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ABSTRACT

TDP-43 is linked to neurodegenerative diseases
including frontotemporal dementia and amyotrophic
lateral sclerosis. Mostly localized in the nucleus,
TDP-43 acts in conjunction with other ribonucleo-
proteins as a splicing co-factor. Several RNA
targets of TDP-43 have been identified so far, but
its role(s) in pathogenesis remains unclear. Using
Affymetrix exon arrays, we have screened for
the first time for splicing events upon TDP-43
knockdown. We found alternative splicing of the
ribosomal S6 kinase 1 (S6K1) Aly/REF-like target
(SKAR) upon TDP-43 knockdown in non-neuronal
and neuronal cell lines. Alternative SKAR splic-
ing depended on the first RNA recognition motif
(RRM1) of TDP-43 and on 5-GA-3’ and 5-UG-3
repeats within the SKAR pre-mRNA. SKAR is a
component of the exon junction complex, which
recruits S6K1, thereby facilitating the pioneer
round of translation and promoting cell growth.
Indeed, we found that expression of the alternatively
spliced SKAR enhanced S6K1-dependent signaling
pathways and the translational yield of a splice-
dependent reporter. Consistent with this, TDP-43
knockdown also increased translational yield and
significantly increased cell size. This indicates a
novel mechanism of deregulated translational
control upon TDP-43 deficiency, which might con-
tribute to pathogenesis of the protein aggregation
diseases frontotemporal dementia and amyotrophic
lateral sclerosis.

INTRODUCTION

TDP-43 [transactivation response (TAR) DNA binding
protein of 43 kDa] is neuropathologically as well as
genetically linked to frontotemporal dementia (FTD)
and amyotrophic lateral sclerosis (ALS) (1-4). Besides
hyperphosphorylation, fragmentation and aggregation of
TDP-43 in neurodegenerative disease, nuclear depletion of
TDP-43 is a hallmark of affected neurons (1). Thus, in
addition to a toxic gain of misfunction, loss of (nuclear)
TDP-43 function may contribute to disease pathogenesis.

TDP-43 is a RNA binding protein (RBP) involved in
various aspects of RNA metabolism (5,6). TDP-43
mediates transcriptional repression (7,8) and acts on
mRNA stability (9,10) and miRNA processing (11).
Pertaining to alternative splicing, TDP-43 mediates exon
skipping of cystic fibrosis transmembrane conductance
regulator (CFTR) exon 9 (12) and apolipoprotein A-II
exon 3 (13) as well as exon inclusion of survival of
motor neuron exon 7 (14). Other reported and validated
TDP-43 target RNAs include cyclin-dependent kinase 6
(15), splicing component of 35kDa (SC35) (16) and
histone deacetylase 6 (HDAC6) (17-21). In addition,
recent screenings have identified many other novel target
RNAs by use of RNA sequencing after crosslinking and
immunoprecipitation (CLIP) with TDP-43 antibodies
(20,21); however, functional investigation is largely
missing so far.

To expand the knowledge about TDP-43 splice targets,
we have used Affymetrix exon arrays to identify alterna-
tively spliced transcripts upon TDP-43 knockdown.
Thereby, we discovered exon 3 inclusion of S6 kinase 1
(S6K1) Aly/REF-like target (SKAR, also known as
POLDIP3 or PDIP46) to be highly dependent on
TDP-43, but not on FUS/TLS, another RNA-binding
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protein involved in FTD/ALS (22-25). RNAi-mediated
silencing of TDP-43 in non-neuronal and neuronal cell
lines significantly reduced the main SKAR o isoform,
containing all nine exons, and concomitantly increased
the SKAR B isoform lacking exon 3. Retransfection
experiments showed only subtle defects of the
C-terminal glycine-rich domain (GRD) as well as of
disease-associated TDP-43 point mutations, but high-
lighted the involvement of the RNA recognition motif
(RRM) 1. TDP-43 specifically bound to the proximal
intronic region downstream of exon 3 within the SKAR
pre-mRNA. Mutagenesis of either a 5-GA-3’ repeat or
the consensus TDP-43 binding motif 5¥-UGUGUGU-3’
(26) within this region largely abolished the binding
of TDP-43 to the SKAR pre-mRNA and significantly
reduced the splicing of SKAR minigene constructs that
were generated as splicing reporters. Because SKAR,
itself an RRM-containing protein, is a component of the
exon junction complex (EJC) (27), we assessed the effects
on S6K 1-dependent pioneer round of translation and cell
growth. We found that the alternative SKAR f isoform is
significantly more active than SKAR o. Furthermore,
TDP-43 siRNA increased S6K1-dependent signaling and
translational yield as well as cell size. Thus, loss of TDP-43
and resulting alternative splicing of SKAR increases
splicing-dependent global translation and may thereby
contribute to disease pathogenesis by disturbing cellular
protein homeostasis.

METHODS
cDNA constructs

Wild-type and mutant Flag-TDP-43 constructs have been
described previously (17). SKAR o and B ¢cDNA were
PCR amplified from scrambled and siRNATP"** treated
HEK293E cells, respectively, and were subcloned into
pCMV-Myc (Clontech) via BgllI/Notl. Intron containing
SKAR DNA for in vitro transcription/UV-crosslinking
experiments was PCR amplified from human genomic
DNA. Different parts of intron containing SKAR DNA
(exons 2-3, exons 2—4 and parts 1-11) were subcloned into
pGEM-T-Easy (Promega) under control of the T7
promoter. SKAR part 3/4/5 was subloned via Ndel into
a pTB splicing reporter construct that has been obtained
from Emanuele Buratti, ICGEB, Trieste, Italy (28).
Mutant SKAR DNAs were generated by site-directed
mutagenesis. Primer sequences can be found in
Supplementary Table S2.

