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Abstract Integrity of rhythmic spatial gene expression patterns in the vertebrate segmentation
clock requires local synchronization between neighboring cells by Delta-Notch signaling and its
inhibition causes defective segment boundaries. Whether deformation of the oscillating tissue
complements local synchronization during patterning and segment formation is not understood.
We combine theory and experiment to investigate this question in the zebrafish segmentation
clock. We remove a Notch inhibitor, allowing resynchronization, and analyze embryonic segment
recovery. We observe unexpected intermingling of normal and defective segments, and capture
this with a new model combining coupled oscillators and tissue mechanics. Intermingled segments
are explained in the theory by advection of persistent phase vortices of oscillators. Experimentally
observed changes in recovery patterns are predicted in the theory by temporal changes in tissue
length and cell advection pattern. Thus, segmental pattern recovery occurs at two length and time
scales: rapid local synchronization between neighboring cells, and the slower transport of the
resulting patterns across the tissue through morphogenesis.

Introduction

Synchronization of genetic oscillations in tissues generates robust biological clocks. To attain syn-
chrony, cells interact with each other locally and adjust their phase of oscillations. How local interac-
tions between oscillators lead to the emergence of collective rhythms has been studied in static
tissues and in dynamic tissues with local cell rearrangements, but how collective rhythms are influ-
enced by the more complex deformations of entire tissues typical in embryogenesis remains chal-
lenging and is less well understood. A system to explore this is the synchronization of genetic
oscillations during the segmentation of the vertebrate embryo’s body axis, a process termed somito-
genesis. Cells in the unsegmented tissue, namely the presomitic mesoderm (PSM) and the tailbud,
show collective rhythms of gene expression that set the timing of somite boundary formation and
are referred to as the segmentation clock (Oates et al., 2012; Pourquié, 2011). In the tailbud,
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spatially homogeneous oscillations can be observed. In the PSM, kinematic phase waves of gene
expression move from posterior to anterior, indicating the presence of a spatial phase gradient
along the axis (Delaune et al., 2012; Shih et al., 2015; Soroldoni et al., 2014). Importantly, this
unsegmented oscillating tissue undergoes extensive deformations during the time of segment for-
mation, with complex cellular rearrangements, flows and a changing global size and geometry
(Gomez et al., 2008; Jérg et al., 2015; Lawton et al., 2013; Mongera et al., 2018,
Steventon et al., 2016). However, our current understanding of synchronization in the segmentation
clock follows largely from considering a non-deforming tissue with constant size.

In the zebrafish segmentation clock, Her1 and Her7 proteins repress their own transcription, form-
ing negative feedback loops (Hanisch et al., 2013, Schréter et al., 2012; Trofka et al., 2012).
These negative feedback loops are considered to generate cell-autonomous rhythms of gene
expression (Lewis, 2003; Monk, 2003; Webb et al., 2016). Cells in the PSM interact with their
neighbors via Delta-Notch signaling (Horikawa et al., 2006; Jiang et al., 2000; Riedel-Kruse et al.,
2007; Soza-Ried et al., 2014). It is thought that Her proteins repress the transcription of deltaC
mRNA, causing oscillatory expression of DeltaC protein on the cell surface (Horikawa et al., 2006;
Wright et al., 2011). Binding of a Delta ligand to a Notch receptor expressed by neighboring cells
leads to the cleavage and release of the Notch intracellular domain (NICD), which is translocated to
the nucleus and modulates transcription of her mRNAs.

Several lines of evidence based on the desynchronization of the segmentation clock show that
Delta-Notch signaling couples and thereby synchronizes neighboring genetic oscillators in the zebra-
fish PSM and tailbud. The first collective oscillation of the segmentation clock occurs immediately
before the onset of gastrulation at 4.5 hr post fertilization (hpf), independently of Delta-Notch sig-
naling (Riedel-Kruse et al., 2007, Ishimatsu et al., 2010). Thereafter, cells from embryos deficient
in Delta-Notch signaling gradually become desynchronized due to the presence of various sources
of noise (Horikawa et al., 2006; Keskin et al., 2018). Single-cell imaging of a live Her1 reporter in
the Delta-Notch mutant embryos deltaC/beamter, deltaD/after eight and notch1a/deadly seven dur-
ing posterior trunk formation (~15 hsspf) shows that Her1 protein oscillation is desynchronized across
the PSM cells (Delaune et al., 2012). At the tissue level, Delta-Notch mutants form the anterior
4 ~ 6 segments normally, followed by consecutive defective segments (van Eeden et al., 1996).
These phenotypes are not caused by a direct failure of segment boundary formation (Ozbudak and
Lewis, 2008), but have been explained in terms of the underlying desynchronization of the segmen-
tation clock (Jiang et al., 2000; Riedel-Kruse et al., 2007).

This desynchronization hypothesis has been formalized as a theory based on coupled oscillators
(Riedel-Kruse et al., 2007; Liao et al., 2016). The theory postulates a critical value Z. such that if
the level of synchrony becomes lower than this critical value, a defective segment boundary is
formed, Figure 1A. In the absence of Delta-Notch signaling, the level of synchrony decays over time
and eventually becomes lower than Z.. The time point at which the level of synchrony crosses Z for
the first time is considered to set the anterior limit of defects (ALD), that is the anterior-most defec-
tive segment along the body axis. Indeed, theory based on this desynchronization hypothesis can
quantitatively explain the ALD in Delta-Notch mutants (Riedel-Kruse et al., 2007).

The desynchronization hypothesis implies that the oscillators could be resynchronized by restor-
ing Delta-Notch signaling, with the expectation that resynchronization of the segmentation clock
requires several oscillation cycles for the level of synchrony to smoothly increase and surpass the
threshold Z,, giving rise to a transition from defective to recovered normal segments. Due to the
constitutive lack of coupling, Delta-Notch mutants cannot be used to analyze resynchronization
dynamics. A powerful tool for this purpose is the Notch signal inhibitor DAPT, which inhibits the
cleavage and release of NICD, blocking cell coupling. Importantly, DAPT can be washed out to
recover cell coupling and this allows cells to resynchronize their genetic oscillations, (Figure 1A; Rie-
del-Kruse et al., 2007; Ozbudak and Lewis, 2008; Liao et al., 2016; Mara et al., 2007). Previous
experimental studies showed that after late washout of DAPT at the nine somite stage, embryos
start making normal segments again after several oscillation cycles (Riedel-Kruse et al., 2007,
Liao et al., 2016; Mara et al., 2007). The position of the first recovered normal segment after DAPT
washout represents the time at which the level of synchrony surpasses Z. for the first time
(Liao et al., 2016). In previous studies, almost all segments formed normally after the first fully
recovered segment (Riedel-Kruse et al., 2007; Liao et al., 2016), consistent with a monotonic
increase of the level of synchrony in the vicinity of Z, Figure 1A, as expected from the
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Figure 1. Segment boundary defects observed in late and early DAPT washout embryos. (A) Schematic time series
of synchrony level during desynchronization and resynchronization. In the presence of DAPT, the synchrony level
decreases due to the loss of Delta-Notch signaling (solid line). DAPT is washed out at 14 hr post-fertilization (hpf;
~9 somite stage; ss) in this panel and resynchronization starts from that time point (dotted line). If the synchrony
level is higher (lower) than a critical value Z, normal (defective) segments are formed. (B) Wild-type control
embryo treated with DMSO. (C) Embryo with late DAPT washout at 14 hpf (9 ss). Enlargements of (D) broken or
fragmented boundaries, (E) incorrect number of boundaries and (F) left-right misaligned boundaries are shown
below. (G) Embryo with early DAPT washout at 9.5 hpf (0 ss). Red, blue and green triangles indicate the anterior
limit of defect (ALD), first recovered segment (FRS) and posterior limit of defect (PLD), respectively. (H), (I)

Figure 1 continued on next page
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Figure 1 continued

Histograms of the difference between PLD and FRS (PLD - FRS) for embryos with DAPT washout at (H) late (14
hpf; n = 30) and (I) early (9.5 hpf, n = 28) stages. Numbers of embryos examined in (H) and () were 15 and 14,
respectively. FRS and PLD were measured separately between left and right sides of embryos. p<0.05 in
Kolmogorov-Smirnov test.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Segment boundary defects in embryos with different DAPT washout timing.
Figure supplement 1. Difference between FRS and PLD in experimental data.

desynchronization hypothesis. Despite this success, it remains fundamentally unclear how tissue-scale
gene expression patterns underlying segment recovery reorganize from local intercellular interac-
tions and whether they are affected by tissue size and shape changes that occur during
development.

Here, we analyze resynchronization dynamics of the zebrafish segmentation clock at different
developmental times using both experimental and theoretical techniques. In contrast to late washout
mentioned above, we find that washing out DAPT at earlier developmental stages causes a region
of scattered segment defects, where normal and defective segments are intermingled. This striking
phenotype was not anticipated by previous models (Riedel-Kruse et al., 2007; Uriu et al., 2017).
To investigate the processes in the segmentation clock that yield this distinctive recovery behavior,
here we develop a new model of the segmentation clock that encompasses two scales, describing
resynchronization and pattern recovery in terms of local interactions between cells in the tissue, as
well as global properties of the tissue. In concert, we develop observables that allow pattern dynam-
ics to be quantified and compared between simulation and experiment, the vorticity index and local
order parameter. Despite its simplicity, this model can describe the intermingling of normal and
defective segments. Numerical simulations indicate that persistent phase vortices appear during
resynchronization, resulting in scattered and intermingled segment defects along the axis. The
length of the PSM and tailbud and advection pattern influence the recovery process via the transport
of phase vortices from the posterior to the anterior of the PSM. Moreover, by including temporal
changes to tissue length, advection pattern and coupling strength, the model makes predictions
about the pattern of resynchronization at both early and late stages that we confirm experimentally
in the embryo.

Results

Scattered embryonic defective segments in zebrafish resynchronization
assay

To investigate the processes involved in resynchronization of the segmentation clock, we used a
resynchronization assay based on washing out the Notch signaling inhibitor DAPT at different devel-
opmental stages. In this assay, zebrafish embryos were placed in DAPT for a defined duration, dur-
ing which time the segmentation clock desynchronized and defective segments were formed, then
washed extensively to allow Delta-Notch signaling activity to resume. Subsequently, the segmenta-
tion clock gradually resynchronized and normal segments were made.

Throughout this study, we administered DAPT at 4 hpf, a developmental stage before the oscil-
lating genes of the segmentation clock were expressed. This was a treatment duration of at least 5
hr, sufficient to obtain defects on both left and right sides of the embryo for subsequent resynchroni-
zation analysis (Ozbudak and Lewis, 2008). A record of the resulting spatiotemporal pattern of
somitogenesis was visualized after its completion by whole-mount in situ hybridization for the myo-
tome segment boundary marker gene xirp2a (xin actin-binding repeat containing 2a) in ~36 hpf
embryos, Figure 1B,C. This assay was chosen for its high sensitivity for boundary defect detection
(Riedel-Kruse et al., 2007), and we analyzed these staining patterns by scoring boundaries as either
normal or defective using established criteria (Riedel-Kruse et al., 2007, Liao et al., 2016), with the
exception that we scored the left and right embryonic sides separately. Examples of defects
observed with DAPT treatment included fragmented, mis-spaced, or mis-aligned boundaries,
Figure 1D-F. To prevent incorrect identification of misaligned boundaries in embryos with bent
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axes, or in tilted samples, we confirmed that the boundaries outside of the defective region were
well aligned between left and right sides. To assign the ordinal segment number to defective bound-
aries when boundaries were severely fragmented, we used the contralateral side or counted either
dorsal or ventral boundary ends, which were often clearer, to estimate their axial position.

As described in the introduction, the location of the transition from normal to defective segments
resulting from desynchronization is termed the anterior limit of defects (ALD), given by the first seg-
ment along the embryo’s axis that shows a defective boundary, Figure 1—figure supplement 1A.
After removing DAPT, resynchronization begins and normal segments form eventually. This transi-
tion has been recorded by the first recovered segment along the axis (FRS) (Liao et al., 2016) and
then the posterior limit of defects (PLD), the most posterior segment along the axis with a boundary
defect, Figure 1—figure supplement 1A (Riedel-Kruse et al., 2007). Note that because segments
form rhythmically and sequentially along the body axis, FRS and PLD label both an axial position and
the developmental time of segment formation.

In late washout experiments, we observed that a normal segment boundary sometimes formed
shortly after ALD even when DAPT was still present, possibly due to desynchronization fluctuations.
In previous reports, the definition of the FRS avoided counting these early defects because washout
was done late, after full desynchronization. However, when DAPT was washed out early, before ALD
occurred, we could not discriminate whether a normal segment formed due to desynchronization
fluctuations or as a consequence of resynchronization. The frequency of defects kept growing during
an early phase in all conditions until reaching a plateau around segment 9, Figure 1—figure supple-
ment 1B, suggesting that the desynchronization phase lasted until segment 9, at least. Hence, in
this study we defined FRS as the first recovered segment after segment 9, when the desynchroniza-
tion phase was over.

We first analyzed the recovery of normal segments when DAPT was washed out at 14 hpf (tyash-
out = ~9 somite-stage (ss)), as in previous studies, Figure 1C. Several defective segment boundaries
were formed after washout, suggesting that the level of synchrony was still lower than the critical
value for normal segment formation during that time interval. However, embryos recovered a normal
segment boundary after some time, indicating that the level of synchrony surpassed the threshold,
Figure 1C. With this late washout time, we often observed contiguous defective segments before
FRS, suggesting that cells in the PSM were completely desynchronized by a DAPT pulse of this
length. In addition, PLD coincided closely with FRS, with the distribution of PLD — FRS peaking at
lowest values, Figure TH, Figure 1—figure supplement 1A,F, suggesting that once the level of syn-
chrony surpassed the critical value Z, it remained larger than Z_, as expected. This observation can
be interpreted using the desynchronization hypothesis to indicate that the level of synchrony
increases monotonically over time, resulting in the formation of consecutive normal segments after
the FRS, Figure 1A.

