR control remains challenging.

The cause is that signals from immunocompetent cells,
including T cells, to B cells are not well regulated, and
humoral immune responses to transplanted graft have not
been accurately detailed.

Furthermore, B cell subsets include IL-10-producing regulatory
B cells (Bregs) (CD19+CD24highCD38high transitional immature B
cells), whose reduction is associated with the incidence of
posttransplant rejection (61, 62). Regulatory T cells (Tregs)
induce tolerance to transplanted grafts through suppression of
the humoral immune response. Calcineurin inhibitor (CNI) and
mammalian Target of Rapamycin (mTOR) reduce the levels of
Bregs, whereas mTOR expands and CNI reduces the levels of
Tregs (63). Under pathological conditions, common variable
immunodeficiency (CVID) is a pathology characterized by the
loss of resistance to bacterial and viral infections due to decreased
antibody production. This disease is associated with decreased
expression of a proliferation-inducing ligand (APRIL), which
supports the growth and survival of MBCs and PCs. An anti-
APRIL antibody may serve as a therapeutic agent for SLE (64, 65).
In contrast, APRIL supports the growth and survival of naïve-B
cells in vitro, and administration of an anti-APRIL antibody may
therefore suppress immune tolerance mediated by naïve-B
cells (66).

In the other words, some immunosuppressive agents may
inhibit the normal functions of these regulatory cells and the
identification of the mechanisms through which the populations
of these regulatory cells are reduced by immunosuppressive
therapy and the differences of drug susceptibilities in subset-
specific lymphocyte may help development of more appropriated
immunosuppressive agents that maintain the functions of these
regulatory cells. For example, IL-2 lengthens the survival and
enhances the suppressive effects of Tregs, which increases the
survival rates of transplanted grafts, because the decrease in the
number of Tregs by CNI is the result of limiting the activity of
IL-2 (67).

In addition, desensitization therapies such as plasmapheresis
and low-dose intravenous immunoglobulin (IVig), alone or
combined with recombinant antithymocyte globulin (rATG),
do not significantly influence the number of CD138+ antibody-
secreting cells (ASCs), alloantibody production, and the
frequency of HLA-producing ASCs in the BM before and after
treatment (68). The resistance of ASCs to IVig and rATG may be
Frontiers in Immunology | www.frontiersin.org 4
explained by the inhibition of apoptosis mediated by the
microenvironment of the BM and soluble and factors
produced from the BM niche (21). Alternatively, the
interaction of some receptors expressed on LLPC and their
ligands expressed on niche play a critical role in the migration
of LLPCs to the BM and their longevity in the BM (20, 69, 70). In
the other words, the removal of antibody from the serum using
desensitization therapy may not be mediated by the reduction of
the numbers and functions of ASCs, but by antibody adsorption
to the transplanted graft (68). Thus, further elucidation of the
mechanisms of drug resistance in LLPCs and blockade of the
signals supporting the migration of LLPCs into the BM and their
longevity in the BM may contribute to the development of more
effective immunosuppressive therapy.

As a diagnostic method, it is necessary for AMR control to
establish a humoral immune monitoring method to evaluate
AMR pathology in more detail and predict the development of
AMR before antibodies, which induce AMR development, are
detected in the serum (71, 72). In addition, it has been reported
that the antigen specificity of the progenitor cells of LLPCs can be
determined using an in vitro assay system (22–27), but there are
no unambiguous criteria for predicting whether antibodies
against donor-specific HLA antigens cause humoral immunity-
mediated injury in transplanted grafts (73–75). It is therefore
necessary to develop a method that evaluates the reactivity of the
antibody to transplanted grafts.
DEVELOPMENT IN AMR CONTROL

Agents Targeting Complement System
The involvement of the complement system in the development
of AMR has been reported. In the field of transplantation, the
effects of C1-q–positive DSAs on the development of AMR and
the incidence of glomerulopathy, as well as the prognosis of
transplantation outcomes, have been reported administration of
the humanized anti-C5 monoclonal antibody eculizumab, a C5
inhibitor, inhibits the cleavage of C5 to C5a and C5b and the
formation of the membrane attack complex C5b-9, and this drug
is effective against acute AMR, as indicated by its effective
improvement of histopathology in lung transplantation (76–
79). In immunologically high-risk cases, the incidence of
biopsy-proven AMR following heart or kidney transplantation
was significantly lower than that achieved using conventional
antibody reduction therapy (80–83).

In addition, C1 esterase inhibitor (C1 INHs) effectively
prevents ischemia reperfusion injury (IRI)/delayed graft
function (DGF), which has been reported to be involved in the
development of AMR through B cell activation, DSA
development, and C1q-positive DSA production (84–86).
Thus, C1 INHs can be expected to be effective in the
maintenance of transplanted graft function by suppressing the
aforementioned processes (87, 88). In contrast, no significant
inhibitory effects on DSA production and the development of
chronic AMR were observed in long-term DSA-positive patients,
and no therapeutic effect on AMR was observed in patients with
July 2021 | Volume 12 | Article 682334
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complement-negative DSA (86). Thus, this complement
inhibitor should be considered in combination with antibody
reduction therapy for AMR control, and it has been reported that
transplanted renal graft function and pathological findings are
improved by treatment with the standard AMR treatments such
as plasmapheresis, IVig, and human plasma-derived C1 INHs
(88, 89).

The classic complement pathway inhibitor anti-C1s inhibits
C4d deposition, but it does not affect DSA levels and graft
function or significantly improve the pathological findings
associated with AMR control and clinical prognosis (90, 91).
Therefore, it is necessary to elucidate the mechanism by which
these complement inhibitors participate in the development of
AMR in more detail and improve treatment outcomes in
consideration of the administration time and method.

Agents Targeting Costimulatory Signaling
As a clinical potential of agents targeting costimulatory signaling,
the fusion protein belatacept comprises the Fc fragment of
human IgG1 linked to the extracellular domain of CTLA-4 and
inactivates T cells selectively (92).