Firefly luciferase expression construct (pGL2) has been
obtained from Promega. Renilla luciferase expression
constructs with or without intron were obtained from
Melissa Moore, University of Massachusetts, USA (29).
All constructs were sequence verified using BigDye
Terminator v.3.1 and an ABI 3100 Genetic Analyzer
(Applied Biosystems).

Cell culture and siRNA silencing

HEK293E cells (Invitrogen) were cultured in Dulbecco’s
modified Eagle medium (DMEM), SH-SYS5Y cells
(ATCC) in DMEM-FI12 (both Biochrom AG), both
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supplemented with 10% fetal calf serum (PAA
Laboratories) at 37°C under humidified 5% CO,/air.
Stably silenced TDP-43 HEK293E and SH-SYSY cells
have been described previously (17). DNA transfections
were performed with FuGene6 (Roche) or Lipofectamine
2000 (Invitrogen) according to manufacturer’s instruction.
siRNNA transfections were performed using HiPerfect
(Qiagen) with 5-20 nmol siRNA. Scrambled siRNA (All
Stars Negative Control siRNA) and all other siRNAs
were purchased from Qiagen. Target sequences of used
siRNAs were as follows (5—3'): siRNATPP4$A: CACA
ATAGCAATAGACAGTTA; siRNATPP**B: CACACT
ACAATTGATATCAAA; siRNATPPC: AAGAAACA
ATCAAGGTAGTAA; siRNATPP*#D: AAGAATCAG
GGTGGATTTGGT; siRNA"YSA: CTGGGTGAGAAT
GTTACAATT; siRNA"YSB: ACAGCCCATGATTAAT
TTGTA; siRNAFYSC: ACAGGATAATTCAGACAA
CAA; siRNA"YSD: AAGATCAATCCTCCATGAGTA;
siRNA"YSE: AACTATGTAATTGTAACTATA;
siIRNASKAR: CCGCTGGGAAGAGTCTATCTA.

Microarray profiling and FIRMA analysis

For expression profiling using the Affymetrix Human
Exon 1.0-ST Gene Chip®, 1pg of total RNA was
amplified using the WT Sense Target Labeling kit
(Affymetrix). The 5.5pg fragmented and end labeled
cDNA was hybridized to the Human Exon 1.0-ST Gene
Chip®. After hybridization the array was washed and
stained in a Fluidics Station 450 (Affymetrix) with the
recommended washing procedure. Biotinylated cRNA/
cDNA bound to target molecules was detected with
streptavidin-coupled phycoerithrin, biotinylated anti-
streptavidin IgG antibodies and again streptavidin-
coupled phycoerithrin according to the protocol. Arrays
were scanned using the GCS3000 Gene Chip scanner
(Affymetrix) and GCOS 1.4 software. Scanned images
were subjected to visual inspection to control for hybrid-
ization artifacts and proper grid alignment and analyzed
with Expression Console 1.0 (Affymetrix) to generate
report files for quality control.

To detect transcripts with significant changes in their
splicing profiles the approach finding isoforms using
robust multichip analysis (FIRMA) was employed (30).
For the overall workflow, we used a custom build CDF
file with Ensembl transcript annotations, applied back-
ground correction on the individual exon arrays and
then applied the FIRMA method. Finally, plots were
created to visualize the results on a gene level.

The custom-build CDF annotation file was obtained
from the aroma.affymetrix website (http://www.aroma-
project.org/) which, in addition to the standard CDF
file, contains relationships between probe sets and exons
as well as exons and transcripts. These relationships
are needed for the statistical analysis on the exon and
transcript level. Before applying FIRMA a background
correction was employed to each exon array individually.
This was done with the robust multichip analysis (RMA)-
convolution method implemented in the aroma.affymetrix
package (31). This method is based on the quantile


http://nar.oxfordjournals.org/cgi/content/full/gkr1082/DC1
http://www.aroma-project.org/
http://www.aroma-project.org/

2670 Nucleic Acids Research, 2012, Vol. 40, No. 6

normalization protocol described in detail by Bengsston
et al. (32).

After normalization the FIRMA based summarization
was used to calculate a splicing score for each exon.
FIRMA calculates this score for each sample individually.
Based on these individual scores, a f-test was used to cal-
culate a P-value for each exon. The P-value was further
corrected for multiple testing according to Benjamini and
Hochberg (33). To obtain fold-changes, the mean of the
treatment and control FIRMA scores were calculated
and subsequently the control was subtracted from the
treatment (subtraction was used because of the logarith-
mic scale of the FIRMA score). To reduce the occurrence
of false positives, we filtered all probe selection regions
containing less than four probes. Often an additional
gene expression filter is applied. FIRMA, however, impli-
citly favors genes with high expression values, thus such a
filter was not needed.

The plots were created with GenomeGraphs (34) that
allows to overlay annotation and expression data. The
transcript coordinates were obtained with the R-package
biomaRt (35). The plots show all isoforms reported in
Ensembl, the normalized log-intensities for each exon
array, the RMA-based intensities and the FIRMA
scores and fold-changes.

