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ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic and inflammatory autoimmune disease of unknown origin that may
cause kidney disease, i.e. lupus nephritis (LN). Within a wider trend towards an expanding field of genetic causes of
kidney disease, two recent reports have emphasized the role of Mendelian autoimmune disorders in causing LN both in
children and in young adults. Loss-of-function (LOF) variants of tumor necrosis factor alpha–induced protein 3 (TNFAIP3)
and gain of function (GOF) variants of Toll-like receptor 7 (TLR7) cause SLE and LN, respectively. Interestingly, both genes
regulate the same signaling route, as A20, the protein encoded by TNFAIP3, inhibits nuclear factor ĸB (NF-ĸB) activation
while TLR7 promoted NF-ĸB activation. Moreover, TNFAIP3 and TLR7 variants are relatively frequent, potentially
contributing to polygenic risk for LN. Finally, they both may be expressed by kidney cells, potentially contributing to the
severity of kidney injury in persons who have already developed autoimmunity. The fact that both genes regulate the
same pathway may lead to novel therapeutic approaches targeting the shared molecular pathway.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic and inflam-
matory autoimmune disease of unknown cause, character-
ized by the loss of immune tolerance to nuclear self-antigens,
B-cell hyperreactivity and the production of autoantibodies and
inflammatory cytokines, resulting in damage to several tissues
and organs and in increased morbidity and mortality [1, 2]. Lu-
pus nephritis (LN) is one of the most common severe man-

ifestations of SLE, as up to 60% of SLE patients develop LN,
mainly people with juvenile-onset SLE. The incidence and sever-
ity of LN vary according to the geographical area, race/ethnicity,
sex/age and applied diagnostic criteria [3, 4]. LN is an im-
mune complex glomerulonephritis characterized by the de-
velopment of proteinuria, hematuria, leukocyturia and/or re-
duced kidney function. The course is characterized by relapses
and remissions. LN may be the only initial manifestation of
SLE [5]. Classically, evidence of LN was one of the potential
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diagnostic criteria for SLE, including persistent proteinuria (>0.5
g/24 hours) or the presence of urinary casts in the 1982 Amer-
ican College of Rheumatology SLE classification criteria [6] or
proteinuria >0.5 g/24 hours or per gram of urinary creatinine
or red blood cell casts in urinary sediment in the 2012 sys-
temic lupus erythematosus international collaborating clinics
criteria [7]. Kidney biopsy confirms the diagnosis of LN, as-
sesses severity and helps to predict outcomes and determine
treatment. The 2003 International Society of Nephrology/Renal
Pathology Society (ISN/RPS) LN classification and its 2018 update
[8, 9] establish six histologic classes and activity and chronic-
ity parameters of severity [3, 5, 10, 11]. The role of the kidney
biopsy was recently highlighted in the 2019 European League
Against RheumatismAmerican College of Rheumatology classi-
fication criteria: a positive antinuclear antibodywith proteinuria
>0.5 g/24 hours (or equivalent) and the presence of LN on kidney
biopsy according to the 2003 ISN/RPS classification are sufficient
to diagnose SLE [12].

THE EXPANDING FIELD OF GENETIC CAUSES
OF KIDNEY DISEASE

Inherited kidney diseases (IKDs) are more common than pre-
viously thought. They account for at least 10% of adult CKD
cases [13, 14]. Prior to the increasing availability of genetic test-
ing, many of these patients were incorrectly classified as hav-
ing hypertensive nephropathy, CKD of unknown cause or as-
signed a different cause of CKD.Contributing to the invisibility of
IKDs, major registries only report autosomal dominant polycys-
tic kidney disease separately as a cause of CKD, while all other
causes of IKD are grouped under ‘other’ or, if not diagnosed, in
any other category. However, when all IKDs are grouped and re-
ported together,we get a different perspective: IKDs are the third
leading cause of kidney failure in Catalonia and the fourth in
Madrid, Spain [15]. This may still be an underestimation, given
the low uptake of genetic diagnostic tests even when they are
freely available [16]. A genetic basis for CKD was also identified
for one of the most common causes of CKD, so-called hyperten-
sive nephropathy, which in African Americans is usually an IKD
APOL1 variant nephropathy [17]. Although there is no specific
treatment available for most IKDs, a correct diagnosis may pre-
vent unnecessary invasive procedures and treatments and, as
IKD can be directly attributed to the dysfunction of the respon-
sible gene, this may lead to the design and development of spe-
cific therapies [15]. Recent reports have also provided a genetic
basis for some forms of LN [18].