In immunosuppressed patients who received of administration
of belatacept, their survival and function of their grafts are
significantly higher after 7 years of kidney transplantation (93).
Compared with cyclosporine-based immunosuppression, this
therapy is efficacious for maintaining the function of the
transplanted grafts, reduces cardiovascular complications,
improves the metabolic profile, and mitigates posttransplant
lymphoproliferative disease associated with Epstein-Barr virus
infection 1–2 years after transplantation (94). In mice model, an
example of an immunosuppressive therapy that may effectively treat
DSA-specific MBCs is provided using findings collapsing the GC in
a mouse model 7 and 14 days after allo-sensitization directly
involves B cells, independent of intervention by graft-specific
CD4+ Tfhs. Therefore, administration of CTLA- 4 Ig may exert a
therapeutic effect on antigen-challenged B cells (95). In contrast,
belatacept inhibits the expansion of the Tregs population, which is
mediated through the methylation of CpG islands within the Treg-
specific demethylation region of the gene encoding FoxP3 (96, 97).

The CTLA-4 Ig fusion protein abatacept, which inhibits
CD28-mediated costimulatory signals by binding to CD80/
CD86 on the surface of APCs, effectively suppresses T cell
activation and cytokine production, which are associated with
the development of rheumatoid arthritis (98–100). In the field of
transplantation, the function of the transplanted graft persists,
and no obvious immunological consequences are observed
through the conversion from treatment of a CNI early after
transplantation (100).

Action of conventional immunosuppressive therapies and
these novel therapies targeting the complement system and co-
stimulatory signaling in immune system and their clinical
potential for AMR control, their clinical potential for AMR control,
are presented in Table 1 and the pathways of differentiation of naïve-
B cells into LLPCs and the immunosuppressive agents that influence
these processes are shown in Figure 2. In addition, the involvement
mechanism and clinical potential of cytokines involved in the
differentiation of naïve-B cells into LLPCs in the context of AMR
Frontiers in Immunology | www.frontiersin.org 5
are summarized in Table 2A, and the clinical applicability of these
molecules and possible use in AMR control are summarized
in Table 2B.
Agents Targeting Molecules Expressed in
B Cell
In addition to these listed molecules, CD19-mediated signaling
reduces the threshold for BCR-mediated signal and promotion of
B cell development (190). Under pathological conditions,
inebilizumab (humanised anti-CD19 monoclonal antibody)
significantly reduced autoantibodies and relapse rates in
patients with neuromyelitis optica (191).

Although antibodies targeting CD20 are used for the
treatment of AMR, CD19 is expressed at all B cell differentiation
stages, is more widely expressed than CD20 and is expressed in
PCs. Therefore, CD19-targeting therapy may be more useful than
CD20-targeting therapy in AMR treatment (19, 20) and the safety
and tolerability of inebilizumab alone or in combination with
VIB4920 (Fc-deficient CD40 Ligand antagonist) are currently
being investigated in highly sensitised patients on the waiting
list for kidney transplantation at clinicalTrials.gov (study identifier
NCT04174677) (192).

CD138, a member of the integral membrane family of
heparan sulfate proteoglycans, is highly expressed on PCs
(193). CD138 increases heparan sulfate levels in ASCs, and
APRIL and IL-6 support the growth and survival of ASCs by
binding to heparan sulfate (194).

In other words, CD138 plays an important role in the
maintenance of long-term humoral immunity (195).

In the field of transplantation, the relative abundance of
CD138-positive cells is closely related to AMR development,
the degree of humoral immunity-associated injury progression,
and DSA production (196), and a higher frequency of CD138-
positive cells and the co-existence of CD20-positive cells are
associated with poor allograft function and poor response to
treatment after acute rejection including TCMR and AMR (197).
In addition, pathological findings indicate that the CD138-
positive PCs infiltrates are associated with AMR development
(196). Therefore, CD138-targeting therapy may be applicable for
AMR control and the maintenance of graft function after further
elucidation of the involvement mechanism of CD138-mediated
signaling in the activation of humoral immunity to transplanted
grafts (43). However, as described in B−cell based therapy, B cells
contain a subset that has an immune regulatory function.
Therefore, any clinical application for AMR control needs to
be fully examined for the susceptibility of these agents for each of
the B cell subsets, and the effect it will have upon their function.
B-Cell Based Therapy
In this section, we will discuss B cell subsets with
immunoregulatory function because the expansion of
regulatory cells that induces immune tolerance that may lead
to the reduction of immunosuppressants.

Bregs mediate immune tolerance through mechanisms that
involve the production of cytokines such as IL-10, IL-35, and
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TABLE 1 | Effects of immunosuppressive therapy on the immune system and its clinical role in AMR control.

Involvement mechanism in Immune system Clinical role for AMR control Reference

Effects on The Cell Cycle

Everolimus Inhibition of cell division, cell proliferation, and angiogenesis through
inhibition of the phosphorylation of mammalian targets of rapamycin
and formation of a complex with the FK506-binding protein (FKBp)-12

Increased risk for the development of DSA and AMR by
evelolimus-based immunosuppression
Increased risk for the development of de novo DSA by early
conversion of CNIs to everolimus
No effect on the risk of de novo DSA development by late
conversion of CNIs to evelolimus
Induction of Tregs

(101–105)

Mycophenolic acid Inhibition of DNA synthesis in lymphocytes through inhibition of the
activity of IMPDH 2 and reduction of the sizes of intracellular pools of
guanosine nucleotide

Reduction of anti-HLA class I and II antibody production
Improvement of patient and graft survival and reduction of
rejection episode while using with CsA and steroids

(106–108)

Effects on Molecules Expressed By B Cells
Alemtuzumab:
A humanized anti-
CD52 antibody

Induction of B cell apoptosis through binding to CD52, which is
frequently expressed by B cells

Reduction of incidence of de novo DSAs and AMR
development by Alemtuzumab induction therapy
Reduction of the risk of AMR by using Alemtuzumab
induction therapy combined with belatacept and rapamycin

(109–111)

Rituximab:
Anti-CD20
monoclonal
antibody

Induction of CD20 (+) B cell apoptosis through its binding to CD20,
which is found on mature B cell

Improvement of survival in cardiac allograft AMR
Reduction of DSA levels and microcirculation inflammation
after late AMR by using with sterorid/Ivig

(112–117)