RT-PCR

Cellular RNA was extracted using the RNeasy Mini
Kit (Qiagen) following manufacturer’s instruction. For
semi-quantitative  RT-PCR experiments, 600ng total
RNA were reverse transcribed using Transcriptor High
Fidelity ¢cDNA Synthesis Kit (Roche) and anchored
oligo-dT primer. RT reaction (2 ul) was used as template
for transcript amplification in a 25 pl reaction with 5 pl 5x
GoTaq Buffer, 0.1 pl GoTaq Polymerase (Promega) and
2 uM primer. Amplified PCR products were resolved by
electrophoresis using 2% agarose gels and stained with
ethidium bromide.

For qRT-PCR, 1000ng total RNA were reverse
transcribed using the same conditions as above. The
1/10 dilutions were used in triplicates with 0.2 uM
primer and 5pl LightCycler 480 SYBR Green I Master
in a 10 pl reaction and qPCR was executed in a 384-well
block on a LightCycler 480 system (Roche). Absolute
transcript levels for TDP-43, total SKAR, SKAR a,
SKAR B, Renilla and firefly luciferase, and PBGD were
obtained by second derivative method. Relative transcript
levels were calculated as a ratio to PBGD and normalized
to the relative expression level of the mock-transfected
control. For expression of transcript levels as a ratio of
SKAR isoforms, calibration curves with DNA templates
(pCMV-Myc-SKAR o and SKAR B, respectively) were
generated. Relative transcript levels were then recalculated
into absolute copy numbers and expressed as a ratio to
total SKAR copies. Primer sequences can be found in
Supplementary Table S2.

Western blotting

Cells were harvested and lysed in lysis buffer [SO0 mM Tris
(pH 7.4), 50mM NaCl, 1% NP-40, 0.1% deoxycholate

and 0.1% SDS, 1x Complete proteinase inhibitor, 1x
PhosSTOP phosphatase inhibitor (both Roche)]. Protein
concentration was determined by use of bicinchoninic acid
(BCA Protein Assay; Pierce Biotechnology). Protein was
subjected to SDS-PAGE using 10% polyacrylamide gels
or 4-12% Bis—Tris NuPAGE gradient gels (Invitrogen)
and transferred onto nitrocellulose. Membranes were
incubated with primary antibodies overnight at 4°C
followed by HRP-conjugated secondary antibodies
(1:15000; Jackson ImmunoResearch Laboratories).
Bands were visualized with ImmobilonWestern
Chemiluminescent HRP  Substrate (Millipore) on
Hyperfilm ECL high performance chemiluminescence
(GE Healthcare). For densitometric analysis Image J
software version 1.43u was used.

Antibodies

Following antibodies were used for western blot analysis:
rabbit anti-TDP-43 (1:2000; ProteinTech Group), mouse
anti-TDP-43 (1:2000, Abnova, clone 2E2-D3), mouse anti-
Flag (1:10000-1:100000; Sigma, clone M2), mouse
anti-FUS (1:2000; Santa Cruz, clone 4H11), mouse
anti-GAPDH  (1:35000;  Biodesign International),
mouse anti-Myc (1:5000; Roche, clone 9E10), rabbit
anti-SKAR /B, rabbit anti-SKAR o, mouse anti-S6
(clone 54D2), rabbit anti-p70 S6 kinase, rabbit anti-
phosphoS6 (Ser235/236), rabbit anti-phospho p70 S6

Kinase (Thr389), rabbit anti-phospho-Akt substrate
(RXRXXpS/T) (all wused 1:1000; Cell Signaling
Technologies).

RNA crosslinking

RNA crosslinking experiments were carried out as
described recently (17) with slight modifications. Briefly,
pGEM-T-Easy containing different parts of SKAR under
control of the T7 promoter were linearized with Pvul and
Ndel and gel purified. Briefly, 100ng DNA was then
in vitro transcribed and biotinylated using biotin-16-UTP
(Biotin RNA Labeling Mix) and T7 RNA Polymerase
(both Roche) according to manufacturer’s instructions.
DNase digest was performed by adding 2ul of
RNase-free DNase (Promega) for 15min at 37°C and
reaction stopped by addition of 1 pul of 0.5M EDTA.

The Spmol biotin-RNA was incubated with 250 pl
RNA-X-Link buffer [20 mM HEPES (pH 7.5), SmM
MgCl,, 50mM KCI, 150mM NaCl, 0.5mM EGTA,
0.5mM dithiothreitol, 10% glycerol] and 500 pg
HEK293E lysate for 20min at 30°C. HEK293E lysates
were generated from HEK293E cells transfected with
Flag-TDP-43 for 48h and lysed in RNA binding buf-
fer+1% Triton X-100. UV irradiation was performed
on ice for 10min with 0.120Jcm™ in a Bio-Link BLX
device (Vilber-Lourmat). After brief RNase A digest
(10pgml™', Sigma) for 15min streptavidin-beads
(Sigma) were added and precipitations carried out over-
night at 4°C. Beads were washed 5x in RNA binding
buffer + 1% Triton X-100 and elution performed at 95°C
with 1x Lammli buffer. Eluate and input were separated
by 10% SDS-PAGE, blotted onto nitrocellulose and
probed with antibodies.
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Luciferase assay

Translational yield of spliced versus unspliced RNAs was
analyzed as described previously (27). In brief, HEK293E
cells were double transfected either with intron-containing
Renilla luciferase plus firefly control or with intron-less
Renilla luciferase plus firefly control in six-well format.
At 8-h posttransfection, cells were split into 24-wells and
transfected another 16h later with DNA or another 16
and 36 h later with siRNA. Nearly 48 h after DNA trans-
fection or 24h after last siRNA transfection luciferase
activity was measured in a Mithras LB940 dual-channel
luminometer (Berthold Technologies) using the Dual
Luciferase Reporter Assay system (Promega). Of each
sample, the ratio of Renilla to firefly luminescence was
calculated resulting in transfection efficiency controlled
values for intron-containing Renilla and intron-less
Renilla, respectively. Translational efficiency of spliced
versus unspliced RNAs was expressed as a ratio of
intron-containing to intron-less transfection-controlled
Renilla activities, which were normalized to the control
samples (cells treated with scrambled siRNA). The
concomitant Renilla and firefly mRNA amount was
calculated accordingly.