GENETIC CAUSES OF LUPUS

SLE is recognized as a polygenic autoimmune disease. The
strong genetic component in SLE is estimated to be 66% of heri-
tability in twin studies [19]. In recent decades, genome-wide as-
sociation studies (GWASs) have identified >100 SLE susceptibil-
ity loci [20]. The proportion of phenotypic variances explained
by variants in human leukocyte antigen (HLA) is 2.6% [21] and
non-HLA 38% [22]. Additionally, >30 genes causing monogenic
forms of SLE or SLE-like syndromes have been reported [23–
25] (Table 1). Among them, deficiencies of complement factors
such as C1q, C4A, B and C2 confer a high disease susceptibility
[26]. Approximately 90% of people with C1q deficiency develop a
lupus-like phenotype [27]. TREX1 variants are also associated to
monogenic diseases, such as familial chilblain lupus 1, a cuta-

Table 1. Examples of genes whose variants are associated with hu-
man SLE and impact of the gene variants on the activity of the pro-
tein product (modified from Brown et al. [25])

SLE predisposition resulting from
functional deficiency in protein
product

SLE predisposition resulting
from excess activity of
protein product

TNFAIP3 [18] TLR7 [25]
C1QA TMEM173
C1QB TNFSF6
C1QC IFIH1
C1R STAT4
C2
CFB
C4A
C4B
DNASE1
TREX1
PRKCD
DNASE1L3
ACP5
SOCS1
NCKAP1L
C1S
C3
SAMHD1
ADAR1
RNASEH2B

neous form of SLE, and Aicardi–Goutieres syndrome, an inflam-
matory encephalopathy that shares features with SLE [26].

The type I interferon (IFN) system also plays a major role in
SLE pathogenesis [28]. GWASs have reported associations with
type I IFN–induced genes, and severalmonogenic lupus or lupus-
like diseases are associated with interferonopathy (e.g. IFIH1,
TNFAIP3, RNASEH2A, RNASEH2B, IRF7). IFN-α-induced genes are
overexpressed in the peripheral blood of 60–80% of patients with
SLE [29, 30].

The HLA region is a strong predictor of genetic risk, predomi-
nately HLA class II {e.g. HLA-DR2 [hazard ratio (HR) 1.2] and HLA-
DR3 [HR 2.4]} loci related to T-cell-dependent antibody responses
[31–33]. Other predisposing genes involve those encoding lym-
phocyte signaling molecules that regulate the activation or sup-
pression of T- or B-cell activity or survival, such as PTPN22,OX40L
and PD1 [34–37].

Lastly, in recent years, evidence suggests the role of genetic
factors in both disease susceptibility and on different disease
phenotypes [38]. In this regard, ITGAM and FCGR2A variants have
been associated with susceptibility to skin involvement, while
ITGAM,HLDR2 and STAT4 are associatedwith kidney disease [39].

Loss-of-function (LOF) variants of tumor necrosis factor
alpha–induced protein 3 (TNFAIP3) and gain of function (GOF)
variants of Toll-like receptor 7 (TLR7) were recently reported to
underlie LN in children and adults in the Clinical Kidney Journal
(CKJ) and Nature, respectively [18, 25].