Effects on Antibody-producing Cells and Antibody
Bortezomib Induction of apoptosis of antibody-producing cell through inhibiting the

proteasome
Maintenance of renal graft survival after late occurrence of
AMR with high probability using combined with rituximab
and methylprednisolone, and plasmapheresis
Reduction of DSA levels and prevention of AMR in
sensitized patients with crossmatch-positive and elevated
DSA in cardiac transplant

(118–120)

IdeS Removal of anti-HLA antibodies through the cleavage of IgG at a
specific amino acid sequence within the hinge region and reduction of
antibody-producing cells

Reduction of anti-HLA antibodies level (121, 122)

Effects on Antibody-Receptor
IVig Induction of mature B cell apoptosis

Suppression of proinflammatory cytokine production such as that of
TNF-a through the inactivation of macrophages mediated by FCgR
blocking

Reduction of DSA level and C4d deposition intensity after
acute AMR using plasmapheresis and repeated infusions of
IVig

(71, 123,
124)

Effects on T Cells
CNIs Inactivation of the calcineurin-dependent NFAT pathway and T cells

through the formation of a complex with cyclopherin or FK506
Prevention of de novo DSA formation (102,

125–128)
rATG Induction of T cells depletion Depletion of DSAs

No effect on the vascular AMR outcome and transplant
prognosis improvement

(129–131)

Basiliximab:
mouse-human
chimeric
monoclonal
antibody

Induction of T cells depletion through reaction with the a-chain (CD25)
of the IL-2 receptor expressed by T cells

Prevention of the rejection development, especially in
kidney transplantation

(132)

Effects on The Costimulatory Signaling
Belatacept; CTLA-
4 Ig

Reduction of antigen-challenged B cell
Inactivation of T cell.
Inhibition of Treg expansion

Depletion of plasma cells producing DSA and reduction of
DSA levels in active AMR

(92–107)

Abatacept:
CTLA- 4 Ig

Inactivation of T cell through inhibition of CD28-mediated costimulatory
signals by binding to CD80/CD86 on the surface of APCs

Extension of graft survival with combined bortezomib use in
a sensitized animal kidney transplant model

(98–100)

Effects on The Complement System
Eculizumab:
humanized anti-C5
monoclonal
antibody

Blocking membrane attack complex formation and its function Improvement of histopathology and transplanted graft
function and prevention of early active or chronic AMR
development in positive crossmatch HLA incompatible
patients

(76–79,
133, 134)

C1 INH: human
plasma-derived C1
esterase inhibitor

Inactivation of C1r and C1s proteases in the C1 complex of classical
pathway of complement.

Improvement of histopathology and graft survival with the
combined use of plasmapheresis and IVig
Prevention of AMR development through IRI/DGF
prevention

(84–89)

(Continued)
Frontiers in Immunolo
gy | www.frontiersin.org 6
 July 2021 | Volume 12 | Art
icle 682334

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Matsuda et al. Challenges for AMR Control
TGF-beta as well as through cell–cell contact (154–161).
Although IL-10 has been the focus of attention, IL-10 and IL-
35 produced from Breg play important roles as negative
regulators of immunity, which are involved in the antigen-
presenting function and cytokine secretion of macrophages,
dendritic cells, and B cells and activation of inflammatory T
cells (156). B-1 cells and marginal zone (MZ) B cells exhibit
innate-like immune functions (198). MZ-autoreactive B cells are
required to maintain tolerance to self-antigens and the rapid
acquisition of immunoregulatory function through the
maintenance of the levels of natural IgM antibody and IL-10
(199, 200). Furthermore, ILBs serve as important sources of
Bregs that play crucial roles in autoimmunity, inflammation, and
infection in the models of autoimmune disease (201, 202).

As other B cell subsets that have been reported to be involved
in the induction of immune tolerance, naïve-B cells function as
APCs and induce the conversion of CD4+ CD25− T cells into
CD25+ Foxp3− Tregs, which express lymphocyte activation gene
3 (LAG3), ICOS, glucocorticoid-induced TNF receptor family-
regulated gene (GITR), OX40, PD1, and CTLA-4, to sustain
immune tolerance through the production of anti-inflammatory
cytokines such as IL-10. These findings indicate that naïve-B cells
cooperate with Tregs to induce T cell tolerance, maintain the
homeostasis of Tregs, and suppress inflammation by functioning
as APCs (203, 204). In addition, IgM+CD138hiTACI+

CXCR4+CD1dintTim1int PCs expressing the transcription
factor Blimp1 produce IL-10, IL-35 during infections with
Salmonella species. Furthermore, CD138+ PCs provide the
major source of IL-35 and IL-10 in patients with experimental
autoimmune encephalomyelitis (EAE) (156).

In the field of transplantation, IL-10 produced by Bregs is
associated with drug resistance in AMR, and higher frequencies
of transitional B cells and naïve-B cells and high production of
IL-10 are related to the induction of immune tolerance following
kidney transplantation. In contrast, the results are opposite in
cases of chronic AMR (205), and CD138+ PCs may be involved
the induction of immune tolerance and the expansion of these B
cells may mitigate the adverse effects of immunosuppressants
and thereby improve the prognosis of patients who
undergo transplantation.
Frontiers in Immunology | www.frontiersin.org 7
DEVELOPMENT OF
DIAGNOSTIC METHODS

Monitoring Humoral Immunity Using
Memory-B Cell
The MBC pool has recently attracted more attention than
humoral antibodies as a potential diagnostic tool to monitor
the humoral immune response to donor-specific HLA antigens,
which is evaluated according to the frequency of DSA-specific
MBCs circulating in peripheral blood. For example, to determine
the antigen specificities of MBCs circulating in the periphery, B
cells or peripheral blood mononuclear cells (PBMCs) are
induced to differentiate into ASCs with mitogens and cytokines
suitable for the proliferation of MBCs and survival in a
polyclonal activation-dependent manner. These findings were
acquired through analysis of culture supernatants using a solid-
phase assay platform with HLA-coated multiplex beads (23–29).

In the field of transplantation, current studies focus on the
diagnostic value of IgG antibodies against HLA expressed in
donor-derived vascular endothelial cells. On the other hands,
there is currently no consensus on the clinical role of IgM
antibodies (206).