Total protein measurements

HEK?293E cells were transiently transfected with siRNA
against TDP-43 or treated with control siRNA on 3 con-
secutive days. Twenty-four hours after the last transfec-
tion cells were detached from the plate and counted three
times and 2.5 x 10° cells were harvested and lysed in 100 pl
RIPA buffer. Protein concentration was determined in
triplicates using BCA assay.

Flow cytometry

HEK293E cells were transiently transfected with siRNA
against TDP-43 or treated with control siRNA on three
consecutive days. Twenty-four hours after the last trans-
fection cells were detached from the plate and washed
twice in PBS, resuspended in PBS and kept on ice
until measurement. Mean forward scatter values
of 50000 cells per condition in five independent experi-
ments were recorded using a CyAn flow cytometer
(DakoCytomation).

Statistical analysis

Statistical analysis was performed with paired, two-sided
Student’s -test. Error bars indicate SEM.

RESULTS

Identification of SKAR as a TDP-43 responsive splice
target

To obtain a full survey of TDP-43 splice targets, we per-
formed for the first time a human genome-wide screen
using Affymetrix exon arrays. Human embryonic kidnay
HEK?293E cells were transiently silenced by siRNATPF-43
treatment, achieving strong TDP-43 knockdown (17).
Total RNA was prepared from four independent
sSiRNATPP4 and  four scrambled control siRNA
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treatments, and hybridizations of Human exon arrays
were performed. The raw data was analyzed by FIRMA,
which introduces a score for the likeliness of alternative
exon usage, the FIRMA score (30), and further adjusted
the primary P-value for multiple testing according to
Benjamini and Hochberg to correct for the occurrence
of false positives. When the cut-off was set to P <0.1,
only 13 probe sets passed these stringent criteria
(Supplementary Table S1). By far, the greatest significance
was observed for POLDIP3/SKAR that was selected
for in-depth validation.

The observed splicing alteration of the SKAR transcript
obtained by microarray profiling (raw data Figure 1A,
normalized mean values Figure 1B) was traced to a
specific hybridization change in exon 3 (FIRMA score
Figure 1C, genomic representation of POLDIP3/SKAR
Figure 1D). Interestingly, we found two major SKAR
transcripts annotated in the Ensembl database (Figure
1E). The SKAR o transcript contains all nine exons,
whereas the SKAR [ transcript lacks exactly exon 3.
Exclusion of the 87 base pair bearing exon 3 results in a
29 amino acids in-frame deletion in the SKAR B protein
(Figure 1F). To confirm the identity of SKAR transcripts
observed upon control or TDP-43 siRNA treatment, we
cloned both variants by RT-PCR. In fact, sequencing of
the subcloned variants from control or TDP-43 silenced
cells, revealed in conformity with database entries the
SKAR o and B isoforms, respectively. Thus, TDP-43
silencing led to an alternative splicing of SKAR, a shift
from the SKAR o to the SKAR B transcript.

Validation of TDP-43-dependent alternative SKAR
splicing

Alternative splicing of SKAR upon knockdown of
TDP-43 was validated in non-neuronal HEK293E cells
as well as neuronal SH-SYSY cells (Figure 2). In
HEK293E cells, four different siRNAs were used to rule
out off-target artifacts. Stable silencing of HEK293E and
SH-SYSY cells by integration of lentiviral delivered
shRNATPP43 was further used to circumvent effects due
to general cell stress by transient siRNA transfections.
RT-PCR confirmed alternative splicing of SKAR upon
TDP-43 knockdown in non-neuronal HEK293E cells as
well as neuronal SH-SYS5Y cells. SKAR « is the predom-
inant isoform (~70%) while SKAR f is a minor isoform
(~30%) under basal conditions (Figure 2A-D). Control
siRINA treatment did not affect SKAR splicing, while
all four siRNATPP treatments led to a dramatic switch
from SKAR o to SKAR f expression, now accounting for
>90% of the total SKAR transcripts (semi-quantitative
RT-PCR Figure 2A, normalized qRT-PCR Figure 2C,
for original qRT-PCR data see Supplementary Figure
S1A). As for transient silencing, stable knockdown of
TDP-43 led to a conspicuous shift of the predominant
SKAR o to the SKAR [ isoform in several
shRNATPP43 HEK293E cell clones on mRNA level
(semi-quantitative RT-PCR Figure 2B, normalized
qRT-PCR Figure 2D, for original qRT-PCR data see
Supplementary Figure S1B). Importantly, shift from the
predominant SKAR o expression to the SKAR [ isoform
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Figure 1. GenomeGraph of SKAR as a splice target of TDP-43. HEK293E cells were transfected with control siRNA (scrambled) or treated with
siRNA against TDP-43 (siRNATPP*%) Four biological replicates of each group were hybridized on a Human Exon 1.0-ST Gene Chip. Intensity
values of microarray hybridizations, single values (gray), mean group intensities of scrambled siRNA (blue) and siRNATP? -43 (green), are shown as
normalized background-corrected logarithmic intensities (A) and RMA corrected probe-level data (B). Vertical lines separate the 18 individual probe
sets covering the POLDIP3/SKAR gene. (C) Depicted are the mean group values of the FIRMA score. The fold change of the FIRMA score (FC(F))
is shown in red. (D) Genomic representation of the POLDIP3/SKAR gene in orange. Gray lines at the top of this panel indicate localization of the
individual probe sets within the genomic coordinates. (E) The two Ensembl annotated alternative splice isoforms SKAR o and SKAR p are depicted
in blue. SKAR exon 3 is highlighted by a box. (F) The SKAR a protein isoform is shown in pink, the RRM domain is shown in dark blue.
Highlighted in green is the exon 3 derived part. At the bottom the amino acid sequence of exon 3 is given.