A20, HA20 AND LN

A20 is a negative regulator of inflammation encoded by the
TNFAIP3 gene [40]. A20 inhibits nuclear factor (NF)-ĸB sig-
naling and restricts the interferon regulatory factor (IRF)
pathway and autophagy [41] (Figure 1). Haploinsufficiency of
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FIGURE 1: LOF TNFAIP3 variants, GOF TLR7 variants and LN. B lymphocytes are central players in SLE. Degradation of guanosine triphosphate (GTP) from processed
ssRNA yields guanosine and 2¢,3¢-cyclophosphate guanosine monophosphate (cGMP) that are recognized by the BCR and ssRNA is endocytosed complexed with BCR
and delivered to endosomes, thus allowing ssRNA interaction with TLR7. TLR7 then recruits the adaptor Myd88 and signals to activate NF-κB and IRF7, leading to

synthesis and secretion of cytokines (yellow, green, red dots) and type I IFN (T1-INF, blue dots). The TNFAIP3 gene encodes the A20 protein, a negative regulator of
NF-κB (and of NF-κB association with IRF7), contributing to B-cell tolerance [58]. GOF variants of TLR7 break B-cell tolerance, leading to SLE, as exemplified by Y264H,
F507L and R28G [25]. TLR7 GOF variants may disrupt B-cell tolerance resulting in increased proliferation of autoimmune B cells, antigen presentation to autoreactive
T cells, differentiation to plasma cells and cytokine production [59, 60]. Cytokines contribute to inflammation, while T1-INF endocrine or paracrine (from activated DCs

[61]) loops decisively contribute to loss of tolerance. The introduction of the TLR7-Y264H variant in mice resulted in SLE characterized by autoimmunity, tissue injury
and inflammation, including LN, and this was prevented by Myd88 deficiency [25]. Also recently, LOF mutations in TNFAIP3 decisively contribute to loss of tolerance
and LN [18]. BCR: B-cell receptor; IFNAR: interferon-α/β receptor; ssRNA: single-stranded RNA.

A20 (HA20; Online Mendelian Inheritance in Man 616744) is an
autosomal dominant monogenic disease caused by heterozy-
gous LOF TNFAIP3 variants and is characterized by early onset
systemic inflammation in multiple organs [40]. Although phe-
notypesmay vary according to specific TNFAIP3 variants [42], the
major phenotype is Behçet-like symptoms. In a literature review
of clinical manifestations, the most common symptoms were
oral ulcers (70%), recurrent fever (42%), gastrointestinal ulcers

(40%), skin lesions (38%), genital ulcers (36%), musculoskeletal
disorders (34%) and autoimmune thyroid disorder (19%). Ocular
involvement, vasculitis, atrophic gastritis, kidney or liver injury,
recurrent respiratory tract infection, interstitial lung disease
or dental anomaly were found in <10% of patients [42]. The
diverse clinical manifestations may result from variable pene-
trance as well as from the interaction with other genes and the
environment.
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Table 2. Allele distribution for gnomAD variants for TNFAIP3 and TLR7

Gene HGVS consequence VEP annotation Clinical significance Allele frequency Range of allele frequency

TNFAIP3 c.805+28A>C Intron Benign 6.09E-01 0.17–0.85
c.296–15_296–13delCCT Intron Benign 6.05E-01 0.17–0.86

p.Phe127Cys Missense Benign/Likely benign 6.17E-02 0.015–0.36
c.805+26C>T Intron Benign 4.41E-02 0.001–0.10
p.Asn102Ser Missense Benign 1.24E-02 0.000–0.06
c.2089–42G>A Intron 6.53E-03 0.000–0.01
c.487–8C>G Splice region Benign 6.11E-03 0.000–0.05
p.Thr647Pro Missense Conflicting interpretations of

pathogenicity
1.81E-03 0.000–0.006

p.Ala125Val Missense Conflicting interpretations of
pathogenicity

1.65E-03 0.000–0.02

TLR7EG p.Gln11Leu Missense 1.79E-01 0.000–0.27
p.Val219Ile Missense Benign 4.59E-03 0.000–0.03
p.Ala448Val Missense Benign 3.01E-03 0.000–0.005
p.Val222Asp Missense Benign 2.45E-03 0.000–0.005

HGVS: Human Genome Variation Society; VEP: variant effect predictor.
Gene variants with an allele frequency >1 in 1000 are shown. Gene changes are shown in or within 75 base pairs of a coding exon [56, 57]. The range of allele frequency
refers to allele frequencies for different ethnicities.