We examined the clinical potential of DSA-specific IgM-MBCs
as early diagnosis and humoral immune monitoring in the context
of AMR; DSA-specific IgM-MBCs may achieve higher sensitivity
when employed for conventional immunosuppressive therapy
compared with IgG-MBCs (207). Therefore, the detection of
DSA-specific IgM-MBCs contributes to the inhibition of AMR
development by enabling early intervention using less invasive
immunosuppression after elucidation of the optimal conditions
for inducing DSA-specific IgM-MBC differentiation into IgG-PCs,
the process that leads to AMR. In addition, the availability of an in
vitro assay system capable of inducing the differentiation of MBCs
into ASCs may lead to the introduction of more effective
immunosuppressive therapy that recognizes differences in
pathology or in patients’ drug sensitivities (208).

However, it is unclear whether in vitro drug susceptibility data
can be applied to patients because conventional two-dimensional
culture may not reproduce the three-dimensional structure or
function such as lymphoid tissue or organs in the living body.
TABLE 1 | Continued

Involvement mechanism in Immune system Clinical role for AMR control Reference

Effects on The Cell Cycle

Anti‐C1s: Classic
complement
pathway inhibitor

Inhibition of complement pathway No significant effect on graft outcome and histological
findings
Reduction of C4d deposition

(90, 91)

Anti-inflammatory Effects
Glucocorticoids Downregulation of the expression of AP-1 and NF-kB Maintenance of renal allograft survival after combination of

bortemizob, corticosteroids, rituximab, and plasma
pheresis for late onset AMR

(135, 136)
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Organ-on-a-chip technology is attracting attention because it
reproduces organs in functional units while maintaining the in
vivo three-dimensional organ structure and physiological
function. Thus, pharmacokinetic analysis using this model may
be useful for resolving the aforementioned problem (209–212).

Microarray Technique
Attempts are being made to apply microarray technology or NGS
to the field of transplantation. Microarrays simultaneously analyze
the expression of tens of thousands of genes and obtain
information about the transcriptional profiles. Furthermore,
pathological changes in gene expression can be obtained, which
will provide information to increase the accuracies of
classification, diagnosis, and prognosis of diseases (28, 29).
Errors frequently occur in analyses of single genes when small
data sets are employed. Recently, Chen et al. focused on transcripts
that are known to be associated with disease. Microarray
evaluation of pathogenesis-based transcript sets, corresponding
to events that mainly occur during allograft rejection, is useful for
the diagnosis of AMR as well as identification of pathology and
prediction of clinical course. For example, biopsy-based
Frontiers in Immunology | www.frontiersin.org 8
microarrays identified 45 genes upregulated in pediatric kidney
transplants as well as in pediatric and adult heart transplants
undergoing acute rejection. Among them, serum PECAM1 shows
the greatest promise as a biomarker (89% sensitivity and 75%
specificity) for analyzing renal transplant rejection, suggesting that
microarray analysis will be useful for discovering new serum
protein biomarkers by mining publicly available data sets (30).
Thus, it is possible to identify the gene group associated with graft
rejection and pathological condition by enabling comprehensive
gene analysis; early diagnosis of the development of rejection is
possible and genes related to immune status or drug resistance has
also been identified (213).

Next-Generation Sequencing
NGS determines several million base pairs per run and provides
the ability to distinguish different isoforms and allelic expression,
which is an advantage over microarray analysis and detects somatic
mutations with high accuracy and high specificity, which enables
identification of candidate genes that cause disease. As an example
of the application of NGS to transplantation, comparison of the
complementary determining region 3 (CDR3) of the TCR beta
FIGURE 2 | How immunosuppressive agents influence the AMR development. We summarised how immunosuppressants are involved in regulating AMR onset at
each B cell differentiation stage, direct or indirect involvement of T cells, macrophages or natural killer cells and the complement system. The alphabet represents
immunosuppressants that are effective in the differentiation process indicated by arrows. AMR, Antibody-mediated allograft rejection; ATG, Antithymocyte globulin;
BAFF, B Cell Activating Factor; CD40L, CD40 ligand; CTLA-4, Cytotoxic T-lymphocyte associated antigen 4; DSA, Donor-specific HLA antibody; FcgR, Fc gamma
receptor; C1 INH, Human plasma-derived C1 esterase inhibitor; CNI, Calcineurin inhibitor; Ides, IgG-degrading enzyme of streptococcus pyogenes; IVig, Intravenous
Immunoglobulin; MHC, Major histocompatibility complex; MPA, mycophenolic acid.
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chains expressed in AMR (+) and AMR (−), may lead to the
prediction of the development of rejection before patients undergo
transplantation (31). In addition, this technique can be applied to
increase our understanding of the diversity of the variable regions
of heavy and light chains of BCRs. Thus, detailed characterization
of this repertoire, including reactivity with antigen, becomes
possible and may be applied to predict the production of donor-
specific antigen-reactive antibodies (32–34) and both specific
sequences and the full length of genes including introns and
untranslated regions are analyzed by NGS, and thus, HLA
alleles can be analyzed in transplantation, ensuring better
histocompatibility between donors and recipients (214, 215).
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In addition, gene polymorphisms affect the distribution and
drug metabolism. For example, Single Nucleotide Polymorphism
(SNP) of CYP3A4/3A5, ABCB1 in CNI, CYP3A5 in sirolimus,
TPMT in azathioprine, UGT1A9, ABCC2 in Mycophenolic acid
(MPA), and MDR1 in tacrolimus affects their pharmacokinetics.
Thus, NGS analysis of these SNP will likely provide useful
information for developing more effective immunosuppressive
therapy, which considers differences in pathology and drug
susceptibility (35, 36).

In the other words, these techniques have potential
application in developing strategies for controlling AMR and
improving the prognosis of transplanted grafts.
TABLE 2A | Involvement of cytokines in the immune system and clinical applicability for AMR.