Importantly, however, when we washed DAPT out at an earlier time tyash.ou: = 9.5 hpf (~0 ss), the
majority of embryos had an interval along the axis where normal and defective segments were inter-
mingled between FRS and PLD, with the difference between PLD and FRS distributed more uni-
formly, Figure 1G,l, and Figure 1—figure supplement 1A,C. This result suggests that the
segmentation clock has a level of synchrony close to Z. in this intermingled region, and persistent
fluctuations in synchrony level lead to intermittent defective boundary formation.

Physical model of the PSM

According to the desynchronization hypothesis, intermingling of normal and defective segment
boundaries suggests a fluctuation of the phase order parameter around its critical value for proper
segment formation. How could such large and potentially long-lasting fluctuations of the phase
order occur? The desynchronization hypothesis (Jiang et al., 2000) was first formalized in a mean-
field theory describing synchronization dynamics from global interactions (Riedel-Kruse et al.,
2007). Later, synchronization in the tailbud was analyzed with a theory with local interactions and
neighbor exchange by cell mobility (Uriu et al., 2017; Uriu et al., 2010). However, a critical predic-
tion of these theories is that once a population of oscillators is synchronized, a large fluctuation of
synchrony level is not expected (Hildebrand et al., 2007, Kuramoto and Nishikawa, 1987,
Daido, 1987). Instead of such global phase order fluctuations, other hypotheses for the intermingled
defects are the emergence of localized disorder, or the existence of local phase order with a mis-ori-
entation to the global pattern. To explore these potential behaviors, following the general lineage
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of the clock and wavefront (Cooke and Zeeman, 1976), we develop a physical model of the PSM
and tailbud that brings together in a novel framework previous descriptions of (i) the local processes
of phase coupling (Morelli et al., 2009) and physical forces (Uriu et al., 2017; Uriu and Morelli,
2014) between neighboring oscillators, and (i) the tissue-level properties of a frequency profile and
oscillator arrest front (Jérg et al., 2015; Morelli et al., 2009), changing tissue length (Jérg et al.,
2015), and a gradient of cell mixing (Uriu et al., 2017); furthermore, we introduce an advection pat-
tern of the PSM (Jérg et al., 2015) that changes in time, Figure 2, Figure 2—figure supplement 1
and Supplementary file 1.

The model describes the PSM and tailbud as a U-shaped domain in a 3D space, Figure 2A, Fig-
ure 2—figure supplement 1, see Materials and methods for details. We set the posterior tip of the
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Figure 2. Physical model of the PSM and tailbud. (A) U-shape geometry of the PSM and tailbud (left), and schematics of key ingredients in the model
(right). Each sphere represents a PSM cell. The scale bar indicates the mapping of phase 6; to color: white is /2 and blue is 37/2. R: right. L: left. Scale
bar: 50 um. (B) Intrinsic cell mobility gradient, (C) cell advection speed, and (D) autonomous frequency gradient along the anterior-posterior axis of the
PSM and tailbud. In (C), the absolute value of the spatial derivative of advection speed, referred to as strain rate, is indicated by the red line. L is the
length of the PSM L = L, — x,. (E) Kinematic phase waves moving from the posterior to anterior PSM in a simulation. Snapshots of the right PSM are
shown. See also Figure 2—video 1. ty = 302 min is a reference time point. T = 30 min is the period of oscillation at the posterior tip of the tailbud.
Parameter values for simulations are listed in Supplementary file 1.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. 3D geometry of the PSM and tailbud in the physical model (A) Two tubes and a half torus represent the PSM and tailbud,
respectively with anterior to the left and posterior to the right.

Figure 2—video 1. Traveling phase waves in a constant tissue.

https://elifesciences.org/articles/61358#fig2video
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tailbud as a reference point. Cells are represented as particles in the 3D space, subject to physical
forces from other particles when they are closer than a typical length scale that we term cell diame-
ter. In addition, tissue boundaries exert confinement forces on cells (Uriu et al., 2017). Although
cells are rendered as spheres in simulations, their effective shapes are in fact dynamic and depend
on their local physical interactions. In accordance with previous experimental studies, we consider
the spatial gradient of intrinsic cell mobility across the PSM and tailbud, with highest mobility in the
posterior, Figures 2B (Lawton et al., 2013; Mongera et al., 2018, Uriu et al., 2017). Axis extension
as observed in the lab is described here, from the reference point of the posterior tip of the tailbud,
as cell advection from posterior to anterior, Figures 2A,C (Jorg et al., 2015; Morelli et al., 2009,
Ares et al., 2012). The value of the spatial derivative of the advection velocity at each position effec-
tively represents the local strain rate, Figure 2C. Cellular motion is described by the overdamped
equation with four terms that represent the four physical influences listed above:

dXi ul
7:vd(xi)+vo(x,-)n,-(t)+ Z F(X,‘7 Xj) +Fb(X,'),
! J=Lj#

where x; is the position of cell i, v,(x;) is cell advection velocity, vo(x;) is the speed of intrinsic cell
movement with direction n;(t), F(x;,x;) is the physical contact force between cells i and j, N is the
total cell number and F,(x;) is the boundary force that confines cells within the U-shaped domain.
Genetic oscillation in each PSM cell is described as a phase oscillator with noise terms. The phase
oscillators are coupled with their neighbors, representing intercellular interaction with Delta-Notch
signaling. We define cells to be neighbors when their distance is shorter than the cell diameter. We
also consider a left-right symmetric frequency profile along the anterior-posterior axis of the PSM, as
observed in zebrafish embryos, to create kinematic phase waves (Figure 2D; Shih et al., 2015;
Soroldoni et al., 2014, Jérg et al., 2015). The mobility of cells in the tailbud increases the commu-
nication of the phase between left and right halves. The frequency of oscillation is highest at the tip
of the tailbud and gradually decreases toward the anterior PSM. The phase equation describing the
oscillators has three terms, representing the frequency profile of the cell-autonomous oscillators, the
coupling between neighbors, and noise:
M:w(xi) + k(1) Z sin[0;(r) — 6:(1)] + \/ﬁ 0i (1),

dt nei(t) |xjfx, <d,

where 6; is the phase of cell i, w(x;) is the autonomous frequency at position x;, k is the coupling
strength, ny; is the number of neighboring cells interacting with cell i, d. is the cell diameter, Dy is
the phase noise intensity and &;(7) is a white Gaussian noise. When a simulation was started from a
uniformly synchronized initial condition, the frequency profile generated left-right symmetrical kine-
matic phase waves due to growing phase differences between the anterior and posterior PSM,
Figure 2E and Figure 2—video 1.

To model the formed segments, we arrest the oscillation when cells leave the PSM from its ante-
rior end x,, Figure 2A,E. The arrested phase stripes in the region x < x, are representative of seg-
ment boundaries, and the segment length is the wavelength of this arrested phase pattern.
Although the determination of the segment boundary in vivo is a complex process (Dahmann et al.,
2011; Naganathan and Oates, 2020), for simplicity we consider that these phase stripes corre-
spond to the boundaries of the resulting morphological segments and the chevron-shaped myo-
tomes that are detected in our experiments. Cells in the formed segment region x < x, continue to
be advected anteriorly at the same speed as the anterior end of the PSM, due to axial elongation,
and their relative positions are fixed. While small heterogeneities in cell density and cell division may
exist in the tissue (Mongera et al., 2018; Steventon et al., 2016; Uriu et al., 2017, Zhang et al.,
2008), as a simplifying assumption we keep global cell density constant over time. Consequently, we
add new cells with random phase values (Horikawa et al., 2006) at random positions in the PSM
and tailbud to balance the cells exiting through the anterior end of the PSM.
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Simulation results 1. Intermingled defective segments result from
spatially heterogeneous resynchronization in the PSM

Using this physical model, we analyzed resynchronization dynamics in simulations. As an initial condi-
tion, we described the state of the PSM and tailboud immediately after DAPT washout by assigning
random initial phases to cells, top panel in Figure 3A, as an extended treatment of saturating dose
of DAPT was expected to cause such complete randomization of oscillator phases (Delaune et al.,
2012). In this desynchronized state, normal segment boundaries — as defined by ordered phase
stripes — did not form, matching the experimental appearance of embryos with persistent loss of
Delta-Notch signaling. For simplicity, we start our analysis with constant tissue parameters. Below,
we will introduce temporal changes to the parameters.

Figure 3A shows snapshots of a synchrony recovery simulation, see also Figure 3—video 1. To
characterize resynchronization dynamics, we computed local phase order at each position along the
anterior-posterior axis, Figure 3B and Figure 3—figure supplement 1. Due to local coupling, cells
first formed local phase synchronization, Figure 3A,B and Figure 3—video 1. During the first stage
of this synchrony recovery, the kymograph of local phase order shows three locally synchronized
domains that extended their size due to an increase in number of synchronized cells at the same
time as they were advected in an anterior direction, Figure 3B,E. When the size of the most anterior
domain with local phase order above a threshold of 0.85 (Z.) exceeded one segment length at its
arrival in the anterior end of the PSM, a first recovered segment (FRS) was formed in a simulation,
blue triangles in Figure 3A,B,F. However, because local interactions drove resynchronization in a
spatially heterogeneous manner, domains where phase order was lower than Z. could exist more
posterior to such a well-synchronized domain, Figure 3B,E. Subsequent arrival of the less synchro-
nized domains caused fluctuation of the local order parameter in the anterior end of the PSM, which
resulted in defective segment formation after FRS, Figure 3A,F. Note that patterns of synchronized
domains in the left and right sides of the PSM were not well correlated during this time interval (Fig-
ure 3—video 1) despite a left-right symmetrical frequency profile. This is in contrast to the fully
recovered state, where in the presence of well-synchronized oscillators the symmetrical frequency
profile and the communication of phase through the tailbud ensures the left-right symmetry of the
wave pattern. Thus, the numerical simulation suggests that a sequence of synchronized and less syn-
chronized domains moving along the PSM results in an intermingling of normal and defective seg-
ments along the axis. This intermingling matches the experimental observations.

These less-synchronized domains typically formed persistent phase patterns that rotated along an
axis as a vortex, as illustrated in the simulation, Figure 3D and Figure 3—video 1. To detect these
patterns, we introduced an index referred to as vorticity, Figure 3—figure supplement 2 and Mate-
rials and methods. In brief, the vorticity index detects the core of a vortex, where the phase values
circulate from 0 to 2r around a point, but does not measure the spatial extent of the vortex. The
kymograph of the vorticity indicates that the less synchronized domains in the kymograph of phase
order were caused by the phase vortices, Figure 3A-C. When a vortex was brought to the anterior
end of the PSM through cell advection, it was converted into a defective segment boundary and
delayed the PLD, Figure 3B,C. Although this process is best visualized dynamically in simulations,
one example is illustrated for the vortex in Figure 3D and the resulting local phase order and a seg-
ment defect in Figure 3F (bracket). The formation of this particular segmental defect corresponds to
time points 350-380 min on the right hand side in Figure 3—video 1. Thus, the formation of persis-
tent local phase patterns with a mis-orientation to the global pattern in the posterior PSM caused
defective segment boundaries after the FRS, providing an explanation for the early washout
experiments.

The passage of each vortex into the anterior PSM in the simulations generated a segment defect
with a characteristic length of one or two segments, Figure 3A-D,F. We compared these defect
lengths between simulation and embryonic data and found that across all embryonic stages (Fig-
ure 1—figure supplement 1) and all simulations (see Figure 4, below), the size distributions were in
quantitative agreement, Figure 3—figure supplement 3. The resulting invariant length scale of the
defect size is shown for simulation and embryonic data in Figure 3G,H. This finding is consistent
with phase vortices as the origins of intermingled segment defects in the embryo.
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Figure 3. Resynchronization simulations with constant tissue parameters. (A) Snapshots of a resynchronization simulation. Color scale as in Figure 2A,
also in (D) and (F). The black dotted vertical line indicates the position of the anterior end of the PSM x, = 0. Tissue parameters are constant over time.
See also Figure 3—video 1. (B-F) Analysis of local phase order and vortex transport in the simulation shown in (A). (B) Kymograph of local phase order
parameter of the right PSM shown in (A). (C) Kymographs of phase vorticity for (left) clockwise and (right) counter clockwise rotations. The phase

Figure 3 continued on next page
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Figure 3 continued

patterns within the black and yellow boxed space-time domains in (B) and (C) are shown in (D). (D) Snapshots of a phase vortex. The yellow arrows
indicate the direction of rotation. (E) Local phase order parameters along the anterior-posterior axis of the PSM at different time points. (F) Time series
of local phase order parameter at the anterior end of the right PSM x,. The horizontal broken line indicates the threshold Z. = 0.85 for determining
normal and defective segments in simulations. The resultant stripe pattern is on top. In (A), (B) and (F), the blue and green triangles mark FRS and PLD,
respectively. Red bracket in (F) highlights a segmental defect resulting from vortex in (D). Parameter values for simulations are listed in

Supplementary file 1. (G), (H) Defect size distributions for (G) simulation (n = 800) and (H) embryonic experimental data (n = 134). Defect size indicates
how many consecutive segment boundaries are defective in between FRS and PLD. In (G) and (H), the data for different washout timing shown in
Figure 4 and Figure 1—figure supplement 1 were pooled to make the histograms. The defect size distribution for each washout timing is shown in
Figure 3—figure supplement 3.

The online version of this article includes the following video and figure supplement(s) for figure 3:

Figure supplement 1. Definitions of local phase order and a normal segment boundary in simulations.

Figure supplement 2. Calculation of vorticity.

Figure supplement 3. Typical defect size caused by phase vortices in simulation is consistent with the one observed in embryonic experimental data.
Figure supplement 4. Faster cell mixing reduces PLD whereas it does not influence FRS.

Figure supplement 5. Dependence of FRS and PLD on the PSM length in simulations.

Figure supplement 6. Dependence of FRS and PLD on PSM advection pattern in simulations.

Figure supplement 7. PSM radius r influences both FRS and PLD.

Figure supplement 8. Coupling strength k influences both FRS and PLD.

Figure supplement 9. Dependence of desynchronization and resynchronization on phase noise intensity Dy.
Figure supplement 10. Weak dependence of FRS and PLD on the shape parameter k of the frequency profile.
Figure supplement 11. Weak dependence of FRS and PLD on the torus radius for the tailbud R.