GOF variants
Y264H, F507L, R28G

TLR7A20

LOF variants
c.1300_1301delinsTA

exon 7/8 deletion
c.634+2T>C

Autoimmunity
Protects from Promotes

Milder
variants

Milder
variants

No disease

Polygenic SLE/
lupus nephritis

No disease

Mendelian SLE
and lupus nephritis

Mendelian SLE
and lupus nephritis

FIGURE 2: TNFAIP3 and TLR7 gene variants and SLE/LN. TNFAIP3 encodes A20, an inhibitor of the pro-inflammatory transcription factor NF-κB that is activated by TLR7.
This means that A20 and TLR7 can be traced to the same intracellular signaling pathway and have the potential for clinically relevant interactions. Several severe
LOF TNFAIP3 variants cause Mendelian SLE/LN, as do several GOF TLR7 gene variants. These variants with a severe impact on function are generally associated with
severe, early onset disease, but this may represent the tip of the iceberg, as milder variants may exist that cause late-onset disease that has not yet being characterized,

just as familial hypocholesteremia was initially identified in patients having coronary artery disease in childhood. Additionally, even milder gene variants, with the
potential to be present in genetic databases from the general population (Table 1) and that are considered benign when isolated, may contribute to polygenic risk for
more classical forms of SLE/LN, especially when associated with risk variants of the other gene.

In this issue of CKJ, Zhang et al. [18]. report that HA20 is
a cause of biopsy-proven LN with both early and late onset
in males and females in three families with different TNFAIP3
variants.

A male patient had late-onset (age 29 years) SLE with multi-
organ involvement: alopecia, arthralgia, nephrotic proteinuria,
thrombocytopenia, hypocomplementemia and positive autoan-
tibodies. Additionally, atopy-like clinical manifestations and
high immunoglobulin E levels were present. A novel heterozy-
gous variant c.634+2T>C in the TNFAIP3 gene affected messen-
ger RNA (mRNA) splicing and created a frameshift mutation that
removed both the Ovarian TUmor (OTU) domain and all Zinc

Finger (ZnF) domains. Family members with the same genetic
variant had milder involvement, including oral ulcers with or
without duodenal ulcers, skin rashes, anemia and allergic his-
tory, illustrating the clinical variability even within the same
family [43]. The other two patients were girls with an early onset
(3 years old). One had recurrent fever, autoimmune hemolytic
anemia, hepatosplenomegaly, lymphadenopathy, acute cuta-
neous lupus, serositis, cardiovascular compromise, mild growth
retardation and kidney injury. A deletion of exons 7 and 8 in the
TNFAIP3 gene resulted in loss of both OUT and ZnF domains.
The other girl also had recurrent fever, autoimmune hemolytic
anemia, hepatosplenomegaly, lymphadenopathy and kidney
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FIGURE 3: TNFAIP3 and TLR7 mRNA expression in human control and diabetic kidney tissue. Images from Humphreys Laboratory [62] with permission (Wilson et al.

[63] and Wu et al. [64]).

injury, and additionally had oral ulcers and musculoskeletal
involvement. A c.1300_1301delinsTA (p.A434*) TNFAIP3 variant
disrupted the ZnF coding region. This report adds TNFAIP3 vari-
ants to the list of causes of Mendelian LNs. Although mainly
found in children, this report illustrates that monogenic LNs
may be found in adults.