was not only observed in stably silenced TDP-43 non- isoform to the smaller SKAR [ isoform was detected
neuronal HEK293E cells, but also in human neuro- upon TDP-43 knockdown also on protein level by
blastoma SH-SYSY cells (Figure 2B and D, for original western blot analysis (Figure 2E and F). The observed
qRT-PCR data see Supplementary Figure SI1B). molecular weight difference between SKAR o and [
Consistently, a robust switch from the larger SKAR « isoforms is in agreement with sequencing data from
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Figure 2. Validation of SKAR alternative splicing upon transient silencing of TDP-43. TDP-43 was either silenced transiently by siRNA treatment
(A, C, E and G) or stably by use of lentiviral particles encoding for a TDP-43-specific siRNA followed by the selection of single cell clones (B, D
and F). For transient silencing, HEK293E cells were either mock treated (m) or transiently transfected with scrambled control siRNA (scr), with one
of four different TDP-43-specific siRNAs (siRNATPP*3 A-D) or with one of five specific siRNAs against FUS (siRNAFYS A-E), as indicated. (A-D)
Total RNA was extracted and analyzed by RT-PCR. (A and B) Semi-quantitative RT-PCR was performed with primer pairs specific for TDP-43,
SKAR (ex2-ex4), SKAR o (ex2|3-ex4) and SKAR B (ex2|4-ex4). (C and D) Real-time PCR was performed with primer pairs against SKAR o
(ex2|3—ex4) (white bars), SKAR B (ex2|4-ex4) (gray bars) and total SKAR (ex5|6-ex7). PBGD was used as a housekeeping gene. Resulting relative
SKARa/PBGD, SKARB/PBGD and total SKAR/PBGD ratios were recalculated into absolute copy values and normalized to total SKAR values.
Shown are the mean values of five independent experiments = SEM. *P < 0.05; **P < 0.005; ***P < 0.0005; ns = not significant. Original qRT-PCR
data is presented in Supplementary Figure S1A and SIB, respectively. (E-G) Protein was extracted, electrophoresed and resulting western blots
probed with antibodies specific for TDP-43, SKAR (both isoforms) and SKAR o. GAPDH was used as a loading control. FUS silencing efficiency was
controlled by use of an anti-FUS antibody. Note, that, depending on the primer pair and antibody used, SKAR RNA and protein isoforms, respectively,
are visualized as two bands with different molecular weights. The upper band represents SKAR o, the lower corresponds to SKAR f, as indicated.

subcloned transcripts and the lack of 29 amino acids in Importantly and consistent with our present findings,
isoform . Moreover, while both isoforms are detected exon 3 skipping of POLDIP3/SKAR had also been
with a total SKAR antibody (CST #3794), isoform f is found to occur in TDP-43 depleted adult mouse brain
not recognized by an antibody that has been produced samples (20). Thus, TDP-43 knockdown leads to alterna-
with a synthetic peptide corresponding to human SKAR tive splicing of SKAR in non-neuronal as well as neuronal
o (CST #3235). cells. Noteworthy, SKAR exon 3 skipping is specifically
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mediated by TDP-43 depletion since knockdown of FUS,
the second RBP involved in ALS and FTD (22-24), did
not affect SKAR splicing (Figure 2G). Thus, silencing of
TDP-43 in non-neuronal and neuronal cells specifically
causes alternative splicing of SKAR, shifting from the
predominant SKAR o to the SKAR B isoform, both on
RNA and protein level.

Restoration of SKAR splicing by TDP-43 wt
re-transfection

To prove that alternative splicing of SKAR is a direct
effect of TDP-43, we performed rescue experiments