Cytokine Involvement of cytokines in the
immune system

Clinical applicability for AMR control Reference

IL-2 Plasma cell generation Extension of heart allograft survival by IL-2 gene expression inhibition in a mouse model (137–139)
IL-6 Support of B cell growth and survival

including isotype switching,
spontaneous germinal center
formation, and IgG production
Induction of IL-10-producing B cells
Induction of Th 17 cell differentiation

Tocilizumab (anti-IL -6 receptor monoclonal antibody) showed significant improvement in graft survival,
function, and DSA reduction 6 months after the treatment in chronic active AMR
Clazakizumab (anti‐IL‐6) showed significant reduction of DSA levels and the suppression of AMR
activity, progression

(140–149)

IL-7 Support of B cell development,
immunoglobulin gene rearrangement
Induction of Th17 cells
Extension of the function of FoxP3 (+)
natural regulatory T cells

Anti-IL-7 monoclonal antibody targeting IL-7 receptor a showed extension of allograft survival and
induction of allograft tolerance in heart transplants and promotion of long-term allograft survival by IL-7
inhibition in combination with T cell depletion synergized with either CTLA-4 Ig administration or
tacrolimus in pancreatic islet allografts

(150–153)

IL-10 Down-regulation of antigen-specific T
cell response

Circulating IL-10 (+) Breg levels indicate the AMR resistance after kidney transplantation (154–161)

Il-15 Support of B cell proliferation and
antibody production
Induction of regulatory CD8 (+) CD122
(+) T cell and NK cell-derived IFN-
gamma
Inhibition of pathogenic Th17-cell
differentiation,

Antagonistic mutant IL-15/Fc fusion protein (mIL-15/Fc) is effective in the prevention of allograft
rejection induce antigen-specific tolerance in minor histocompatibility complex-mismatched recipients
and extend cardiac allograft survival in fully MHC-mismatched recipients
IL-15 is a biomarker of acute and chronic allograft rejection
Anti-IL-15 therapy is effective in the prevention of acute and chronic allograft rejection using classic
immunosuppression

(162–164)

IL-21 Support of plasma cell differentiation,
Support of IL-10-producing regulatory
B cells differentiation

The administration of IL-21 receptor fusion protein (R-Fc) prevents chronic cardiac allograft
vasculopathy in a heart allograft transplant mouse model
Frequency of donor-specific IL-21 producing cells is effective as a biomarker for the prediction of
rejection

(165–167)

IL-35 Induction of IL-10 producing B cell
Expansion of regulatory B cell and
regulatory T cell
Antagonizing Th1/Th17 responses

IL-35 gene therapy prolonged graft survival in a mouse heterotopic abdominal heart transplantation
model combined with a methyltransferase inhibitor treatment

(154–161)

TNF-a Augmentation of B-cell proliferation,
polyclonal B-cell, B cell malignancies
Development of germinal center B cell
Generation of extra follicular T-bet (+)
B cell

Serum level of TNF-a is associated with histologically findings and is effective as a biomarker for AMR
development

(168–170)

TGF-beta Induction of immune tolerance
Inhibition of antibody production
Enhancement of FoxP3 and CTLA-4
expression in Tregs

Anti-TGF-beta antibody treatment significantly reduces chronic rejection and prevent dysfunction of
renal allografts in rats

(48, 154–
161)

BAFF Promotion of B cell growth and
survival, and antibody production
Maintenance of survival of high-affinity
B cell clones

Belimumab, a human monoclonal antibody that inhibits BAFF, removes complement-binding anti-HLA
class I and class II antibody in pre-HLA sensitized patients
Elevation of perioperative BAFF level predicts the risk of acute AMR development
The BAFF mRNA expression level significantly unregulated in chronic AMR compared with graft
function stable and healthy donors in renal transplants

(171–174)
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NOVEL APPLIABLE COMPONENTS
IN AMR

As mentioned above, we are closely evaluating the possibility of
using an IgM antibody in AMR control (207). Therefore, we
evaluate its possible use not only as an early diagnosis tool but
also as a treatment method. Here, we discuss the involvement, as
well as their clinical applicability of humoral immunity-associated
components involved in IgM antibody in AMR control whilst
referring to reports on the involvement mechanisms in
pathological conditions in fields outside of transplants.

Role of IgM Receptors
IgM is the first immunoglobulin produced in response to antigen
challenge, and B cell activation is enhanced by stimulatory IgM
Fc receptor (FcmR)-mediated signals during the early stage of the
immune response. The levels of IgG exceed those of IgM during
the late stage of the adaptive immune response, during which the
activation of B cells is inhibited by FcgRIIB-mediated inhibitory
signals, indicating that stimulatory or inhibitory signals
transduced by IgM or IgG may regulate B cell activation and
antibody production (216).

FcmR is mainly expressed by B, T, and NK cells in humans
and by B cells of mice (216–219). The expression levels of mouse
FcmR differ depending on the B cell subset, and FcµR expressed
in the trans-Golgi network restricts the transport of IgM-BCR to
the B cell surface. FcmR expression is downregulated during GC
reactions and at a higher level in plasma blast cells compared
with those expressed by PCs and expressed in class-switched B
cells (187). In contrast, FcmR-deficient MZBs are significantly
mitigated in a mouse knockout model, in which the number of
B cell subsets is altered or tonic signaling through the reduction of
BCR expression (216, 219, 220). The FcmR-mediated signal
contributes further to the maturation of B cell subsets and
Frontiers in Immunology | www.frontiersin.org 10
enhances B cell survival in response to treatment with anti-IgM
antibodies (216, 221). These findings indicate that signals
transmitted by the FcmR and BCR may cooperate to activate B
cells and maintain their survival. In addition, this signal regulates
the expression of IgM-BCR in immature B cells, which regulates
the signal emitted when antigen activates the BCR through their
cross-linking by antigen binding (220). In FcmR KO mice, the
levels of natural IgM antibodies in the peripheral blood circulation
are increased, and the formation of the GC, MBCs, differentiation
of PCs, and production of antigen-specific IgG1 antibodies are
reduced. These findings support the conclusion that the FcmR is
required for the maintenance of the adaptive immune response
and the control of the homeostasis of B-1/B-2 cells (216, 219).

Under pathological conditions, FcmR-mediated signaling
controls the production of harmful autoreactive IgG antibodies
and is involved in the development of autoimmune and
inflammatory diseases, chronic lymphocytic leukemia, and
others (37). In a model of severe human multiple sclerosis, the
development of EAE is suppressed through the regulation of the
functions of dendritic cell and Tregs (222). FcmR-mediated signal
transduction increases self-Ag-triggered BCR signaling in
immature B cells and contributes to the deletion, anergy, or
both of autoreactive immature B cells in the BM, which induces
immune tolerance (38).