TLR7

TLR7 is an intracellular receptor mainly expressed in B cells and
plasmacytoid dendritic cells (pDCs) that recognizes pathogen-
associated molecular patterns [44]. Overexpression of TLR7 re-
sults in more severe autoimmune responses and greater inci-
dence of lupus-like disease [45, 46]. TLR7 is encoded by the X
chromosome. Although female cells randomly inactivate one of
the two X chromosomes, 15–23% of X-linked human genes es-
cape X chromosome inactivation and both alleles are simulta-
neously expressed. Female B cells with biallelically expressed
TLR7 have an increased susceptibility to TLR7-dependent au-
toimmune syndromes [47]. In this regard, female pDCs pro-
duce more IFN-α than male pDCs upon stimulation with syn-
thetic ligands or single-stranded RNA (ssRNA) that selectively
activate TLR7 [48, 49]. Furthermore, increased IFN-α is related
to exogenous and endogenous estrogens [47]. Indeed, a TLR7-
dependent, IFN-independent immune activation has been pro-
posed to be sufficient to accelerate SLE [50]. Additionally, TLR7
stimulation activates the proinflammatory transcription factor
NF-ĸB [51] that links TLR7 and A20 on opposite sides of the same

pathway. TLR7 gene dosage also contributed to accelerating au-
toimmunity when a cluster of at least 16 X-linked genes is du-
plicated and translocated to the Y chromosome in mice (Yaa-
chromosome, Y-linked autoimmune accelerator) [45]. Finally, in a
Mexican population, an increased copy number of TLR7 was as-
sociated with an increased risk of pediatric SLE [52].

Brown et al. [25] have described female patients with SLE
and GOF TLR7 variants. A 7-year-old patient had a de novo TLR7
p.Tyr264His (Y264H) missense variant. Whole exome sequenc-
ing of additional patients with SLE identified TLR7 p.Arg28Gly
(R28G) in a young female with mucosal and hematological in-
volvement and TLR7 p.Phe507Leu (F507L) in a pediatric patient
with optic neuritis. To explore the impact of TLR7 gene variants,
Brown et al [25]. overexpressed TLR7Y264H, TLR7R28G and TLR7F507L

in cultured RAW264.7 macrophages and found that these vari-
ants caused NF-ĸB activation.Moreover, they demonstrated that
TLR7Y264H could cause SLE, as CRISPR-Cas9 editing into C57BL/6
mice caused splenomegaly, decreased survival, development
of antinuclear antibodies, thrombocytopenia and proliferative
glomerulonephritis with mesangial electron-dense deposits
and increased mesangial cellularity in male or female mice
carrying one or two alleles. Lymphoid cells infiltrated the liver,
salivary glands and pancreas and mice displayed increased
levels of IFN-γ , interleukin-6 (IL-6), IL-10 and TNF [53]. These
findings are consistent with previous studies [50, 54] and con-
firm the role of excess TLR7 activity in the pathogenesis of SLE,
including LN. This has clear therapeutic implications. In this re-
gard, an intravenous Toll-like receptor inhibitory peptide 1 (IP1)
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decreased albuminuria, kidney inflammation and mRNA ex-
pression downstream of TLR7 or TLR9 in MRL/lpr mice with SLE
[54]. However, preclinical results of therapeutic interventions
may be more solid if they are confirmed at multiple sites [55].

PATHOPHYSIOLOGICAL AND CLINICAL
IMPACT

The unstoppable advance of kidney genetics is now expanding
into immune-mediated kidney disease. TNFAIP3 and TLR7
should be added to the list of genes to be assessed in the
evaluation of patients with LN. Interestingly, both genes regu-
late the same signaling route (Figure 1) and gene variants are
relatively frequent (Table 2). Although most of the more com-
mon gene variants are labeled benign, this means that they
are not associated with Mendelian inherited disease, but they
might contribute to polygenic risk scores, and this should be
explored (Figure 2). Furthermore, the identification of individual
contributors to the pathogenesis of SLE and LN will allow the
development of new targeted therapies. Moreover, although
studies on their role in SLE have focused on the driving events
of LN (i.e. autoimmunity), both genes are also expressed by
kidney parenchymal cells. Thus a potential role in kidney injury,
independent from the presence of autoimmunity, including
a specific role in LN once autoimmunity develops, should be
explored. In this regard, both TNFAIP3 and TLR7 may be differ-
entially expressed in kidney parenchymal cells in the course of
kidney injury (Figure 3).
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