Figure 3—video 1. Resynchronization simulation in a constant PSM tissue.
https://elifesciences.org/articles/61358#fig3video’

Simulation results 2. Dependence of FRS and PLD on each tissue
parameter

These results show that the model captures the intermingling of normal and defective boundaries
frequently observed in the early washout experiments, but can the model also capture the axial dis-
tribution of FRS and PLD observed in the late washout experiments, thereby joining these observa-
tions into a coherent picture of resynchronization across developmental stages?

The finding that transport of local phase patterns across the tissue can influence segment recov-
ery suggests that in addition to local intercellular interactions, tissue level parameters may also be
important. Previous experimental studies showed that the PSM length becomes shorter as segments
are added (Soroldoni et al., 2014, Gomez et al., 2008). Convergent extension by cells in the ante-
rior part of the tissue contributes to advection pattern in the PSM at early developmental stages
(Yin et al., 2008). At later developmental stages, cellular flows from the tissues dorsal to the tailbud
change the advection pattern (Lawton et al., 2013, Mongera et al., 2018; Steventon et al., 2016).
These complex rearrangements are represented in our model in a simplified manner by the advec-
tion profile. Thus, several lines of experimental data support changes in the PSM length and its
advection pattern, and other properties may also vary during development. We therefore studied
how the FRS and PLD depend on each of the tissue parameters in the physical model. We begin by
shifting a given single parameter to a new constant value, while leaving the others unchanged for
the simulation, Table 1 and Figure 3—figure supplements 4-11, and return to the time-dependent
cases in the next section. Simulations were started from complete random initial phases as in Fig-
ure 3. We computed FRS and PLD over 100 different realizations of simulations and the results are
summarized in Table 1. See Materials and methods for the quantification of FRS and PLD in
simulations.

We found that the speed of cell mixing at the tailbud, PSM length L and the cell advection pat-
tern in the PSM did not affect FRS, whereas they strongly affected PLD, Figure 3—figure supple-
ments 4-6. Faster cell mixing in the tailbud reduced PLD, Figure 3—figure supplement 4, because
it prevented the formation of persistent phase vortices at the tailbud. The PSM length and cell
advection pattern determined the time taken for a phase vortex to reach the anterior end of the
PSM. Longer PSM increased PLD because a phase vortex needed more time to arrive at the anterior
end by the cell advection, Figure 3—figure supplement 5. Cell advection underlies the transport of
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Table 1. Dependence of FRS and PLD on each tissue parameter.
These results were obtained with simulations where all the tissue parameters were constant over
time.

Influence Tissue parameters

Change in only PLD PSM length, cell mixing, advection pattern

Change in only FRS None

Change in both FRS and PLD Coupling strength, PSM radius (tube radius)

No or weak effect Frequency profile, tailbud size (torus radius), phase noise intensity

phase vortices, Figure 2C and Figure 3—figure supplement 6. If cell advection was slower at the
posterior part of the PSM, PLD became larger because vortices stayed longer at the posterior part,
Figure 3—figure supplement 6B. In contrast, if cell advection was faster at the posterior part, PLD
became smaller due to faster transport of phase vortices to the anterior part, Figure 3—figure sup-
plement 6B. Thus, these parameters are important for understanding the new phenotype, because
each can increase the difference between FRS and PLD, producing the intermingled defects
observed experimentally.

In contrast, the PSM radius r and the coupling strength between neighboring oscillators kg influ-
enced both FRS and PLD, Figure 3—figure supplements 7 and 8. Smaller PSM radius r decreased
FRS and PLD, Figure 3—figure supplement 7. Smaller cell number at each position in the PSM with
a smaller radius r allowed local coupling to more rapidly generate a synchronized domain as large as
the tissue diameter, leading to a normal segment. Larger values of k¢ reduced FRS and PLD, Fig-
ure 3—figure supplement 8. A larger coupling strength reduced the time for local order to form,
including vortex patterns. As a result, the last-formed vortex departed the posterior PSM earlier,
decreasing PLD.

Coupling keeps phase differences between neighboring oscillators in check. There are two sour-
ces of local phase fluctuations in the model: (i) the noise term in individual phase dynamics and (ii)
the addition of new cells with random phase values. Desynchronization simulations, where the cou-
pling between cells was absent, demonstrated that the addition of new cells alone was enough to
disrupt the wave pattern and compromise the integrity of segment boundaries, Figure 3—figure
supplement 9. Additionally, a larger phase noise intensity further contributed to a faster decay of
the pattern. However, in resynchronization simulations with coupling, both FRS and PLD only weakly
depended on the noise intensity for biologically realistic values, Figure 3—figure supplement 9.

Finally, we found that the shape of frequency profile and the torus size for the tailoud R did not
influence either FRS or PLD, Figure 3—figure supplements 10 and 11. Note that there was no
parameter that influenced only FRS, Table 1. In summary, FRS was determined by parameters that
influence local synchronization of oscillators. PLD, on the other hand, was influenced by parameters
that control local synchronization, formation of phase vortices, and their arrival at the anterior end of
the PSM.

Simulation results 3. Prediction of PLD from DAPT washout timing,

PSM shortening and changing advection pattern

In the previous section, we considered constant values of parameters defining coupling and tissue
properties. However, as noted above, some features like PSM length vary during development on
timescales that may be relevant for resynchronization (Soroldoni et al., 2014, Gomez et al., 2008,
Jorg et al.,, 2015). To further investigate whether the early and late segmentation phenotypes
shown in Figure 1 could result from a common underlying set of processes, we introduced the wash-
out process into the model, and examined the effect of different washout times in simulations in
which tissue properties changed over the course of the simulation.

To model differences in timing of DAPT washout, we started with coupling strength «(r) = 0 for t
< twash-our and then switched on coupling at t = t,ash-our. We assigned random phases to the oscilla-
tors in the model as an initial condition, assuming that all DAPT treatments completely desynchron-
ized oscillators, as above. Hence, the phase disordered state lasted until t = t,.shour and
resynchronization begun at that time. We performed 100 realizations of simulations for each washout
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Figure 4. Gradual transition from early to late washout boundary phenotypes captured by the physical model. (A-
C) Dependence of times to FRS and PLD on DAPT washout time for different conditions in simulations. (A)
Constant tissue where all the tissue parameters remain unchanged during a simulation. (B) PSM length becomes
shorter with time. All the other parameters are constant. See also Figure 4—video 1. (C) Cell advection pattern
changes at 9 somite stage (ss). Before 9 ss, the strain rate is larger in the anterior than posterior PSM. After 9 ss,
the strain rate becomes larger in the posterior PSM. See also Figure 4—video 2. All the other parameters are
constant. The box-whisker plots indicate 5, 25, 75, and 95 percentiles. The white bars mark the median. In (B) and
(C), the gray dotted lines mark the medians of FRS and PLD in the constant tissue shown in (A). (D) Whole-mount
in situ hybridization for the myotome segment boundary marker gene xirp2a in ~36 hr post-fertilization (hpf)
embryos. DAPT washout time is 9.5 hpf (0 ss; n = 28), 11 hpf (3 ss; n = 22), 12.5 hpf (6 ss; n = 28), 14 hpf (9 ss;

n = 30), and 15.5 hpf (12 ss; n = 26) from top to bottom. Red, blue and green triangles indicate the ALD, FRS, and
PLD, respectively. (E) Dependence of times to FRS and PLD on DAPT washout time. Light blue and green box-
whisker plots indicate 5, 25, 75, and 95 percentiles for embryonic experimental data (exp.). Dark blue and green
box-whisker plots indicate those for simulation data (sim.). The white bars mark the median. The PSM shortening,
change in cell advection pattern and increase in the coupling strength are combined in the model, see also
Figure 4—videos 3 and 4. The lack of information about the formation of final segments in embryos precludes
simulations for the latest washout (12 ss), see the text. (F) Spatial distribution of segment boundary defects.
Symbols indicate embryonic experimental data and lines indicate simulation data. Grey dashed vertical line across
panels is a guide to the eye. In (A-C), (E), results of 100 realizations of simulations with each washout timing are
Figure 4 continued on next page
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Figure 4 continued

plotted. Parameter values for numerical simulations are listed in Supplementary files 1 and 2. Source data for (D-
F) is available in Figure 1—source data 1.
The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. PSM shortening decreases time to PLD whereas it does not affect time to FRS.

Figure supplement 2. Change in advection pattern increases the time to PLD for earlier DAPT washout.

Figure supplement 3. Dependence of embryonic FRS and PLD on DAPT washout time.

Figure supplement 4. Decrease in the PSM radius r over developmental stages reduces both time to FRS and
PLD.

Figure supplement 5. Decrease in time to FRS by an increase in the coupling strength over developmental stages
in simulations.

Figure supplement 6. Trajectories of phase vortices in the physical model including PSM shortening, changes in
advection pattern and coupling strength.

Figure supplement 7. ALD, FRS, and PLD calculated with the spatial distribution of defective segments.

Figure supplement 8. Dependence of single and double defects on DAPT washout timing.

Figure 4—video 1. Resynchronization simulation with the changes in PSM length.
https://elifesciences.org/articles/61358#figdvideo

Figure 4—video 2. Resynchronization simulation with the changes in PSM advection pattern.
https://elifesciences.org/articles/61358#figdvideo2

Figure 4—video 3. Resynchronization simulation with the changes in PSM length, advection pattern and value of
coupling strength.

https://elifesciences.org/articles/61358#figdvideo3

Figure 4—video 4. Resynchronization simulation with the changes in PSM length, advection pattern and value of
coupling strength.

https://elifesciences.org/articles/61358#figdvideod

time tyash-our» and recorded the developmental time taken from washout to observation of FRS and
PLD, termed the time to FRS (FRS — t, ash-ou) and time to PLD (PLD — tyash-out)-

In the absence of tissue shortening or a changing cell advection pattern, the times to FRS and
PLD were not affected by washout time, as expected, Figure 4A. We analyzed the consequence of
PSM shortening on PLD while keeping all the other parameters constant over time, Figure 4B, Fig-
ure 4—figure supplement 1 and Figure 4—video 1. For simplicity, we assumed that the PSM
length decreased linearly over time in the simulation, Figure 4—figure supplement 1A. PSM short-
ening decreased the time to PLD for later washout times, Figure 4B, because in a shorter PSM at
later somite stages phase vortices reached the anterior end of the PSM more quickly, Figure 4—fig-
ure supplement 1B. With higher speed of PSM shortening, the time to PLD after washout became
shorter, Figure 4—figure supplement 1C-F. As expected from the independence of FRS on con-
stant PSM length, PSM shortening did not affect FRS, Figure 4B and Figure 3—figure supplement
5.

We next analyzed the effect of a change in cell advection pattern on PLD, keeping all the other
parameters constant over time, Figure 4C, Figure 4—figure supplement 2 and Figure 4—video 2.
In the model, we represented the change in the advection pattern in a simplified way such that at
earlier somite stages (t < tg) the local strain rate was larger in the anterior region of the PSM,
whereas the strain rate became larger in the posterior region at later stages (t > t;), Figure 4—fig-
ure supplement 2A. We found that such a change in advection pattern increased time to PLD for
earlier DAPT washout, Figure 4C. If the change in advection pattern occurred at later developmen-
tal stages, time to PLD for later washouts was also increased, Figure 4—figure supplement 2D-G.
As described above, the cell advection pattern in the PSM underlies the transport of phase vortices.
When advection did not occur in the posterior PSM at earlier somite-stages, the movement of phase
vortices relative to the tailbud was slowed in that region, delaying PLD for earlier washout timing,
Figure 4—figure supplement 2A-C. As expected from the independence of FRS on constant
advection patterns, a change in pattern did not affect FRS, Figure 4C and Figure 4—figure supple-
ment 2D-G.

Taken together, these results predict that the changes in tissue length and cell advection pattern
observed in the embryo over developmental time may have an impact on resynchronization
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dynamics, reflecting in the decrease in difference between FRS and PLD. Thus, changing tissue prop-
erties may explain the difference between early and late washout phenotypes.

Embryonic segment recovery in zebrafish depends on timing of DAPT
washout

To test the theoretical predictions about the influence of tissue-level changes on the time from wash-
out to FRS and PLD over developmental stages, we next performed DAPT washout experiments, as
illustrated in Figure 4D, in which DAPT was removed at different times (tyash-ou) between 9.5 and
15.5 hpf. We visualized the resulting distribution of segment defects along the axis on both left and
right-hand sides of the embryo and identified the FRS and PLD, arrowheads in Figure 4D.

We found that FRS and PLD both increased with later washout times, Figure 4—figure supple-
ment 3. In accordance with the prediction of the model, the time to PLD (PLD - t,,.sh-0ut) decreased
gradually over developmental time, Figure 4E. In contrast, the experimentally observed gradual
decrease in time to FRS (FRS - t,ash.ou) in Figure 4E was not expected from the simulations,
Figure 4B,C. After washout, it took ~13 segments to observe FRS for an earlier washout time,
whereas it took eight segments for a later washout time. Embryos yielded more scattered, non-con-
tinuous defects with earlier than with later washouts, Figure 4D and Figure 1—figure supplement
1C-G.

Combined, these results revealed the transition between early and late washout segmentation
phenotypes. The observed decrease in the time to PLD was qualitatively consistent with the theoreti-
cal predictions. However, the expectation that FRS would be independent of washout timing, based
on its insensitivity to global tissue properties of PSM shortening and changing cell advection pat-
terns in the model, was not observed experimentally. We therefore hypothesized that FRS might
instead be affected by mechanisms that determine the level of local synchronization.

Prediction of embryonic FRS from simulated DAPT washout timing and
increasing coupling strength

Local synchronization is thought to be driven by local intercellular interactions (Delaune et al., 2012;
Horikawa et al., 2006; Jiang et al., 2000; Riedel-Kruse et al., 2007). The intensity of such local
interactions is described in the theory by the coupling strength ko between neighboring oscillators.
As discussed previously, coupling strength can strongly influence FRS, Table 1 and Figure 3—figure
supplement 8. Although FRS can also be influenced by the PSM radius, which becomes smaller with
developmental stage, the effect of change in the PSM radius was weaker than the coupling strength
within the biologically plausible range, Figure 3—figure supplement 7 and Figure 4—figure sup-
plement 4. Therefore, we tested whether a changing coupling strength could describe the depen-
dence of time to FRS on tyash.our Observed in experiments.