with wild-type (wt) and mutant TDP-43 (Figure 3).
Retransfection of TDP-43wt significantly restored the
expression of SKAR o RNA levels and also reversed,
at least partially, the upregulation of SKAR f RNA
levels (semi-quantitative RT-PCR Figure 3A, normalized
gqRT-PCR Figure 3B, for original qRT data see
Supplementary Figure SI1C). In contrast, mutant
TDP-43 lacking RRMI1, but not RRM2, failed to
restore SKAR o RNA levels. Consistently, retransfection
with a double-point mutant F147L/F149L (FFLL) that
disrupts the RNA binding potential of RRM1 (12,36)
prevented the rescue of SKAR o levels. The effects of
the respective TDP-43 mutants were also validated on
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Figure 3. SKAR alternative splicing is dependent on RRM1 of TDP-43. (A) Stably silenced HEK293E cells (shRNATPP4%) or transiently silenced
HEK 293 cells (siRNATPP3) were transiently transfected with either control vector (—) or Flag-TDP-43 variants (wt, ARRM1, ARRM2, ARRMI,2,
FFLL and AGRD or disease-associated mutations, as indicated). Parental HEK293E cells or cells treated with a scrambled siRNA (—) were used as
an internal control. (A) Total RNA was extracted and subjected to semi-quantitative RT-PCR using primer pairs amplifying total TDP-43,
endogenous TDP-43, total SKAR (ex2-ex4), SKAR o (ex2|3-ex4), SKAR B (ex2|4-ex4) and PBGD as a housekeeping gene. (B and E) RNA
was extracted and real-time PCR performed with primer pairs against SKAR o (ex2|3—ex4) (white bars), SKAR B (ex2|4—ex4) (gray bars) and total
SKAR (ex5|6—ex7). PBGD was used as a housekeeping gene. Resulting relative SKAR o/PBGD, SKAR B/PBGD and total SKAR/PBGD ratios
were re-calculated into absolute copy values and normalized to total SKAR values. Original qRT data is presented in Supplementary Figure S1C and
S1D, respectively. *P < 0.05; **P < 0.005; ***P < 0.0005; ns = not significant. (C and D) Protein was extracted, electrophoresed and resulting western
blots probed with anti-TDP-43, anti-Flag and anti-SKAR antibodies.
values = SEM of densitometric analysis of three independent experiments. *P < 0.05; **P < 0.005; ns = not significant.

GAPDH was used as a loading control.

(D) Shown are the mean
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protein level by western blot analysis (Figure 3C and for We also tested the importance of the C-terminal GRD,
densitometric quantification Figure 3D). Hence, the in which most disease-associated mutations are located.
alternative splicing of SKAR strictly depends on the Deletion of the GRD did not impair the rescue of
presence and functionality of the TDP-43 RRMI. TDP-43 overtly (Figure 3A—C). However, a tendency of
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less rescue activity could be seen by qRT-PCR
experiments and western blots (Figure 3B and C). When
testing discrete pathogenic point-mutations, only some
mutations (D169G, Q343R, R361S, A382T and N390S)
showed a tendency to restore exon 3 inclusion less effi-
ciently than TDP-43 wt (Figure 3E). Thus, the impact of
of disease-associated TDP-43 mutations and the GRD in
general for SKAR splicing remains unclear. We suggest
that TDP-43 splicing activity toward SKAR specifically
depends on direct RRMI1 binding to the SKAR
pre-mRNA (see below) and potential co-factors believed
to interact with the TDP-43 GRD (37) are less important
for this particular splice target of TDP-43.

A repeat containing RNA stretch 3' of exon 3 is necessary
for TDP-43 and SKAR splicing

To investigate further, whether TDP-43 mediates exon 3
inclusion by direct binding of the SKAR pre-mRNA, we
performed RNA crosslinking experiments. Therefore,
we used different parts of the genomic SKAR DNA
(Figure 4A) for in vitro transcription/biotinylation.
SKAR DNA containing either exons 2-3 or exons 34
of the SKAR pre-mRNA was in vitro transcribed/
biotinylated, mixed together with lysates from HEK293E
cells that were transfected with Flag-TDP-43wt or
ARRM1/2, UV-crosslinked and pulled down using
streptavidin-coupled agarose. Eluates were separated by
SDS-PAGE and western blot probed with TDP-43 and
Flag antibodies to detect RNA-bound endogenous and/or
transfected TDP-43 protein (note: the ARRM1/2 deletion
mutant could only detected by the Flag antibody, since the
epitope of the TDP-43 antibody is largely deleted in
this mutant). Endogenous TDP-43wt as well as trans-
fected TDP-43 wt did bind to SKAR pre-mRNA (Figure
4B). In contrast, the RRM-lacking mutant ARRM]1/2,
which fails to restore SKAR o levels (Figure 3A-D),
was not pulled down efficiently by streptavidin-coupled
agarose (Figure 4B), demonstrating the specificity of this
assay. Interestingly, SKAR exons 2-3 and exons 3—4 frag-
ments were bound by TDP-43 wt to equal extent, suggest-
ing that TDP-43 has either multiple binding sites or binds
to exon 3 itself.

To resolve the binding site more exactly, we went on to
generate different, but overlapping, constructs (Figure 4A,
bottom) that were subsequently used for in vitro transcrip-
tion/biotinylation. UV-crosslinking experiments showed
that Flag-TDP-43 wt binds strongly to bases 1104-1718
(part-5) within the SKAR exons 24 pre-mRNA
(Figure 4C), which corresponds to exon 3 plus approxi-
mately 500 bases downstream of exon 3. Consistent
with the previous experiment using the larger parts
exons 2-3 and exons 3-4, TDP-43 bound also to the
exon 3 containing overlapping part-4 (bases 896-1191)
although to a much lesser extent. Together these data
show that TDP-43 binds directly to SKAR pre-mRNA
within exon 3 and more prominently to the downstream
sequence of exon 3. This binding site within the SKAR
pre-mRNA is in accordance with a recently published
study that analyzed TDP-43-bound RNAs by CLIP (21).
In addition, this binding site is in conformity with the

hypothesis of position-dependent regulation of alternative
splicing that appears to be a rather general phenomenon:
RBPs bind to the 5 region of an exon or to the exon
itself if they mediate skipping whereas binding to the
3’ region often mediates exon inclusion (38), which
appears to be the case here.