Soluble IgM is a ligand for CD22 and forms a complex with
an antigen. This complex suppresses the CD22-mediated BCR
signaling via its binding to CD22 expressed on the B cell surface.
CD22, which is expressed on the surface of mature B cells, is an
inhibitory receptor. Specifically, phosphorylated CD22 signals
through the BCR to downregulate B cell activation that prevents
the overactivation of the immune system and development of
autoimmune disease (223, 224).

In CD22-deficient mice, BCR ligation promotes the
mobilization of intracellular calcium and inhibits BCR
TABLE 2B | Molecules expressed by B cells and clinical applicability for AMR control.

Molecules Involvement mechanism in Immune system Clinical applicability for AMR control Reference

CD38 Support of B cell activation and proliferation as co-receptors for
cytokine receptors and inhibit apoptosis of GC B cell through
phosphorylation of CD19
Reduction of plasma cells in the BM

Daratumumab (humanized, CD38‐targeting antibody) reduce DSA level
rapidly and extent graft survival

(175–179)

CD40 Support of proliferation and survival B cell through CD40/CD40
ligand interaction

Inhibiting signaling through the CD40/CD40 L pathway inhibits B cell
activation, suppresses plasma cells differentiation, and suppresses TD
antigen-specific IgG production
Blocking the CD28/B7 and CD40/CD40L interaction at the same time
delay or prevent allograft rejection

(180, 181)

TACI Inhibition of B cell expansion.
Regulation of serum BAFF level
Promotion of GC B cells apoptosis
Promotion of plasma cells survival and differentiation, and
antibody production

Atacicept is effective in the reduction of DSA levels and extension of graft
survival
TACI mRNA expression level significantly unregulated in chronic AMR
compared with graft function stable and healthy donors in renal
transplants

(172,
182–185)

BCMA Induction of the antigen presentation response
Support the survival of late memory-B cell and all plasma cells by
binding APRIL

Elevation of BCMA level is an effective biomarker for the development
of de novo alloantibody responses in a mouse skin allograft transplant
mouse model
BCMA mRNA expression level significantly unregulated in chronic AMR
compared with graft function stable and healthy donors in renal transplants

(66, 172,
186–189)
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signaling. Furthermore, CD22 signaling contributes to the
differentiation of B cells and is required for the expansion of
B1-b cells after BCR ligation (225, 226). The response to the TD
antigen is normal during adaptive immunity; however, Thfs do
not support B cells in CD22-deficient mice, because the CD22-
CD22-ligand (CD22L) interaction is required for the activation
of T cells (224, 226). In CD22-deficient mice, naïve-B cells
differentiate into GCB cells but cannot differentiate into MBCs
or PCs (221, 222). CD22-mediated inhibition of the BCR signal is
associated with B cell tolerance, and CD22-CD22L interactions
are required to maintain self-tolerance (227, 228).

Under pathological conditions, CD22 is involved in the
control of autoimmune diseases and genetic variants of CD22
are related to the susceptibility of individuals to autoimmune
diseases through a defect in B cell tolerance (39, 40). In patients
with autoimmune diseases such as rheumatism, T1-diabetes, and
SLE, inactivating mutations are frequently found in the CD22-
ligand (229–231). Although CD22 is not a major cause of
susceptibility to SLE in humans, CD22 deficiency may exert
additive or synergistic effects on susceptibility to disease.
Moreover, CD22 regulates the B cell response in autoimmune
disease through regulation of BCRs and Tool-like receptors
(TLRs) (224, 232).

Role of Scavenger Protein
Accumulation of foreign pathogens, apoptotic or necrotic dead
cells, and their debris causes chronic inflammation and induces
an autoimmune response, which must be eliminated to prevent
their onset.

Apoptosis inhibitor of macrophage (AIM, also called CD5L)
is a circulating protein that is a member of the scavenger receptor
cysteine-rich superfamily. Normally, high levels of AIM bind to
IgM pentamers and circulate in the peripheral blood in the
inactivated state (233).

In B cells, AIM cooperates with TGF–beta1 to suppress B cell
proliferation strongly and persistently and inhibit antibody
production. TGF-beta1-mediated increased expression of AIM
receptors on the surface of B cells is required for AIM to exert an
effect on these cells (234). In addition, it has been reported that
IL-10 protects transplanted grafts from recipient immunity and
exert anti-inflammatory effects by inhibiting NLRP3 inflammasome
activation or MPs with proinflammatory phenotypes by increasing
AIM expression. Therefore, regulation of AIM expression may be
related to the induction of immune tolerance (35).

Under pathological conditions, IgM dissociates from AIM
during the recovery from renal injury through the enhanced
clearance of a luminal obstruction during acute renal injury
(234–236). Specifically, free AIM bound to debris interacts with
kidney injury molecule 1 (KIM-1) that is expressed by injured
tubular epithelial cells, resulting in enhanced phagocytic
clearance of AIM-bound debris by epithelial cells (234, 237–
239). Thus, free AIM is involved in the repair of acute kidney
injury, because delayed or deficient removal of dead cells, or
both, may cause secondary inflammation and fibrosis in tissues
and may impair the repair of tissue damage and the regeneration
of such tissues (237). Alternatively, macrophages produce AIM
(236), which is involved in the pathophysiology of inflammatory
Frontiers in Immunology | www.frontiersin.org 11
colitis through the maintenance of the survival of macrophages,
and the elimination of dead cells and toxic substances in hepatitis
by supporting the phagocytic activity of macrophages (239–241).
In the field of transplantation, it has been reported that the blood
concentration of free AIM increases during acute cellular
rejection in cardiac allograft rejection (242).