For simplicity, we assumed that, in the absence of any perturbation, the coupling strength
increased as a linear function of time in the simulation, Figure 4—figure supplement 5A. An
increase in coupling strength over developmental stages in the embryo could be caused by an
increase in the abundance or activity of Delta and Notch proteins in cells (Wright et al., 2011;
Liao et al., 2016, Haddon et al., 1998; Westin and Lardelli, 1997), an increase in the contact sur-
face area between neighboring cells, or some other mechanism.

A temporal increase in coupling strength in the simulation, allowing it to double by ~15 ss, led to
a decrease in the time to FRS that reproduced the experimental results, Figure 4—figure supple-
ment 5B. The time to PLD also decreased with t,.sh.out- However, the magnitude of reduction in
time to PLD was similar to that in time to FRS, meaning that this effect would not be expected to
contribute to the observed experimental reduction in the difference between PLD and FRS. These
results indicate that the increase in the coupling strength over somite stages alone is sufficient to
realize the dependence of time to FRS on t,ash.oun Whereas the global tissue parameters contribute
to the behavior of PLD observed in experiments.

Uriu, Liao, et al. eLife 2021;10:e61358. DOI: https://doi.org/10.7554/eLife.61358 14 of 39


https://doi.org/10.7554/eLife.61358

eLife

Developmental Biology | Physics of Living Systems

Embryonic segmentation defect patterns are captured in simulations by
PSM shortening, change in cell advection pattern and an increase in
coupling strength

Finally, we simulated a resynchronizing PSM with all the three effects described above combined:
the changes in PSM length and cell advection pattern over time were imposed by existing experi-
mental data, the change in coupling strength was motivated by the results in the previous section,
and all other parameters remained unchanged, Figure 4E, Figure 4—figure supplement 6 and Fig-
ure 4—videos 3 and 4.

The beginning and the end of somitogenesis are special. The segmentation clock becomes active
and rhythmic before somitogenesis starts, during epiboly (Riedel-Kruse et al., 2007). At this stage,
the embryo undergoes dramatic morphological changes that we do not describe with the current
model, which instead describes the PSM shape from 0O ss onwards. For the end of somitogenesis,
there is a lack of quantitative information about the formation of the final segments that precludes
constraining the theory at this late stage. Therefore, we simulated DAPT washout times from the
beginning of somitogenesis 0 ss (tyash-out = 9-5 hpf) until 9 ss (tyash-out = 14 hpf), where the model
could be well parametrized and provided a fair description of tissue shape changes.

The requirement for many realizations to compute FRS and PLD precluded application of stan-
dard fitting procedures for determining parameter values in the model. Instead, we used parameter
values close to those observed in embryos. We found a decrease in time to PLD with the magnitude
of the decrease greater than time to FRS, as observed in the experimental data, Figure 4E. Inclusion
of the PSM shortening and change in cell advection pattern in simulations recapitulated the experi-
mental observation that the difference between PLD and FRS became smaller with later washout
time. PSM shortening decreased time to PLD, without affecting FRS, thereby reducing the difference
between PLD and FRS for later washout time, Figure 4B. The slower cell advection in the posterior
PSM at earlier time in simulations delayed PLD without affecting FRS, in principle enlarging the dif-
ference between PLD and FRS for earlier washout time, Figure 4C.

In summary, a change in the coupling strength was sufficient to reproduce the behavior of FRS.
Combined effects of the PSM shortening and cell advection pattern were the dominant factors that
generated the behaviors of PLD in simulations. Thus, the physical model quantitatively reproduced
the behaviors of FRS and PLD, suggesting that the physiologically plausible changes in these tissue
parameters may underlie behaviors observed in the experiment.

Predicted segment defect distribution confirmed in zebrafish
resynchronization assay

We showed that the model could capture the onset of segment boundary recovery and its comple-
tion, quantified by FRS and PLD, respectively. However, segment recovery is a complex gradual pro-
cess reflected in intermingled segment defects. Therefore, we further tested whether the model
captured this gradual recovery process between its onset and completion with data that were not
used to develop it: the spatial distribution of segment boundary defects along the embryonic body
axis.

We used the same parameters listed in Supplementary file 2 that we established to describe
FRS and PLD, Figure 4E. Since simulations started from completely random initial phases, the initial
fraction of defective segments was one. The fraction of defective segments decreased from one to
zero along the body axis after DAPT washout, shifting posteriorly for later t,ash.oun Figure 4F. We
then compared the simulated axial distribution of defective segments with embryonic DAPT washout
experiments. We restricted the comparison to the washout phase of the experiment. We counted
the number of defective segments along the axis in embryos and defined the fraction of defective
boundaries at each segment position, Figure 4F. The distributions of defective segments were simi-
lar between left and right sides of embryos, Figure 4—figure supplement 7A. After washout, the
fraction of defective segment boundaries gradually decreased, and eventually it became zero, sug-
gesting that synchronization was fully recovered at that time. As DAPT was washed out at increas-
ingly later times, defective segment boundaries continued to more posterior locations, in agreement
with simulations, Figure 4F.

From this distribution in embryos, we could compute ALD, FRS, and PLD using a probabilistic the-
ory that assumed left-right independence, see Appendix and Figure 4—figure supplement 7. This
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distribution also explained the ratio of single defects, where either the left or right segment was
defective at a segment locus, to double defects, where both left and right segments were defective,
Appendix and Figure 4—figure supplement 8. This agreement between experimental data and
probability theory for the fraction of single defects indicates that recovery occurred independently
between left and right PSMs, Figure 4—figure supplement 8C. In summary, the physical model pre-
dicted the segment defect distribution, providing a thorough description of synchrony recovery.

Discussion

The segmentation clock produces dynamic patterns that determine the formation of vertebrate seg-
ments. This multicellular clock, consisting of thousands of cells that make the PSM and tailbud, pro-
duces a kinematic wave pattern. The integrity of this wave pattern relies on local synchronization of
the oscillators mediated by Delta-Notch cell-cell signaling. Our current view of synchrony is largely
informed by desynchronization experiments in which cells were uncoupled by interfering with Delta-
Notch signaling, resulting in a loss of wave patterns. In contrast, resynchronization, where oscillators
re-establish coherent rhythms from a desynchronized state, can be used to probe how tissue-scale
collective patterns arise from local interactions during morphogenesis.

In this study, we applied a combination of experiments and theory to explore the recovery of nor-
mal body segments during the resynchronization of oscillators. Our surprising experimental discov-
ery was regions of normal and defective segments intermingled along the body axis following DAPT
washout. Since we seek to capture pattern recovery at multiple scales, our new physical model draws
from previous work describing cellular oscillations with an effective phase variable together with
local intercellular interactions (Uriu et al., 2017; Morelli et al., 2009), as well as larger scale mechan-
ics such as cell movements (Uriu et al., 2017; Uriu and Morelli, 2014) and tissue shape changes
(Jorg et al., 2015). One of the novelties of this work is to combine these descriptions in a coherent
framework for the first time. The second key novelty is the framework itself, which uses tissue geom-
etry linked with changing mechanical and biochemical properties, such as cellular advection profile
and coupling strength.

The choice of a phase description for the cellular oscillator is motivated by its generality and by
prior success in analyzing coupling in the segmentation clock (Riedel-Kruse et al., 2007; Uriu et al.,
2017; Herrgen et al., 2010). Core genetic components of the cellular oscillator have been identified
and their dynamics can be described by detailed delay models (Schréter et al., 2012; Lewis, 2003;
Monk, 2003; Horikawa et al., 2006; Ay et al., 2013; Hirata et al., 2004; Jensen et al., 2003), but
since we do not measure any of the components in these networks, the choice of phase oscillators
captures the core oscillatory behavior without additional underconstrained parameters
(Kotani et al., 2012; Kotani et al., 2020). Thus, although we do not anticipate any qualitative differ-
ences between these modeling approaches, future work could include such a detailed description of
oscillatory genes, potentially allowing a more direct connection to mutant conditions or imaging
experiments.

The model qualitatively explains the formation of these intermingled defective segments by the
emergence of persistent phase vortices in the posterior PSM and their advection through the tissue
to the anterior. The intermingled defects span 1 or 2 segments in the embryonic data, but are not
multiples of the local segment length. In simulations with the parameter set we determined here,
the defects have the same characteristics. The vortices arise from the local coupling of desynchron-
ized oscillators and the advection is a consequence of axis elongation. As vortices arrive at the ante-
rior end, their mis-oriented local phase patterns result in segment defects, before global pattern
recovery is achieved. Thus, the intermingled regions are explained by the intermittent arrival of vorti-
ces with a size of approximately one segment. Note that vortices only form during resynchronization,
being seeded by the random phases of the desynchronized oscillators and requiring local coupling,
and not during desynchronization, which starts by the loss of coupling in a population with a locally
smooth distribution of phase.

Importantly, for quantitative comparison between simulations and experiments, we needed to
introduce observables such as an index of off-lattice vorticity, and a local order parameter to distin-
guish normal and defective segments. It was also necessary to incorporate global features of the
PSM and tailbud that are observed in the embryo, such as changing tissue length, a change in the
advection pattern and a gradient of cell mixing. To achieve a description of faster recovery at later
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developmental stages, as indicated by shorter time to embryonic FRS, our model includes a time-
dependent increase in effective coupling strength. This is plausible from existing data of Delta and
Notch gene expression, for example, but remains an expectation of the current work. Nevertheless,
simulations of the model confirm that stronger local coupling leads to faster resynchronization and
recovery of the gene expression pattern, as expected from previous experimental work (Liao et al.,
2016). To reduce computational complexity and time, in our model we neglected the coupling time-
delays that are thought to occur in the segmentation clock (Herrgen et al., 2010; Oates, 2020;
Shimojo and Kageyama, 2016; Yoshioka-Kobayashi et al., 2020). We do not anticipate their inclu-
sion would affect our main results, since other systems with time-delayed coupling exhibit vortex for-
mation (Jeong et al., 2002), although a quantitative description of some phenotypes may need to
account for coupling delays in Delta-Notch signaling.

Because our data was captured from snapshots at a late developmental stage, for simplicity we
assumed a constant segment length. However, it has been long recognized that segment length at
the time of formation gradually decreases in the posterior of all extending vertebrate embryos
(Gomez et al., 2008; Schréter et al., 2008). These early length differences are gradually reduced
and eventually eliminated by subsequent growth in the zebrafish (Lleras Forero et al., 2018). It is
possible that a quantitative description should also take the phenomenon of changing segment
length into account. This would require a timelapse analysis of the forming segments during pertur-
bations and a greater understanding of the mechanism underlying the determination of and change
in segment lengths during development (Ishimatsu et al., 2018; Simsek and Ozbudak, 2018), and
could be accommodated in the framework of the current model. In summary, the formulation of the
model allows a quantitative comparison to experimental data and a phenomenological understand-
ing of pattern recovery.

Vortices could arise in other models of the segmentation clock with similar local interactions
(Uriu et al., 2017; Morelli et al., 2009; Uriu and Morelli, 2014; Hester et al., 2011). Indeed, vortex
formation is a common feature of systems that can be described with locally coupled polar variables,
in both excitable and oscillatory media (Mikhailov and Showalter, 2006). These include biological
systems such as cAMP patterns in aggregating populations of Dictyostelium cells (Durston, 2013)
and spiral patterns in heart tissue (Winfree, 1980), planar cell polarity (Burak and Shraiman, 2009),
chemical systems like the BZ reaction (Win-
free, 1980; Kuramoto, 1984; Winfree, 1972)
and in physical systems generally (Koster-
litz, 2016; Kosterlitz and Thouless, 1973). In
unconstrained and homogeneous oscillatory
media, vortices can grow to system-size length
scales and are very stable on their own (Mikhai-
lov, 1990). However, the effect on size and sta-
bility of concurrent features in our model such as
the particular geometrical confinement, as well as
the existence of a frequency profile and non-uni-
form advection has not been examined. Thus, the
relationships between vortex size, frequency of
arrival, orientation and the underlying processes
such as coupling strength and tissue geometry in
our model are interesting topics for future
exploration.

Recent experiments using cells isolated from
mouse tailouds and reaggregated to form so- Video 1.Formation of phase vortices in a
called emergent PSM have shown the emergence resynchronization simulation in a cuboid domain,
of striking wave patterns that depend on Notch 110 110 x 55 “ma‘ The color indicates (1 + sin6;)/2.
signaling, suggesting that local interactions can The number of osc'|||ato'rs is N = 998. Frequﬂmes of all

. . the oscillators are identical, ® = 0.2094 min~"'. Values of
drive large-scale dynamical features

L. the other relevant parameters in Equation (1) in the
(Hubaud et al, 2017; Tsiairis and Aulehla, supporting information are: kg = 0.07 min~", ks =0 min~
2016). The relationship between such features ! Dy=0.0013 min™", = 8.71 um min~", d. = 11 pm,
and normal versus defective segment boundary |;, = 20 um min~", and r, = 1 um.

formation remains to be explored. Since phase https://elifesciences.org/articles/61358#video1
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vortices arise naturally in systems of locally coupled oscillators starting from disordered initial condi-
tions, Video 1, we predict that these structures will form also in mammalian PSM tissue culture sys-
tems (Hubaud et al., 2017; Tsiairis and Aulehla, 2016; Diaz-Cuadros et al., 2020; Matsuda et al.,
2020). The framework of our model with different geometries will facilitate analysis of dynamics in
these and other collective cellular systems with both local interactions and tissue-level deformations.