To narrow down the binding sequence, we generated
DNAs containing ecither only the 5 (part-5a) or the
3’ (part-5b) region of the preferential bound SKAR
pre-mRNA part-5 (Figure 5A). UV-crosslinking experi-
ments using TDP-43wt and the RNA-binding deficient
mutant FFLL showed that transfected TDP-43wt but
not FFLL protein bound to SKAR pre-mRNA part-5
(Figure 5B). Equal binding efficiency was observed for
part-5a, which contained the exon 3 plus the first 100
bases downstream. In contrast, TDP-43 did not bind to
part-5b, which contained the 3’ region of part-5, indicating
that TDP-43 binds the proximal intronic region down-
stream of SKAR exon 3.

A closer look at this sequence revealed three neighbor-
ing repeats: motif A (containing 3x GAGU), motif B
(containing 8x GA) and motif C, the latter representing
a short variant of the consensus binding motif (GU),
of TDP-43 (26) 5-UGUGUGU-3 (Figure 5C). To
analyze the binding of TDP-43 to these repeat motifs,
we mutagenized each individually (by changing guanines
to cytosines) or deleted them altogether (Figure 5C) and
performed RNA crosslinking experiments. Mutagenesis
of all three individual motifs led to a strong decrease
in the binding affinity toward TDP-43 compared to
non-mutated RNA (Figure 5D), suggesting that all three
motifs contribute to TDP-43 binding in part. A complete
loss of binding could only be achieved by complete
deletion of all three motifs (Figure 5D).

We next tested the functional consequences upon muta-
genesis of the RNA repeat motifs by generating SKAR
splicing reporter constructs. A region of the SKAR
pre-mRNA (exon 3 plus 500bp up- and downstream,
corresponding to SKAR parts 3+4+5) was cloned into
an established splicing reporter vector (pTB) with an SV40
promoter and flanking human a-globin and fibronectin
exons (28) (Figure 5E). Under basal conditions, expression
of this vector led to the appearance of a single RNA
product, whereas TDP-43 knockdown led to dramatic
and significant switch to an alternatively spliced product,
corresponding to the isoforms SKAR o and SKAR B,
respectively (Supplementary Figure S2A, for densito-
metric quantification see Supplementary Figure S2B).
Compared to the non-mutagenized splicing reporter,
expression of mutagenized SKAR RNA motifs that we
showed to be involved in TDP-43 binding (see above)
led to the appearance of the alternatively spliced SKAR
B isoform even under non-silenced conditions (Figure SF
and G), although to varying extent. Mutagenesis of motif
A had the least effect, whereas mutagenesis of motif B and
C similarly decreased the splicing efficiency to <20%.
In consistence with the RNA-binding experiments, the
deletion of all three motifs had the strongest effect onto
the splicing efficiency of this SKAR splicing reporter.
Thus, deletion of the TDP-43 binding sites leads to
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Figure 5. A repeat containing RNA stretch 3’ of exon 3 is necessary for TDP-43 and SKAR splicing. (A) Schematic representation of constructs
used for refined RNA crosslinking assays. (B) Indicated fragments of SKAR DNA were in vitro transcribed/biotinylated and mixed with lysates form
HEK?293E cells transiently transfected with Flag-TDP-43wt or FFLL. No RNA was added to control samples. Samples were UV crosslinked and
precipitated with streptavidin-agarose. Western blots of streptavidin precipitates (left panel) were probed with anti-TDP-43 and anti-Flag to visualize
co-precipitated endogenous and exogenous TDP-43. Biotinylated SKAR RNAs pulled down transfected as well as endogenous TDP-43 wt but not
FFLL. Protein inputs (right panel) of HEK293E lysates confirmed even transfection efficiencies. (C) Schematic representation of the three repeat
motifs and mutagenized variants within the SKAR pre-RNA 3’ of exon 3. (D) Non-mutated or mutagenized variants of SKAR DNA part-5 were
in vitro transcribed/biotinylated and mixed with lysates form HEK293E cells transiently transfected with Flag-TDP-43 wt. No RNA was added to
control samples. Samples were UV-crosslinked and precipitated with streptavidin-agarose. Western blots of streptavidin precipitates were probed with
anti-TDP-43 and anti-Flag to visualize coprecipitated endogenous and exogenous TDP-43. (E) Schematic representation of the used SKAR minigene
construct pTB SKAR part-3/4/5. Primer annealing sites are indicated by arrows. (F and G) HEK293E cells were transfected with pTB SKAR
part-3/4/5 variants, as indicated. RNA was extracted and used for RT-PCR using primers for pTB and PBGD as a housekeeping gene.
(F) Representative RT-PCR is shown. (G) Shown are the results (mean values = SEM) of densitometric analysis of seven independent experiments
calculated as the ratio of SKAR o to SKAR B. *P <0.05; ***P <0.0005.
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Figure 6. SKAR B is more active than SKAR o and leads to enhanced translation and increased cell size. (A) HEK293E cells were treated with
control siRNA or transfected with siRNA against SKAR or TDP-43 as indicated. Stably silenced siRNATPP*3 and transiently transfected HEK293E
cells were transfected with either control vector (—) or plasmids encoding for Myc-SKAR o, Myc-SKAR B or Flag-TDP-43 wt, as indicated. Cells
were serum starved for 16h. After 6h serum-stimulation cells were harvested, protein extracted and electrophoresed. Resulting western blots were

(continued)



exactly the same exon 3 skipping effect as does silencing of
TDP-43 for the SKAR wt pre-mRNA.