Role of IgM Antibody
Natural IgMs exert anti-inflammatory effects through clearing
pathogens, scavenging toxins, inhibiting the production of
inflammatory mediators, neutralizing cytokines, and
scavenging complement to directly protect antigens from
humoral immune attack (207, 243–248). These antibodies
suppress inflammation and injury of target tissues caused by
IgG autoantibodies through anti-idiotype activity, competitive
inhibition of binding of IgG autoantibody to antigens, and
suppression of IgG autoantibody production via signals from
the FcµR expressed on the surface of B cells (249). Furthermore,
these antibodies significantly inhibit T cell proliferation in lectin-
stimulated PBMCs in vitro through the suppression of IL-2
production that enhances the functions of immunocompetent
cells, bacterial aggregation, and opsonic activity (37). A
polyclonal antibody preparation designated trimodulin, which
contains IgM (~23%), IgA (~21%), and IgG (~56%), decreases
the levels of TLR2, 4 as well as those of coagulation receptors
(CD11b and CD64) in monocytes and inhibits lymphocyte
proliferation and regulate of the production of pro- and anti-
inflammatory cytokines, including TNF-a and IL-10. Therefore,
these antibodies achieve a protective effect to alleviate the
inflammatory reaction to target organs through these extents
of involvement in immune system (243, 246, 247, 250–252).

In a model of renal ischemia-reperfusion-induced injury, the
tissue-protective effects of IgM antibodies that recognize and
inhibit the activities of danger-associated molecular patterns
reflect human pathology. These mechanisms support the
regeneration of damaged hepatocytes in a model of liver
ischemia (42). In patients with sepsis, IgM-enriched IVig
ameliorates pathology and reduces mortality through the
improvement of the peripheral circulation, such that the
numbers of circulating B cells and levels of IgM are
significantly reduced in nonsurvivors compared with survivors,
indicating that IgM is required to achieve successful therapy
(253–256).

In an in vitro model of xenotransplantation, compared with
IVig, IgM-enriched IVig more strongly inhibits the classical
complement pathway and complement-dependent cytotoxicity
caused by the deposition of C4 and C3 on the cell surface of pig
cells treated with human serum and suppresses the development
of hyperacute rejection of a xenotransplanted graft (257).

In allograft transplantation, IgM inhibits complement activity
10-times more than IgG (258). In the case of de novo DSA
production after lung transplant recipients; treatment with IgM-
enriched IVig is associated with the DSA-clearance effect, which
improves the prognosis of transplantation. In early DSA-positive
cases, treatment with IgM-enriched IVig and rituximab was
superior to that with plasma exchange and rituximab, and the
patients were comparable to the DSA-negative group in 1-year
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survival after transplantation; treatment with IgM-enriched IVig
was superior to treatment with plasma exchange and rituximab
in DSA clearance (259). In addition, a tissue biopsy confirms no
AMR after treatment only by IgM-enriched IVig injection, when
AMR develops after heart transplantation (258).

Clinical Potential of Humoral Immunity–
Associated Components in AMR
Further elucidation of the involvement of AIM in the humoral
immune response to transplanted grafts will be applicable for AMR
control. Newly discovered cytokines, antibodies, and receptors
involved in antibody production may be expected to be translated
to the clinical application in early diagnosis, management, and
prognosis prediction. These efforts require the identification of the
roles of these components in the underlying mechanisms of AMR.

In the field of transplantation, FcmR-mediated signaling
maintains the homeostasis of B1/B2 cells (216, 219) and
potentially alleviates the pathology of AMR (38), and elucidation
of the involvement of this signaling in AMR development will
likely contribute to the development of therapies designed to
protect target grafts from humoral immune responses mounted
by recipients.

CD22-mediated signaling may be expected to be useful as B cell
depletion therapy in AMR control, because IVig is administered as
a treatment for AMR, and one of the mechanisms is the induction
of mature B cell apoptosis via binding between sialylated IVig and
CD22 (71). It is therefore important to evaluate the involvement of
CD22-targeting agents in the activation of humoral immunity
against transplanted grafts in the same manner as they are applied
to the treatment of autoimmune diseases to effectively manage
AMR (231, 232).

As a diagnostic method, clinical application of these receptors
to new diagnostic methods will be achieved if the functions and
structural properties of these receptors can be shown to be
involved in humoral immunity to transplanted grafts.

As scavenger protein, it has also been reported that an increase
in AIM blood concentrations is associated with the development
of acute rejection following heart transplantation, indicating that
the blood concentration of free AIM may increase in the early
stage of humoral immunity activation in transplanted grafts, and it
is expected to be useful as an early diagnostic method for AMR
(242). Therefore, the utility of AIM as a diagnostic modality can be
ascertained after elucidating its AIM in the development of AMR.
In addition, AIM controls inflammation and repairs damaged
tissues via phagocytosis of apoptotic cells.

Although IVig has been commonly used for AMR control, the
significance of IgM-enriched IVig has been reported in the field of
severe infection and organ ischemia (42, 253–258). IgM-enriched
IVig may exert more strongly inhibits complement activation as
compared with IVig (258, 259). Therefore, identifying the detailed
mechanism of IgM involvement in humoral immune activation to
transplanted grafts and the significance of IgM-enriched IVig
compared with that of IVig will likely lead to further clinical
application of IgM-enriched IVig to manage AMR.

Significantly, in addition to the potential induction of
immune tolerance of humoral immunity-associated components
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to transplanted grafts (35, 243, 247, 248, 250–252), AIM and IgM-
enriched IVig have a tissue repair and regeneration effect through
the clearance of injured tissue (42, 224, 233–235). Therefore,
humoral immunity associated injury after the onset of AMR,
which was considered irreversible, could be recovered by clinical
application of these humoral immunity-associated components.

We summarized clinical potential of these components in the
context of AMR control (Figure 3).
CONCLUDING REMARKS

In this study, we discussed the pathways by which naïve-B cells
are sensitized to donor-specific HLA antigens and differentiate
into LLPCs, which produce DSAs. This study also presented
evidence regarding the mechanism by which immunocompetent
cells participate in the signal transduction pathways that
contribute to AMR and the mechanisms of immunosuppressive
therapy designed to suppress the development of AMR (17–19).

Although immunosuppressive therapies that may be useful
for suppressing each process during AMR development have
been developed, AMR control remains challenging. The main
cause of poor AMR control is that positivity for antibodies to
donor-specific HLA is used as a reference as one of the diagnostic
methods for AMR (17); however, LLPCs, which produce
antibodies inducing AMR, may be difficult to remove by
applying conventional immunosuppressive therapy and the
pathological condition progresses irreversibly when these
antibodies are present in serum (20, 71, 72, 260). In addition,
the information needed to improve management after
transplantation including individual differences in pathological
conditions and drug susceptibility has not been discovered.