In simulations, the kinematics of phase vortices across the PSM is determined by global tissue
properties, including the PSM length and its cell advection pattern. In this way, the recovery of a
gene expression wave pattern across the PSM and subsequent normal boundary formation is set
both by the timescales of local synchronization through intercellular interactions, and also by those
of morphological processes. In addition, this result implies that the quantification of global tissue
parameters will be necessary to obtain quantitative agreement between theory and experiment.
Temporal changes in PSM length have been measured in various species (Soroldoni et al., 2014,
Gomez et al., 2008; Ishimatsu et al., 2018), and cell advection patterns across the PSM have been
investigated (Lawton et al., 2013, Mongera et al., 2018, Steventon et al., 2016; Bénazéraf et al.,
2010). Involvement of these global tissue properties discriminates the resynchronization of the seg-
mentation clock from its desynchronization, which is dominated by local cellular properties such as
noise in clock gene expression (Jiang et al., 2000; Riedel-Kruse et al., 2007; Keskin et al., 2018;
Jenkins et al., 2015). Furthermore, morphological tissue development distinguishes the synchroniza-
tion of the segmentation clock from that of other biological oscillator systems in spatially static tis-
sues, such as the suprachiasmatic nucleus in the mammalian circadian clock (Webb and Oates,
2016).

Numerical simulations of the physical model showed that the first recovered segment FRS and
the posterior limit of defects PLD contain different information about resynchronization. From FRS,
we estimated properties of local synchronization, such as the coupling strength between genetic
oscillators. In contrast, PLD is influenced by global tissue properties, such as tissue length and cell
advection pattern, that determine the transport of persistent mis-oriented phase patterns. Hence, it
is important to choose these measures appropriately depending on the question addressed. For
example, recent studies suggested that the level of cell mixing observed in the tailoud promotes
synchronization of genetic oscillation (Uriu et al., 2017). This effect appears in PLD, but not in FRS,
because the elevated mixing in the tailbud prevents formation of the local phase patterns at the pos-
terior PSM. On the other hand, FRS can be a better measure for the coupling strength (Liao et al.,
2016), because it is less affected by the other tissue parameters than PLD.

Based on the new theoretical framework developed in this study, we have proposed that the dis-
tinctive intermingling of well-formed and defective segments seen during recovery arises from per-
sistent phase vortices. Furthermore, we expect the kinetics of phase vortex formation and transport
to change throughout development. We have presented quantitative experimental evidence on the
size of defects, the shape of the spatial defect distribution and the left-right independence of
defects that supports these theoretical predictions. The occurrence of vortices and the role that
these transient patterns have in causing intermingled defects remain to be directly observed. Such
transient patterns would be difficult to recognize in snapshots of the segmentation clock due to the
restricted system geometry, the discrete character of cellular tissue, and the difficulty of determining
phase from a single time point, and consequently may have been overlooked in previous experi-
ments. However, they should be within reach of techniques for perturbation of cell coupling com-
bined with live imaging over the long durations required to observe them in the embryo (Yoshioka-
Kobayashi et al., 2020; Wan et al., 2019). Such experiments will be challenging nevertheless, as
quantitatively testing the model will require combining (i) imaging, segmentation and tracking of sin-
gle cells within the embryo across appropriate developmental stages; (i) an approach to reliably esti-
mate phase from segmentation clock transgenic reporter signals with amplitude fluctuations; (iii)
data that allows the calculation of vorticity; and (iv) a method of correlating the passage of vortices
with the resulting intermittent segment defects in the same embryo. The use of mutants with
reduced coupling strength (Liao et al., 2016) may increase the time interval over which vortices are
produced, and may thus facilitate their observation.

In conclusion, our study of resynchronization has revealed how the segmentation clock can be
influenced by global developmental processes such as tissue length change, cell advection pattern
and cell movement, as well as local coupling strength between cells. Our findings suggest that seg-
mental pattern recovery occurs at two scales: local pattern formation and transport of these patterns
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through tissue deformation. Other developing systems such as Dictyostelium colony aggregation
show similar dynamics, with individual motile cells interacting via local signaling to generate spiral
waves that guide the formation of large multicellular fruiting bodies (Durston, 2013). In the case of
the elongation of the Drosophila pupal wing, local cell rearrangements within the epithelium com-
bine with tissue-level pulling forces applied by a neighboring tissue to form the final pattern
(Etournay et al., 2015). The hallmark of these systems is an interplay between locally driven interac-
tions and global morphological changes, pointing to a common principle of pattern dynamics within
developing tissues.

Materials and methods

Animals and embryos

Zebrafish (Danio rerio) adult stocks were kept in 28°C fresh water under a 14:10 hr light:dark photo-
period. Embryos were collected within 30 min following fertilization and incubated in petri dishes
with E3 media. Until the desired developmental stages (Kimmel et al., 1995), embryos were incu-
bated at 28.5°C. For whole mount in situ hybridization, PTU (1-phenyl 2-thiourea) at a final concen-
tration of 0.003% was added before 12 hr post fertilization (hpf) to prevent melanogenesis. All
wildtypes were AB strain.

DAPT treatment and washout

DAPT treatment was carried out as previously described (Riedel-Kruse et al., 2007). 50 mM DAPT
stock solution (Merck) was prepared in 100% DMSO (Sigma) and stored in a small volume at —20°C.
Embryos in their chorions were transferred to 12-well plates at 2 hpf in 1.4 ml E3 medium with 20
embryos per well. 50 uM DAPT in E3 medium was prepared immediately before the treatment. To
prevent precipitation, the DAPT stock solution was added into E3 medium while vortexing, and then
filtered by 0.22 um PES syringe filter (Millipore). DAPT treatment was initiated by replacing E3
medium with E3/DAPT medium at desired stage. At 9.5 (0 somite stage: ss), 11 (3 ss), 12.5 (6 ss), 14
(9 ss), or 15.5 hpf (12 ss), DAPT was washed out at least twice with fresh E3 medium + 0.03% PTU.
Embryos were dechorionated and fixed at 36 hpf. All experimental steps were incubated at 28.5°C,
except for short operations, for example, washing out, which were at room temperature.

Whole-mount in situ hybridization and segmental defect scoring

In situ hybridization was performed according to previously published protocols (Thisse and Thisse,
2008). Digoxigenin-labeled xirp2a (clone: cb1045) riboprobe was as previously described (Riedel-
Kruse et al., 2007). Stained embryos were visually scored under an Olympus SZX-12 stereomicro-
scope and images were acquired with a Qlmaging Micropublisher 5.0 RTV camera. Defective seg-
ment boundaries were scored as previously described (Riedel-Kruse et al., 2007), with the addition
that left and right (LR) sides of the embryo were scored and assessed separately. Since boundary for-
mation in unperturbed embryos is extremely reliable, with errors occurring in less than 1 in 1000
embryos, any interruption or fragmentation to the boundary, and/or alterations in spacing, or align-
ment was recorded as a defect. The following observables were collected for each LR side: an ante-
rior limit of defects (ALD), that is, the position of the first defective boundary; a posterior limit of
defects (PLD), that is, the position of the last defective boundary; and the first recovered segment
(FRS), that is, the position of the first normal segment after the segment 9, as described below.

Each segment has anterior and posterior boundaries. For the segment i (i = 1, 2, 3,. .,), the ante-
rior and posterior boundaries were numbered as i — 1 and i, respectively, Figure 1—figure supple-
ment 1A. Both ALD and PLD were numbered using the posterior boundary of the defective
segment. For example, if the jth segment boundary was the last defective boundary, PLD was num-
bered as j. FRS was numbered using the anterior boundary of the recovered segment. For example,
if the kth segment boundary was the first normal boundary after washout, the first normal segment
was segment k, and FRS was numbered as k — 1, Figure 1—figure supplement 1A. With this defini-
tion of FRS, if the first normal segment boundary after the washout was located immediately after
the last defective boundary, the difference between PLD and FRS, PLD - FRS, was 0, Figure 1—fig-
ure supplement 1C-G. Definitions of FRS and PLD for simulation date were the same as those for
experimental data written here, and described in a later section.

Uriu, Liao, et al. eLife 2021;10:e61358. DOI: https://doi.org/10.7554/eLife.61358 19 of 39


https://doi.org/10.7554/eLife.61358

eLife

Developmental Biology | Physics of Living Systems

Physical model of PSM and tailbud cells

3D tissue geometry

We model the PSM and tailbud as a U-shaped domain in a 3D space, Figure 2—figure supplement
1A. The left and right PSMs are represented as two tubular domains Q; and €,, respectively with
radius r. The tailbud is described as a half toroidal domain Q; with a larger radius R and smaller
radius r.

We implement this U-shaped domain in the spatial coordinate system as follows. The x-axis is
along the anterior-posterior axis of the PSM. We set the initial position of the anterior end of the
PSM at x = 0 and the posterior tip of the tailbud at x = L,. We denote the position of the anterior
end of the PSM at time ¢ as x,(¢), so x,(0) = 0. The length of the tissue is L = L, — x,. X, denotes the
position of the center of torus core curve. The position of posterior tip of the tailbud can then be
written as L, = X, + R + r. The y-axis points along the left-right axis and z-axis along the dorsal-ven-
tral axis of an embryo.

Reference frames: Lab reference frame

To describe cell movements and tissue deformations it is important to define a reference frame. A
natural choice may be a reference frame which is at rest in the Lab, termed a Lab reference frame.
For instance, the origin of x-axis can be set at the initial position of the anterior end of the PSM at

t = 0. We write the position of the posterior tip of the tailbud in this Lab reference frame as x£L>(t),
where superscript (L) indicates variables in the Lab reference frame. Because an embryo elongates
posteriorly, dx,(L)(t)/dz>O. The position of anterior end of the PSM in the Lab reference frame x{" (z)
also changes over time due to the formation of new segments. In this reference frame, PSM length
is L(r) = 2" (1) — x{U) (). The rate of change of PSM length is dL(t)/dt = dx\") (1) /dt — dx(") (1) /dt. PSM
length is constant if the velocity of the tailbud is the same as that of the anterior end of the PSM,
that is dx") (¢) /dt = dx\")(r) /dt, but it will be changing over time whenever dx\" (1) /dt # dx") (¢) /dt. In
this Lab reference frame, the position of a cell x)(r) may change both due to tissue elongation and
due to tissue deformations such as local tissue stretch.

Reference frames: tailbud reference frame
In this study however, we mostly use the tailbud reference frame (t) unless noted otherwise. In this
reference frame we measure the position of cells and tissue landmarks from the tailbud. The position

of the tailbud is fixed at xit)(z) =0 for all time ¢, so dxﬁt)(t)/dt = 0. The position of a tissue landmark [

is x,“) (1) = xEL)(t) — P (¢). In this tailbud reference frame, the velocity of a landmark is zero if it moves
with the same velocity as the tailbud in the Lab frame. In other words, a tissue landmark moves rela-
tive to the tailbud when their velocities in the Lab reference frame are different. The positions of
cells in the tailbud reference frame may change over time, and this will enter as cell advection in the
cell equations of motion as we describe below. In the following, we omit the superscript (t) for the
tailbud reference frame to alleviate the notation.

Reference frames: computational implementation

For the implementation of the tailbud frame for numerical simulations, we fix the position of the pos-
terior tip of the tailbud at x = L,. In contrast, cells positions and other tissue landmarks such as the
anterior end of the PSM change over time. We model cell displacement relative to the tailbud as cell
advection in the anterior direction as explained below.

Cell mechanics and equation of motion

We model PSM and tailbud cells as particles in the 3D domain. We denote the number of cells in
the PSM and tailbud at time ¢ as N(r). State variables for these cells are their position x in the
domain, the phase 6 of their genetic oscillators and the unit vector n representing cell polarity for
intrinsic cell movement. Position of cell i at time ¢ is denoted as x;(t) = (xi(1),yi(t),z:(¢))
(i=1,2,3, .., N(). We describe cellular motion by the following over-damped equation based on
the previous study (Uriu et al., 2017):
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where v4(x;) is cell advection from posterior to anterior, vy(x;) represents the speed of intrinsic cell
movement, n;(7) is the cell polarity pointing the direction of intrinsic movement, F(x;,x;) is a physical
contact force between cells i and j, and F,(x;) is a boundary force that confines cells within the
U-shaped domain. We explain each of these terms below.

Elongation, strain rate, and cell advection
To introduce tissue elongation and deformations we first discuss the movement of tissue landmarks
and cells in the Lab reference frame. Then, we switch to the tailbud reference frame where the tissue
elongation results in cell advection from the posterior to the anterior directions.

In the Lab reference frame, segments and cells within do not move. The tailbud, together with

cells at that point, moves away from segments with a velocity VEL). We call elongation to this out-
growth of the tissue. As cells differentiate into a segment, the anterior end of the PSM also moves

after the tailbud, with a velocity vi¥. If this velocity matches that of the tailbud v = VEL), the length

of the PSM remains constant. If this velocity differs from that of the tailbud v £ VEL>, the length of
the PSM changes over time, causing a global tissue deformation. At these PSM ends we have
boundary conditions for the cells velocities: (i) a cell at the tailbud moves with the same velocity as
the tailbud and (i) a cell at the anterior end of the PSM is at rest, like neighboring cells within a seg-
ment, even though the anterior end of the PSM itself is moving in the Lab frame. Within the PSM,
cells are subject to an advection velocity field v(*)(x) that satisfies these boundary conditions. This
velocity field producing internal local deformations is caused by internal strains described below.
The shape of this velocity field determines the kind of local deformations. For example, a linear
velocity field produces uniform deformations, while a non-linear velocity field produces non-uniform
deformations, as the piecewise linear function described below in the implementation.

To see the relation between the velocity field and underlying internal strains, let x;(¢) and x,(7) be
the x positions of cells 1 and 2 at time 7 in the Lab reference frame, where we drop the (L) super-
script for notational convenience. We assume that their positions are close to each other, so the dis-
tance between them Ax(r) = x(¢) — x;(¢) is small. Due to the presence of an advective velocity field,
the velocities of neighboring cells may be different, that is v # vy, with v = dx;/dt = v(x,(t)) and
Vo = dxp/dt = v(x2(t)) = v(x1(r) + Ax(¢)). Thus, during a short time interval Az these cells change their
relative position due to this velocity difference,

Ax(t 4+ At) = xp(t + At) — x; (1 + At) = Ax(t) + (v — vi)At.  Thus, there is a local strain
(Ax(t + At) — Ax(1))/Ax(t) = (Ov/0x)At, where the velocity field gradient (dv/dx) is a local strain rate.
Thus, the advection velocity field effectively describes the presence of local strains and determines
the local tissue deformation. Although such local deformations make cells move apart from each
other along the x-axis, intercellular and boundary forces in Equation (1) constrain cell distances and
we do not observe large density fluctuations due to the velocity field gradient, as can be seen in sim-
ulations. Furthermore, where local cell density fluctuations do happen, cell addition described below
will bring back the density to its average value.

Cell advection patterns relative to the tailbud reference frame

Back to the tailbud reference frame, the velocity field is vt (x) = v(M(x) — viL), which we refer to as

the cell advection pattern v,(x) in Equation (1) and in the main text. We model different advection
patterns of the PSM effectively by changing the spatial derivative of the advection speed in subdo-
mains of the tissue. The advection pattern of the PSM may change at a certain developmental stage
as we discussed in the main text. Below, we model the spatial profile of cell advection speed and its
temporal change. For simplicity, we divide the PSM into two subdomains, namely the anterior PSM
((x — x,)/L<x,) and the posterior PSM ((x —x,)/L>x,), and consider different strain rates dv,/dx for
each domain, Figure 2C. The advection field v,(x) in Equation (1) depends on spatial position along
the anterior-posterior axis x (x, < x < L) and is described as (Figure 2C):
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where X =x —x,, v,>0 and v,>0 are the parameters that determine the advection speed, the super-
script T denotes transposition of the vector, and L is the length of the PSM L =L, —x,. The slope
changes at the position x,(0<x,<1). Thus, x, divides the PSM into anterior and posterior subdo-
mains. Within each domain, the strain rate is uniform, whereas it may be different between these
two domains. The strain rate, given by the magnitude of the spatial gradient of advection speed, is
v, in the posterior PSM domain and (v, —v,(1 —x,))/x, in the anterior PSM domain.

Temporal change in advection pattern

The advection pattern of the PSM in embryos may change at a certain developmental stage. To
model the change in the advection pattern of the PSM, we change the value of v, in Equation (2) at
time 7 = ,. We assume that for 7, advection occurs mostly at the anterior part, v,<v,. For t,, we
assume that advection occurs at the posterior part of the tissue v,>v,.

Gradient of intrinsic cell movement speed

A cell mixing gradient is observed along the anterior-posterior axis of the PSM (Lawton et al.,
2013; Mongera et al., 2018; Mara et al., 2007; Uriu et al., 2017). The degree of cell mixing is
higher in the tailbud and posterior region of the PSM than anterior region. To model the cell mixing
gradient, we assume that the speed of intrinsic cell movement vy(x) in Equation (1) depends on the
spatial position X = x — x, along the anterior-posterior axis (Figure 2B):

1—x\""
1+ (T) ; 3)

where vy is the maximum speed at the posterior tip of the tailbud, X, is the lengthscale of the mobil-

vo(X) = vy

ity gradient, and the coefficient 4 determines the steepness of the mobility gradient, Figure 3—fig-
ure supplement 4A.

Cell polarity

The unit vector n;(r) in Equation (1) represents the polarity of cell i and determines the direction of
intrinsic cell movement. In spherical coordinates, n;(r) = (sin ¢;() cos ¢;(t), sin ¢;(r) sin @; (1), cos ¢;(1))"
with 0 < ¢,(¢) < 7 and 0 < ;(r)<27. We assume random change of cell polarity by letting the polar-
ity angles ¢, and ¢; perform a random walk. The time evolution of n; is described by Langevin equa-
tions for these two polarity angles (Uriu et al., 2017):

de;(t) Dy Wl
doi(t)  \/2Dg&i(1)
dr — sing(t) (4b)

where Dy is the polarity noise intensity. White Gaussian noise &4(1) and &.(1) satisfy (£4i(1)) =0,
(Ei(D)Ei(1)) = 858 (t —1'), (&i(1)) = 0, (Eui(1)Eyi () = 88(t — ') and (&4 (1)€(1')) = 0.

To obtain Equations (4a) and (4b), we first consider isotropic diffusion in a plane that is locally
tangent to the sphere. Next, we normalize the polarity vector to keep its unit length. Finally, we
transform to global spherical coordinates. Formally, we first update the vector n;(¢):

(1 + dt) = n;(t) + V2DE i (1)m,dt + V2DE (1) mydr, (40)

where m, = (n;(¢) x e;)/|n;() x e;|, my = (m, x n;(¢))/|m, x n;(¢)| and e, = (0, 0, 1). These unit vectors
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m, and m, define a plane tangent to the unit sphere at position n;(r). Random displacement on this
tangent plane will move the polarity vector away from the surface of the sphere, so its length

‘fl,-(t—i—dt)’ will be larger than 1,

{1+ di)| = 1+ 2Dds + 0 (dr?). (4d)

We normalize the polarity vector to correct for this radial displacement

n;(t+dt)

n(t+dt) = .ﬁi(tert)

) (4e)

and substitute Equations (4c) and (4d) into Equation (4e) to obtain the differential equation for the
unit vector n;(r)

dl‘li(t)

a V2D, wi(f)mx+\/2_Df¢i(’)my —2Dn;(1).

Finally, we transform variables from cartesian to spherical coordinates using Ito calculus, and
obtain Equations (4a) and (4b). With these Langevin equations, the polarity vector n; performs an
isotropic and uniform random walk on the surface of a unit sphere.

Intercellular force
For simplicity, we consider a linear elastic force F(x;, x;) to model volume exclusion of cells in Equa-
tion (1). If the distance between two cells becomes shorter than a threshold d. which we term cell
diameter, they repel each other (Uriu et al., 2017; Uriu and Morelli, 2014):

X — X

I%) —xi]

F(X,‘, Xj) = F(X,‘, Xj) s (53)

where F(x;, x;) is the modulus of intercellular force

v 0 ’X,'—Xj|/dc>17

where >0 is the coefficient for intercellular force.

Boundary force

F,(x;) in Equation (1) is a confinement force that a cell receives from the boundaries of the domains.
Below, we specify this confinement force depending on which tissue domains cells are located in,
Figure 2—figure supplement 1B.

In the PSM tubes

In the PSM regions Q; and Q,, we consider boundary force in y and z directions. The position of cell i
in the right PSM region Q, can be written as

X; = (x,—, r+2R+r;cos ql(c), Ze+ri sinq@) , (6a)

see Figure 2—figure supplement 1B. If cell i is in the left PSM region Q,, its position can be
described as
X, = (xi, r4r COSL]SC), Z.+r; sinq<c)). (6b)

i

Then, we define frictionless boundary force in the columns as
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F, bx Bv((L))
Fo= | Fyy | = | —me 7 cosq? |, ¥
5:(¢)
Fi —ppe ' sin ql@

(¢)

i .

where 8y(©) = |(r — r;)cosq\ | and 67 = |(r — r,)sing

In the tailbud half-toroid

Position of cell i within the half-toroidal domain Q, can be expressed as:

X, + Ax; X. + Rcosp; + r;cosg; cosp;
X, =X.+Ax;= | Y.+Ay; | = | Y.+ Rsinp;+ricosg;sinp; |, (8)
Z.+ Az; Z.+rising;

where p; =tan!(Ay;/Ax;), ¢;=tan"!(Azcosp;/(Ax; —Rcosp;)) and r;=Az/sing; (Figure 2—figure
supplement 1B). We then define the boundary force in the half-toroidal domain as:

_x
Fpx —Mpe v COSP; COSq;
o,
Fo=|Fp | = —pe vsinp;cosq; | 9
b,
Fi: —ppe " sing;

where pu, is the coefficient and r, is the length scale of the boundary
force, 8x = |Rcosp; + rcosp; cosg; — Ax;|, 8y = |Rsinp; + rsinp; cosq; — Ay;| and 8z = |rsing; — Az|.

Phase equation
The phase dynamics of genetic oscillators in single PSM cells is described by a phase oscillator
model (Riedel-Kruse et al., 2007; Uriu et al., 2017; Morelli et al., 2009; Kuramoto, 1984):

do;(1)
dt

= w(xi) + K(t) Z sin [OJ(I) — 0,(1‘)} + 4/ 2D9 9,‘(1‘), (10)

ny; (t) |xj7x,- <d.

where 6; is the phase of cell i, w(x;) is the autonomous frequency at position x;, k is the coupling
strength, ny; is the number of neighboring cells interacting with cell i and Dy is the phase noise inten-
sity. Interactions occur between touching cells |x; —x;| <d.. The coupling strength k may be time-
dependent as described below. &;(r) is a white Gaussian noise satisfying (£;(7)) =0 and
(a8 (t)) = 8,8(1—1).

We assume the frequency profile w(x) along the anterior-posterior axis of the PSM to generate
traveling phase waves (Jorg et al., 2015; Morelli et al., 2009; Ares et al., 2012). It is described as
w(x) = woU(x) where wy is the frequency at the posterior tip of the tailbud. For simplicity, we scale
the frequency profile with the PSM length L. The function U(x) reads, (Figure 2D; Jérg et al.,
2015):

1— e*kE/L

Ux)=0+(1 —U)ﬁ7

(11)
where X=x—x,, o denotes the difference in the frequency between anterior and posterior ends of
the tissue, and k determines the shape of the frequency profile, Figure 2D and Figure 3—figure
supplement 10.

In Equation (10), we introduced some simplifications. For example, time delays in intercellular
interactions with Delta-Notch signaling play important roles in setting the period of collective
rhythms and synchronization (Herrgen et al., 2010; Yoshioka-Kobayashi et al., 2020). However,
Equation (10) does not include it to reduce computational time. In addition, a recent study sug-
gested the presence of a spatial gradient of noise intensity along the PSM (Keskin et al., 2018), but
we assume that Dy is constant across the tissue. Wildtype embryos with Delta-Notch signaling do
not spontaneously form defective segments, suggesting that coupling strength is sufficiently strong
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to overcome phase noise. Therefore, we assume that the phase noise intensity is sufficiently lower
than coupling strength and approximate its spatial gradient by the zeroth order term.

The phase of cells anterior to the PSM x<x, is arrested (i.e. df;/dt = 0 for x;<x,). Then, we obtain
advecting stripes for normal traveling waves in the PSM, Figure 2E. We consider that the stripes
represent segment boundaries and the interval between two consecutive stripes represents segment
length as described below.

DAPT washout at different time points

In this study, we allow the coupling strength in Equation (10) to be a time-dependent function «(r).
The value of the coupling strength is varied in the presence or absence of DAPT in embryos. Besides
the influence of DAPT, the coupling strength in embryonic cells may change intrinsically with devel-
opmental stages due to, for example, gradual changes in Delta and Notch protein levels on cell
membrane, and/or changes in contact surface areas between neighboring cells. To model such
changes in the coupling strength, we assume the following time dependence:

0 1<twash—out

k(f) = { (12)

Kt + Ko t 2 tyash—out

where t,ash-out Fepresents the time at which DAPT is washed out in simulations. In the presence of
DAPT t < tyash-out there is no interaction between cells. After DAPT washout at t = t,ash-our cells
restore coupling immediately and interact with each other at finite rates. For simplicity, we assume
that the coupling strength changes linearly with time in Equation (12) to consider its intrinsic depen-
dence on developmental stages, Figure 4—figure supplement 5A. Setting x; =0 in Equation (12)
describes a constant coupling strength k, after DAPT washout. We first analyze resynchronization
dynamics with the fixed value of the coupling strength ko by setting x, =0, Figures 3 and 4, Fig-
ure 3—figure supplements 4-11 and Figure 4—figure supplements 1, 2 and 4. Then, we consider
a positive value of k>0 and let the value of the coupling strength gradually increase to study its
effect on time to FRS, Figure 4E and Figure 4—figure supplements 3, 5, 6 and 8.

PSM shortening

When we model PSM shortening, we consider that the position of the anterior end of the PSM x,(¢)
changes over time. For simplicity, we assume that the anterior end of the PSM moves in the poste-
rior direction (x>0) at a constant velocity u,(u,>0), Figure 4—figure supplement 1A:

Xa(t) = ugt. (13)

Hence, the length of the PSM becomes shorter as L(t) = L, — u,t. The speed of the anterior end of
the PSM may influence the segment length. For better comparison, we fix the segment length S con-
stant for different values of u, in simulations. For this, we impose the following condition:

Vot u, =c, (14)

where v, is the cell advection speed at the anterior end used in Equation (2) and ¢ is a constant.
Hence, v, can be expressed as v, = ¢ — u,. With Equation (14), the segment length S reads S=c¢ x T,
where T, is the period of oscillation at the position x,. This anterior period of oscillation T, is the
period that one would measure by recording the phase at the tissue boundary at the anterior end as
waves — and cells — pass across this boundary, not to be confused with the period of a single cell
there. With this definition, this anterior period T, matches the segmentation rate. When the PSM
length does not change during simulation (u, =0), the anterior period T, is equal to the period at
the tailoud, T,=2m/wy. When the PSM becomes shorter over time, there is a Doppler effect
because waves are traveling toward an approaching anterior boundary (Soroldoni et al., 2014;
Jérg et al., 2015). This Doppler effect changes the readout of anterior period T,, which becomes
shorter. To compensate for this effect here, we set T, =30 min by tuning wy in Equation (10) if we
include PSM shortening.
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Cell influx and outflux

Due to cell advection, cells reach the anterior end of the PSM x = x,. These cells exit from the
domains ; and Q, at the advection speed |v,4(x,)| = v,. We make the simplifying assumption of con-
stant cell density p=gyo. We implement this assumption in simulations by local density dependent cell
addition to the PSM and tailbud, as described below:

1. We measure cell density of the left and right PSM g; and o, (x,(f)<x<X,), respectively, and that
of the tailbud ¢, (X.<x). Then, we compute the difference between the measured density and
the target density oo, 8 = 0/ — 00, 8, = 0, — 00 and 8; = g; — 0o.

2. If all §;, 8,, and §, are positive, we do not add a cell to the PSM and tailbud when a cell leaves
the PSM from its anterior end x,(¢) due to advection.