It has been reported that humoral monitoring methods for
better evaluating the humoral immune response to the
transplanted graft might contribute to resolving this problem
by analyzing the antigenic specificity of MBCs circulating in
peripheral blood using in vitro assay systems (22–27) and
further possibility of gene-based control method in the
context of AMR as following; Microarray techniques can be
used to elucidate the molecular mechanisms that induce the
migration of LLPCs to BM and promote their longevity (259).
Thus, these techniques may permit inhibition of the
differentiation of LLPCs. Further; NGS analysis of antibody
reactivity to transplanted grafts can be applied to predict the
antibodies that cause AMR (28–36). This knowledge, combined
with the identification of genetic polymorphisms associated with
drug sensitivity, will undoubtedly contribute to the development of
optimal management strategies.

In addition to the development of these diagnostic methods,
recent studies revealed relevant factors, such as anti-inflammatory
effects, reduction of harmful IgG autoantibodies production, tissue
regeneration, and their clinical applicability in the fields of
autoimmune diseases and inflammatory disease and severe
infection disease, and the others (37–42). Therefore, in the field
of transplantation, by further clarifying the mechanism of their
involvement in AMR, methods for improving the control of AMR
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including early diagnosis, suppression of AMR development, and
alleviation of pathology may be developed.

Although IgG antibody has been the main focus in the field of
transplants, we focused on the clinical potential of detecting
DSA-specific IgM and IgG-MBC differentiation using in vitro
assay systems as an early diagnostic method and biomarkers that
enable the inhibition of AMR development with less invasive
therapeutic intervention (207). The findings supported the
clinical applicability of the detection of DSA-specific IgM-MBC
differentiation after elucidating the optimal conditions for
inducing the differentiation of DSA-specific IgM-MBC
Frontiers in Immunology | www.frontiersin.org 13
differentiation into IgG-PCs, the detailed mechanism leading
to AMR.

Alternatively, IVig has been administered for AMR control
mainly, but IgM-enriched IVig has been reported to improve the
pathological condition and prognosis in severe infectious
diseases and organ ischemia (42, 253–256). Therefore, further
elucidation of how signal mediated by IgM-enriched-IVig are
involved in the AMR development may contribute to the
establishment of AMR control.

Therefore, focusing on the involvement mechanism of humoral
immunity-associated components in the pathological conditions
A

B

C

FIGURE 3 | How these novel applicable components improve the prognosis of AMR. We summarised the clinical potential of novel humoral immunity-associated
components in AMR control and AMR development mechanisms. (A) As an IgM receptor, the FCu receptor-mediated signal controls harmful autoreactive IgG
antibodies production and controls autoimmunity and inflammation through regulating immunoregulatory cells (37, 38, 216, 219, 222). In addition, this signal is
associated with immune tolerance induction by promoting deletion and energy of immature B cells (38). CD22-mediated signaling also induces immune tolerance via
CD22-CD22L interaction and CD22-mediated inhibition of the BCR-mediated signal (227, 228) and CD22 (+) mature B cell apoptosis (71). (B) As a scavenger
protein, it has been reported that free Apoptosis inhibitor of macrophage (AIM) works to suppress inflammation, tissue injury and tissue regeneration through
phagocytic activity during acute kidney injury (233–241) and AIM mediates immune tolerance induction by IL-10 and suppresses the immune response by inducing
macrophages with immunosuppressive phenotype activation (35) and cooperates with TGF-beta to suppress B cell proliferation and antibody production (233).
(C) As a polyclonal IgM antibody, IgM-enriched IVig strongly suppresses cell proliferation, has a inhibitory effect in complement activity (257, 258), and alleviates the
humoral immunity-associated pathological condition in severe infection, organ ischemia, and transplants (42, 253–256, 258, 259). BCR, B cell receptor; DSA, Donor-
specific HLA antibody; IVig, Intravenous immunoglobulin; TGF, Transforming Growth Factor.
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regardless of the difference in fields and conventional knowledge
and elucidating the mechanism by which these humoral immunity-
associated components participate in AMR development will likely
be applicable to the development of new diagnostic and therapeutic
methods for improving AMR management.
Frontiers in Immunology | www.frontiersin.org 14
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124. de Sousa MV, Gonçalez AC, de Lima Zollner R, Mazzali M. Treatment of
Antibody-Mediated Rejection After Kidney Transplantation: Immunological
Effects, Clinical Response, and Histological Findings. Ann Transplant (2020)
25:e925488. doi: 10.12659/AOT.925488

125. Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL.
Calcineurin Is a Common Target of Cyclophilin-Cyclosporin A and FKBP-
FK506 Complexes. Cell (1991) 66(4):807–15. doi: 10.1016/0092-8674(91)
90124-H

126. Nankivell BJ, Shingde M, Keung KL, Fung CL, Borrows RJ, O’Connell PJ,
et al. The Causes, Significance and Consequences of Inflammatory Fibrosis in
Kidney Transplantation: The Banff I-IFTA Lesion. Am J Transpl (2018) 18
(2):364–76. doi: 10.1111/ajt.14609

127. Sommerer C, Meuer S, Zeier M, Giese T. Calcineurin Inhibitors and NFAT-
Regulated Gene Expression. Clin Chim Acta (2012) 413(17-18):1379–86.
doi: 10.1016/j.cca.2011.09.041

128. Wiebe C, Rush DN, Nevins TE, Birk PE, Blydt-Hansen T, Gibson IW, et al.
Class II Eplet Mismatch Modulates Tacrolimus Trough Levels Required to
Prevent Donor-Specific Antibody Development. J Am Soc Nephrol (2017) 28
(11):3353–62. doi: 10.1681/ASN.2017030287

129. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work
Group. KDIGO Clinical Practice Guideline for the Care of Kidney
Transplant Recipients. Am J Transpl (2009) 9 Suppl 3:S1–155.
doi: 10.1111/j.1600-6143.2009.02834.x
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