3. In contrast, if some of §;, §,, and §, are negative, we add one cell to the region of which density
is smallest. For example, if §, is negative and the smallest, we add a cell to the left PSM. The
phase 6 of the added cell is assigned randomly from the uniform distribution between 0 and
2. The position of the added cell is randomly assigned within the chosen domain. In the ante-
rior end of the embryonic PSM, cells divide less frequently (unpublished observations). For this
reason, we do not add cells in the region x < x, + { for the left and right PSM. In this study, we
set { = 100 um. We note that adding cells with random phases in this region would be detri-
mental for the segmented pattern, given that phase disturbances would not have time to syn-
chronize to their neighbors. The cell polarity angles of the added cell are assigned randomly
from the uniform distribution between 0 and 27 for ¢, and between 0 and 7 for ¢. The autono-
mous frequency, speed of intrinsic cell movement and advection speed for the added cell are
determined depending on its added position.

Change in the PSM radius

We examine how change in the PSM radius over time influences resynchronization, Figure 4—figure
supplement 4. For simplicity, we assume that the PSM radius r decreases uniformly in the U-shaped
domain and linearly over time:

r(t) = —s,t+ro, (15)

where s, (s,>0) is the magnitude of change in the PSM radius. Because we fix cell density as
described in the subsection ‘cell influx and outflux’, the number of cells in the U-shaped domain
decreases as the PSM radius becomes narrower. Note that although the thinning of PSM in one
direction may cause a length extension in other directions to preserve a volume, we do not consider
such extension for simplicity.

To simplify the implementation of the model, we separately update cell positions x; and the
radius size r(r). When updating r() into r(t + Ar) by Equation (15) above, some cells may be left out-
side the U-shaped domain, r;i(t + Ar)>r(t + Ar) where r;i(t + Ar) is the position of cell i in the radial
direction defined in Equation (6) or (Equation 8) at time ¢ + At. For such cells, we correct their posi-
tions after the update of PSM radius as: r;(t + At) — r(t + Ar) — 2r, where r, is the lengthscale of
boundary force used in Equations (7) and (9).

Initial condition of simulations

We set the initial position of the anterior end of the PSM x,(0) as x,(0) = 0. We choose the cell num-
ber N(0) to satisfy the cell density ¢ = gy with a given tissue geometry. Initial positions of cells

x;(0)(i =1,2,...,N) are within the PSM and tailbud domains. To set initial positions of cells, we first
randomly locate cells within the U-shaped domain. Then, local stresses caused by the random cell
positioning are relaxed by simulating Equation (1) without the advection term for 10 min with the
integration time step of 0.01 min. In this relaxation process, we include a boundary force at

x = x, =0 to constrain cells within the U-shaped domain. For simulations of embryos without DAPT
treatment (i.e. synchronized initial condition), we use a synchronized initial condition 6;(0) = 37/2 for
i=1,...,N. For resynchronization simulations, the initial phase value of cell i, 6;(0), is chosen ran-
domly from a uniform distribution between 0 and 2#. The values of initial cell polarity angles in
Equation (4) are also chosen randomly from the uniform distributions between 0 and = for ¢,(0),
and between 0 and 27 for ¢;(0). The autonomous frequency, speed of intrinsic cell movement and
advection speed are determined by the initial position x;(0).
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Parameter values

The values of parameters used in this study are listed in Supplementary files 1 and 2. Cell density
and diameter of cells are based on the estimation by Uriu et al., 2017. The values of parameters
that determine intrinsic cell movement and physical forces between cells are set to reproduce exper-
imental data, Figure 3—figure supplement 4B (also refer to Uriu et al., 2017 for details). We use
the PSM length within the range reported in Soroldoni et al., 2014. The parameters for the fre-
quency profile in Equation (10) are based on Soroldoni et al., 2014; Jérg et al., 2015. Also, the
value of the coupling strength « in Equation (10) is in the range estimated by Riedel-Kruse et al.,
2007; Herrgen et al., 2010.

Previous studies estimated noise intensity in the segmentation clock employing different theoreti-
cal formalisms (Riedel-Kruse et al., 2007; Keskin et al., 2018; Jenkins et al., 2015). The present
physical model has two noise sources for phase of oscillation. One is the white Gaussian noise with
intensity Dy in the phase Equation (10). The other is cell addition with a random phase value
described in the section ‘Cell influx and outflux’. In desynchronization simulations with k() =0 in
Equation (10), noise by cell addition alone (Dy = 0) ruins kinematic phase waves and stripe patterns,
Figure 3—figure supplement 9A,D. First five stripes are typically recognizable with Dy =0, Fig-
ure 3—figure supplement 9A. With the increase in Dy, the local phase order decays more quickly
and stripes are lost earlier, Figure 3—figure supplement 9B-D. Because ALD with a saturated dose
of DAPT is around five in current experiments, we set Dy = 0.0013 throughout this study, Figure 3—
figure supplement 9B. In resynchronization simulations with «(7) = ko = 0.07, both FRS and PLD do
not depend on D, within its examined rage, Figure 3—figure supplement 9E. Hence, even if a dif-
ferent value of Dy is used in resynchronization simulations, only a slight modification of the parame-
ter values would be enough to better fit experimental FRS and PLD. Qualitative aspects of FRS and
PLD in simulations do not depend on the value of Dy.

Calculation of local phase order

To measure the level of synchrony at local domains along the anterior-posterior axis of the PSM, we
introduce a local phase order parameter (Shiogai and Kuramoto, 2003). It is based on the Kura-
moto phase order parameter (Kuramoto, 1984) with some modifications in computing average over
cells to capture the presence of spatial phase waves in the PSM. For the left PSM Q,, we first com-
pute phase order for cells within a thin slice domain
Qu(x) =[x+ (m — 1)Ax, x4+ mAx] x [0, 2r] x [0, 2r] form = 1,2,...,M by:

) 1 )
Zu(t,x)e b0 =— D g0, (16)

Ny X;€Q,,(x)

where ny, is the number of cells within the domain Q,,(x), Figure 3—figure supplement 1A. We set
Ax equal to the cell diameter Ax=d, so that Equation (16) measures the phase order for cells in
same position in the anterior-posterior axis. Z, indicates the level of local synchrony of this slice
domain. If the phases of cells in the domain are synchronized, Z, is close to one. In contrast, if they
are not synchronized, Z, is close to zero. ¥,, indicates the mean phase of the cells in the slice
domain.

This definition of Z, measures local order with a high spatial resolution along x-axis. However,
only a few cells are present in each slice, introducing finite size fluctuations. Thus, we define the local
phase order parameter at position x by taking the average of Z,, over a number M of these domains,
to smooth out small finite size fluctuations:

Z(t,x) = Zu(t,x). (17)

The segment length in the anterior-posterior direction in our parameter sets is ~5Ax. Therefore,
we set M =5 in the calculation of the local phase order Equation (17). We calculate the local phase
order parameter in a similar manner for the right PSM Q,. In this case, the domain Q,,(x) in Equa-
tion (16) is Q,,(x) =[x+ (m — 1)Ax, x+ mAx] x 2R, 2(R+7r)] x [0, 2r].

Note that computing local order in thin slices first as in Equation (16), and then averaging as in
Equation (17), we can capture high local order values even in the presence of a phase gradient.
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Computing a local order parameter directly in a thicker slab domain of width 5Ax would result in low
values of the order parameter in the presence of a phase gradient as in the anterior PSM.

Definition of a normal segment boundary in simulations

In computational simulations, we use the phase order parameter Equation (17) to define normal and
defective segment boundaries. We first define a segment boundary by considering simulations for
wild-type embryos untreated with DAPT. Such simulations are started from a synchronized initial
condition. Then, we describe how to detect normal segment boundaries in resynchronization simula-
tions started from random initial conditions.

In a untreated embryo where cells in the PSM are locally synchronized, kinematic phase waves
can be observed across the tissue. In such embryos, the position of a new segment boundary is
specified when a wave of gene expression arrives in the anterior end of the PSM. Namely, a position
of a segment boundary is determined when the phase of cells near the anterior end of the PSM
attains a certain value ¥, Figure 3—figure supplement 1B,C.

Based on this, we monitor the mean phase at the anterior end of the PSM x, to detect when a
segment boundary position is set in simulations, Figure 3—figure supplement 1A-C. We compute
the mean phase ¥, (t,x,) at position x, at time 7 for Q;(x,) = [x4, X, + Ax] X [0, 2r] x [0, 2r] for the
left PSM and Q; (x,) = [x4, X2 + Ax] X [2R, 2(R + r)] x [0, 2r] for the right PSM by using Equation (16)
(m = 1). As noted in Equation (16), we set Ax as the cell diameter Ax = d,.

We then detect a time 7; (i = 1,2, ...) that satisfies:

\Ill(T,‘,Xa)ZI?, (18)

where 9 is a constant that we set ¢ =3m/2 without loss of generality in this study, Figure 3—figure
supplement 1C. For simulations for control embryos where DAPT is not added and, therefore, the
level of synchrony is high, 7; should be the time when the position of the segment boundary i is
determined, Figure 3—figure supplement 1B,C.

|dentification and numbering of defective segment boundaries

For resynchronization simulations starting from random initial conditions, we modify the above pro-
cedure as follows. After detecting the time 7; when the mean phase of anterior cells becomes ¥, we
check the local phase order parameter Z(z,x,) defined in Equation (17) to determine whether these
cells can form a normal boundary, Figure 3—figure supplement 1D. We define that the anterior
cells can form a normal boundary at time 7; if:

Z(t,x,) 2 Z, for 7, —T,/2<t<71;—T,/2+, (19)

where T, is the period of oscillation at the anterior end of the PSM x, as described in the section
“PSM shortening”. Since Z(7;—T,/2,x,) is the average local phase order across nearly one segment
length at 7;—T,/2, it evaluates the integrity of the segment boundary and its neighboring inter-
boundary regions. To suppress a false detection of a normal segment boundary caused by the fluc-
tuation of Z(t,x,), we monitor Z(t,x,) in a short time interval with a window size n in Equation (19).
We set n=4 min in Equation (19). By visual inspection of stripe patterns in simulations, we set
Z.=0.85 for the recovery simulations throughout this paper, see Figure 3F and Figure 3—figure
supplement 1D, E. Note that this threshold value is simply for detecting a normal segment boundary
in simulations. It may be different from the critical value of the order parameter for normal segment
boundary formation in actual embryonic tissues.

If Equation (19) is satisfied for 7;, we then specify the segment boundary number. Note that the
subindex i of 7; does not specify the segment number in resynchronization simulations due to the
fluctuation of the average phase ¥, for earlier time when cells are not synchronized yet, Figure 3—
figure supplement 1D. If the previous anterior cell population that satisfied ¥, (7,;_;,x,) = ¢ at time
T, (7,-1<7;) was also satisfied Equation (19) and numbered as segment boundary j, the current
one is numbered as j + 1. If not, we infer the segment boundary number based on 7; and anterior
period T,. We assign the current segment boundary with the expected segment number:

{ [z:/T.], if [7;/T] — 7i/Ta<A,

20
[7:i/T] -1, otherwise, (20)
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where [x] represents rounding of real number x to the closest integer value. Note that we assign
the number [7;/T,] when the phases of anterior cells become 9 slightly earlier, 7,>T,[7;/T,] — AT,
considering the fluctuation after resynchronization, Figure 3—figure supplement 1F. In this study,
we set A= 0.3 in Equation (20). After detecting the normal segment boundaries and identifying their
numbers in this way, we assign all the remaining segment boundaries to be defective.

Definition of FRS and PLD in simulations

FRS is defined as jr — 1 where j; is the smallest segment boundary number that was determined to
be normal. The subtraction of 1 from j; is to match the definition of FRS for experimental data, see
the section 'Whole-mount in situ hybridization and segmental defect scoring'. PLD is defined as fol-
lows. We find the minimum segment boundary number j, above which all the segment boundaries,
including jp,, are normal. Then, PLD is j, — 1. In the example simulation shown in Figure 3—figure
supplement 1D,E, FRS is 9 and PLD is 13.

Calculation of phase vorticity

Vortices are regions in space where the phase values circulate from 0 to 27 around some point. Vor-
ticity could be detected taking a closed path around cells and computing the accumulating change
in the phase of neighboring cells around it. However, it is challenging to detect vorticity in a tissue
where phase is not continuous in space, but only defined at points where cells are. Besides, there
are phase fluctuations that can introduce local variations of phase change. Therefore, here we discre-
tize the closed path in angular steps and average the phase over the resulting domains, Figure 3—
figure supplement 2. The phase within these domains may grow linearly from O to 27 when one
turns around a position close to the center of a vortex. Below, we describe the definition of vorticity
that is shown in Figure 3C, Figure 3—figure supplements 5 and 6 and Figure 4—figure supple-
ments 1, 2 and 6.

Vortex axis can have different spatial orientations. To detect vortices with different rotating axis,
we set several planes in the space and compute phase vorticity at each plane. Then, we project
phase vorticity on x-axis to obtain its trajectory along the anterior-posterior axis of the PSM. We first
choose either the left or right PSM for the calculation of vorticity. Subsequently, we consider the
four slices in the PSM, Figure 3—figure supplement 2A,B. These slices are two z-slices located at
z=0um and z = 2r — 20 um (slices 1 and 2 and Figure 3—figure supplement 2A), and two y-slices
located at y = yo um and y = yo + 2r — 20 um, (slices 3 and 4, Figure 3—figure supplement 2B),
where r is the radius of the PSM. For the left PSM, y; = 0 um, while for the right PSM y; = 2R um
where R is the tailbud torus radius. The thickness of these four slices is 20 um (~2 cell diameters,
compare to the 50 pm of PSM diameter). We then project the phase values of cells in each slice to
2D planes, TT¥ (& = 1,2,3,4). The two x-y planes IT") and T1® obtained by the projection of the two
z-slices (slices 1 and 2) are used to detect vortices with a rotating axis parallel to z-axis (Figure 3—
figure supplement 2A,C). For instance, the x-y plain TT) for the right PSM contains cells within the
z-slice [0, L,] x [2R,2R + 2r] x [0, 20]. The two x-z planes 1) and T1¥ obtained by projection of the
y-slices (slices 3 and 4) are used to detect vortices with a rotating axis parallel to y-axis, Figure 3—
figure supplement 2B. We hardly observed phase vortices with the rotating axis parallel to x-axis in
simulations. Therefore, we do not consider y-z planes in the calculation of vorticity.

Next, we set grids (x;,y,) in the planes Y and 11 where x; = x, + sAx (s =0,1,2,...) and
Yu =Yo+ uAy (u=0,1,2,...) with the grid size Ax and Ay. Similarly, we set grids (x;,z,) to the planes
3 and TI® where x; = x, + sAx and z, = uAz. We chose Ax =5 pum and Ay = Az =2 um. For each
grid point in the plane II®, we compute vorticity 1 as follows. Below, we explain the case of IT?
with the grid (x,,y.), Figure 3—figure supplement 2A,C. Same calculations were performed in the
other planes as well.

We set a circular ring for the grid point (x,,,) in the plane:

8l <A/ (x—x;) +(y—yu) <l +8l 21)

as shown in Figure 3—figure supplement 2D, E. We set §/=5.5 um and [ = 14 ym. The circular ring
is subdivided into six domains V; (i=0,1,2,...,5) by angles 7/3 measured counterclockwise from the
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x-axis. We then compute average phase 6; over cells within each subdomain V;, Z,-e@" =D ey, % /n;
where n; is the number of cells in V;. If there is no cell within one of the subdomains V; (n; =0), we do
not compute the vorticity for the grid point (x,,y,) and set ) =0.

To detect a vortex with clock-wise rotation, we permutate 6; based on their values (Figure 3—fig-
ure supplement 2D, E): 6 = 6, where k = arg min{f;: i = 0,...,5}, 6, = Oiy1, 6, = Opy,..., and
05 = Or.s, (mod 6). For a vortex with counter clock-wise rotation, we permutate 6; as: 0o = 0, where k
= arg min{d;: i = 0,..., 5}, 6, =0y, 6, = 0O_3,..., and 05 = 6;_s, where a negative value of k —j
(j=1,2,...,5) should be replaced as -1 — 5, -2 — 4, ..., and -5 — 1.

We assume that when a phase vortex is present near the grid point (x;,y,), 6; for the grid point
increases linearly with i, Figure 3—figure supplement 2D, F. To detect this linear increase of 6;, we
compute the correlation coefficient a defined as:

5

a:6;0éz(i—§)(éi—§>, (22)

i=0

5 - 5 . 5 5 N =\ 2
where 5/2=35i/6, 0=50:/6, ;= | (i~ 5/2)*/6 = /35/12, and o = 2(9,-—9) /6. A value of
i=0

i=0

i=0 i=0

the correlation coefficient a close to one means that the phase increases linearly along a perimeter
of a circle, indicating the existence of a phase vortex, Figure 3—figure supplement 2D,F. If the cor-
relation coefficient is larger than a threshold a > «y, we consider that the phase value consistently
increases along the circumference of the ring and rotates along the z-axis. In this case we define vor-

ticity for the grid point as ¥(x;,y,) = (és - éo) /2, Figure 3—figure supplement 2F. If a<ay, we set

P(x5,y.) =0 to exclude false positive detection of a vortex by fluctuation of phase values. We used
ag = 0.75 throughout the article. After calculating vorticity for each grid point, we project 1(x;,y,) to

x-axis. We use maximum projection, ¥/ (x,) = . ¥(x,,y.), Figure 3—figure supplement 2H.
Yu
By performing same calculations for the remaining three planes, we obtain
{0 (), P (x,), ¥ (x), ¥ (x,) } for position x,, top panel of Figure 3—figure supplement 2I.
Finally, we take their maximum value and adopt it as the vorticity at the position x;:
P9 (x) = o @ (x;), bottom panel of Figure 3—figure supplement 2I. For visualization, we

make a density plot as a kymograph by using the data (x;, , (™).

Quantification of single and double defects

In both experiments and simulations, we sometimes observe that a defective segment boundary
appears either only left or right side of an embryo, which we refer to as a single defect. We also
observe another instance where left and right boundaries are both defective, which we call double
defect. To examine whether the theory can account for the emergence of single defects in embry-
onic experiments, we compute the fraction F; of single defects defined below and compare it
between simulations and experiment.

Experimental data

We first counted the total number N, of defective segment boundary loci for an embryo. We then
counted the number of single defects N, and computed the fraction F; = N,/N,. When we compared
the experimental data with simulation data, Figure 4—figure supplement 8D, we measured N, and
N; after segment 9 that marks the onset of resynchronization, Figure 1—figure supplement 1B.

Simulation data

We defined normal and defective segment boundaries based on the local phase order at the ante-
rior end of the PSM Z(t,x,) as described in the previous section ‘Definition of a normal segment
boundary in simulations’. For single realizations of simulation, we counted the total number of defec-
tive segment boundary loci N, and the number of single defects N; appeared posterior to the seg-
ment 9 as in experimental data. Then, we computed the fraction, F; = Ny/N,, Figure 4—figure
supplement 8D.
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Implementation for numerical simulations

We solved Equations (1) and (10) with the Euler-Maruyama method with the time step for integra-
tion 8¢ = 0.01 min. Custom simulation codes were written in C language (Source code 1). Videos of
numerical simulations, calculations of local phase order and vorticity, and analysis of left-right seg-
ment boundary defects were done with custom Mathematica (Wolfram) codes (Source code 1).
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Appendix 1

Segment statistics from the spatial distribution of defective segments

The distribution of defects along the embryonic axis can be parametrized in different ways. Here, we
introduce complementary pictures, one relies on the fraction of left and right defects, and the other
on fractions of single and double defects. Using a random defect hypothesis we show how to relate
these pictures with probability theory. Taking into account the spatial distribution of defects we
compute ALD, PLD and FRS from these statistics, and we predict and test the values of the fraction
of single defects per embryo.

Segment state variables

We introduce a state variable that accounts for the presence or absence of a defective segment
Si(x), where i labels the embryo, k = {[,r} labels the side of the embryo and x is the segment locus
along the axis. We consider N embryos with M + 1 segment boundaries, so i=1,2,..,N and

x=0,1,...,M. The state variable S;(x) takes the values zero and one depending on whether the seg-
ment is normal or defective.

Segment defect distribution on both sides of the embryo

When a segment locus is defective on the left (right) side of the embryo we call it a left (right) defect
independently of the state of the other side. We define left and right defect distributions taking the
population average of segment state variables,

N
Pi(x) = (Sulx)) = DS (), 23)
i=1
and
P10 = (8 (0) = D). (24)

These spatial distributions of defective segments on the left and right sides of embryos are very
similar, for different DAPT washout timing, Figure 4—figure supplement 7A. This agreement
between left and right distributions supports the assumption p;(x) = p,(x) = p(x). In the following sec-
tions, we use probability theory to compute ALD, PLD and FRS from this spatial distribution of
defective segments.

Probabilistic calculation of ALD

Let g,(x,) be the probability to find an ALD at position x,. g,(x,) can be expressed in terms of p(x)
as:

P(Xa) x, =0
o) = £H (1= p(&)) x plxa) x>0, (23)

The first factor Hz":’ol(l —p(€)) in the second line represents the probability of normal segment
boundaries from position x=0 to x=x, — 1. The second factor p(x,) is the probability of a defective
segment boundary at position x=x,. The resulting ALD distribution ¢,(x,) presents a clear peak at
the onset of the defective region, Figure 4—figure supplement 7B. The ALD is then calculated as
the mean value for this probability distribution,

M
ALD = Zxa “Ga(Xq). (26)

x,=0
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Probabilistic calculation of PLD
Let g,(x,) be the probability of PLD at position x,. It can be written as:

M
X 1— x,<M
0o() = Pp(x) x 5:1);[“( p() < 27)
p(x,,), X, =M.

The first factor p(x,) in the first line is the probability of a defective boundary at x,. The second
factor H]g’:xpﬂ(l —p(€)) represents the probability that all the remaining segment boundaries poste-

rior to x, are normal. The resulting PLD distribution g, (x,) peaks at the end of the defective region,
Figure 4—figure supplement 7B. The PLD can be written as the mean value for this distribution,

M
PLD = "x,-q, (). (28)

x=0

Probabilistic calculation of FRS

Occurrence of a recovered segment is conditioned to the previous occurrence of defective seg-
ments. In this study, we measure the FRS after the desynchronization phase. The desynchronization
phase is determined based on the distribution of defective segments, Figure 1—figure supplement
1B. Suppose that the desynchronization phase ends by the formation of segment s,. We define FRS
as the first normal segment after s, — 1. This is the definition we use to measure the embryonic FRS.
With this definition of FRS, the probability g;(x;) of the first normal segment boundary at locus x; is:

1=p(x), X =S4
=yl 29
qf(xf) 51:[ P(E) « (1 _p<xf))7 X5 (29)

The first factor of the second line represents the probability for all the segment boundaries
between s, and x; —1 to be defective. The second factor is the probability for a normal segment
boundary to form at x;.

To compute g (x;), we set s, =9 as in the main text, Figure 1—figure supplement 1B. The
resulting distribution gs(x;) has a peak that precedes that of PLD and partly overlaps with it, Fig-
ure 4—figure supplement 7B. From these results, the FRS then can be expressed as

M
FRS= Y x-qr(x) — 1. (30)

Xp=Sa

In Equation (30), we subtract one because FRS is defined with the anterior boundary of the first
normal segment after s, — 1, see definition of FRS for experimental data in Materials and methods.
da: gp and gy calculated with Equations (25), (27) and (29) agree well with the direct measurement
of these distributions, Figure 4—figure supplement 7B. Furthermore, expressions obtained for
ALD, PLD and FRS from the spatial distribution of defects p(x), Equations (26), (28) and (30), are in
very good agreement with direct measurements of these quantities, Figure 4—figure supplement
7C.

The spatial distribution of single and double defects

In a complementary framework, we introduce double defects, single defects and normal segments.
Double defects occur when both sides of the embryo at a given locus x are defective. Single defects
occur when at a given locus there is a defect either left or right, but not on the other side. Normal
segments have no defects on either side. Taking population averages, we can define the double
defect distribution
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Pala) = (S1(6) Si2)) = 3D 8ul) ), &)
i=1
the single defects distribution
N
Pulx) =1 > (Sulx) (1= Sin(x)) + (1= Sa(x)) Sir(x), (32)

and the normal segments distribution

N

pal0) =1 = Su0)(1 = 83 (). 33)

i=1

These distributions can be related to the left/right framework introduced above. Key to this is
that the two sides of the anterior PSM are physically unconnected, separated by another tissue —the
notochord. It has been shown that interfering with Retinoic Acid, which controls somitogenesis bilat-
eral symmetry by shielding asymmetric cues, results in asymmetric left/right segmentation and clock
waves (Vermot et al., 2005). This indicates that segmentation clock oscillations are independent in
the left and right sides of the PSM. In the physical model, we tacitly assume this independence since
there is no coupling between oscillators on one side and the other. A consequence of this left/right
independence should be a vanishing covariance of the segment defect variables at opposite sides of
the embryo (Gardiner, 2009),

(Su(x) Sir(x) ) = (Sa(x)) (Sir (x)) = 0. (34)

The two terms in this covariance can be written using the segment defect distributions of the two
frameworks,

pa(x) =pi(x)pr(x). (35)
Similarly, we obtain for single defects
ps(x) = pi(x) (1 = pr(x)) + (1 = pi(x)) pr(x), (36)
and for normal segments
pn(x) = (1= pi(x))(1 = pr(x)). 37)

We can further simplify these expressions with the assumption p;(x) = p,(x) = p(x). The axial distri-
bution of double defects p,(x) gradually grows to a plateau at the onset of the defective region and
then decays at its end, while the distribution of single defects p,(x) peaks both at the onset of the
defective region and at its end, Figure 4—figure supplement 8A. The good agreement observed
between direct measurement of p,(x) and p;(x) and results obtained from p(x) together with proba-
bilistic arguments, provides a test for the vanishing of the covariance and left/right independence,
Figure 4—figure supplement 8A.

Fraction of single defects from the axial distribution of defects

As a further test of the reach of the defect distribution p(x), we use it to compute the fraction of sin-
gle defects in a population of embryos. We first count the number of double and single defects in a
given embryo i

M
Nig = ZSiI(X)Sir(x)7 (38)
x=0

and
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M

Ny = Z(S,-;(x) (1 =8i(x)) + (1 —Su(x)) Sir(x)). (39
x=0

The total number of defects in embryo i is N; = N;; + N;;. Then, we take the population average of
these quantities. The average number of double defects in the population is

N N M M N
Nith = D N =5 D0 D 800) 5109 = D> 83(0) 85,0, (40a)
i=1 i=1 x=0 x=0 i=1
SO
(Nia) = > (Su(x) Sir(x)) = >_palx) =Y _pulx)p,(x), (40b)
x=0 x=0 x=0

using left/right independence. Similarly, the average number of single defects (N;) is

M M
(Vi) =D ps) = (pu(x) (1 =pr(x)) + (1= pu(x)) pr()). (41)
x=0 x=0
We define the fraction of single to total defects in an embryo
Fis = Nis/Ni, (42)
and its population average
Fs - <Fis> - <Nis/Nit>~ (43)

If the coefficient of variation of the total number of defects in the population is small, we can
approximate

Fy = (Nis/Nit)= (Nis)/ (Nu), (44a)

SO

o2 ) S (r) (1 =) + (1= i) () aab)

(Nie) Slo(l = (1=pi() (1 =pr(x)))

Using the left/right symmetry of defect distributions p;(x) = p,(x) = p(x), we can further simplify
this expression

(Vi) _ 25 op() (1= p(x)
Wi 520, (1= (1=p(x)) )

Fy=

(45)

The good agreement observed between this probabilistic calculation and direct measurement of
F; counting single defects in individual embryos, Figure 4—figure supplement 8C, suggests that
the recovery of segments after DAPT washout occurs independently between left and right sides of
the PSM.

Finally, the physical model of the PSM reproduces both the single and double defect distribu-
tions, Figure 4—figure supplement 8B, and the dependence of F; on DAPT washout timing, Fig-
ure 4—figure supplement 8D.

Conclusion

Taken together, these results suggest that knowledge of p(x) is enough to compute some of the key
observables that we use to quantify segment recovery, such as ALD, PLD, FRS and F,. Together with
the result that the physical model of the PSM reproduces p(x) at different washout timings,
Figure 4F, this is evidence for the breadth of the physical model results and predictions.
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