SKAR B is more active than SKAR a

Rather little is known about the functions of SKAR.
It was originally found as a protein interacting with
DNA polymerase II (39). More recently, SKAR was
identified as a protein interacting with S6K1 and to
increase cell size in an S6K1-dependent fashion (40).
Moreover, SKAR can recruit S6K1 to the EJC, a
complex that forms upon splicing of intron-containing
pre-mRNAs at the exon junction. Thereby, SKAR facili-
tates the EJC-dependent pioneer round of translation
(27). Nevertheless, isoform [ was not investigated.
Bioinformatic analyses of SKAR o and B variants could
not reveal any obvious difference between both isoforms.
Moreover, exon 3 does not contain a known protein motif
or sites that are predicted to be post-translationally
modified (Figure 1F).

To detect functional divergences of both SKAR
isoforms, we first tested the possibility of different
cellular localization of the nuclear cytoplasmic shuttling
protein SKAR (27). We could not find any sign for altered
subcellular localization (Supplementary Figure S3A) or
subnuclear distribution (Supplementary Figure S3B).
However, we were restricted to the analysis of over-
expressed SKAR o and SKAR f, respectively, because
of the low sensitivity of the SKAR antibody toward
endogenous protein levels in immunofluorescence
stainings.

Since SKAR enhances the activity of S6K1 and down-
stream S6K1-dependent phosphorylation events (27), we
tested the activity of both SKAR isoforms on the phos-
phorylation state of S6KI1 itself and of its downstream
targets. Therefore, we treated cells with SKAR-specific
siRNA and re-expressed Myc-tagged SKAR o or
SKAR B cDNAs. Western blotting using phospho-
S6K1, phospho-S6 and the S6K1 phospho-motif
RXRXXpS/T antibodies showed, in agreement with a
previous study (27), that cells treated with SKAR
siRNA had lower phosphorylation levels compared to
non-silenced cells. As expected, SKAR retransfections
restored S6K1 phosphorylations. Interestingly, cells-
expressing SKAR B had higher phosphorylation levels
compared to SKAR o transfected cells (Figure 6A, left
panel). This indicates that SKAR B is more active than
the SKAR o isoform. Although the effects of the
TDP-43 silencing were less prominent compared to
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direct effect of SKAR silencing, we found that
TDP-43 silenced cells had higher phosphorylation
levels of S6K1 and of S6KI-dependent targets than
unsilenced cells (Figure 6A, middle panel) or cells that
have been additionally retransfected with Flag-TDP-
43wt and therefore express less of the SKAR B
isoform, which we suggest to be more active (Figure
6A, middle and right panel).

We went on to investigate the efficiency of the pioneer
round of translation, which is restricted to intron-
containing pre-mRNAs. Therefore, we measured the
luciferase activities of established intron-containing
versus intron-less Renilla luciferase constructs (29).
A firefly luciferase was used to control for transfection
efficiencies (Figure 6B). Compared to SKAR «, cells
overexpressing SKAR f showed a significantly higher
ratio of intron-containing to intron-less luciferase
activity (Figure 6C, left panel), although both isoforms
were expressed equally (Figure 6C, right panel). Thus,
SKAR B more actively promotes splice-dependent trans-
lational yield than SKAR «. Consistently, TDP-43
depleted cells, which express more SKAR [ than SKAR
o, showed a significantly higher ratio of intron-containing
to intron-less luciferase activity compared to non-silenced
cells (Figure 6D). The luciferase mRNA levels were not
affected by the transfections (Figure 6E), ruling out
potential effects on transcription and/or reporter mRNA
stability. These results suggest that the pioneer round of
translation is more efficiently engaged in TDP-43 silenced
cells. In line with this, TDP-43-depleted HEK293E cells
also showed a small but clear tendency toward a higher
total protein amount, as measured by BCA assay (Figure
6F) and significantly increased cell size compared to
non-silenced cells, as measured by flow cytometry
(Figure 6G and for stably silenced cells see
Supplementary Figure S4). Together these data show
that SKAR f is more active than SKAR o and that
TDP-43 silencing increases cell size and enhances
the splicing-dependent pioneer round of translation. We
speculate that disturbed translation as mediated by
TDP-43 deficiency may contribute to proteotoxicity in
human neurodegenerative diseases.

DISCUSSION

RNA metabolism is linked to neurodegenerative diseases,
particularly to FTD and ALS, in a conspicuous manner.
The RBPs TDP-43 and FUS/TLS, which compose each

Figure 6. Continued

probed with anti-SKAR, anti-phospho S6K1 (Thr389), anti-S6K 1, anti-phospho S6 (Ser235/236), anti-S6, anti-phospho Akt substrate (RXRXXS/T)
and anti-TDP-43 antibodies. GAPDH was used as a loading control. Transfection of SKAR B or depletion of TDP-43 results in overall stronger
phospho-signal compared to SKAR a. (B) Schematic representation of luciferase constructs used for analysis of translation. (C—G) HEK293E cells
were transfected with either Myc-SKAR o or Myc-SKAR B (C) or with control siRNA (scr) and individual siRNATPP#3 A_D, as indicated (D-G).
(C-E) Before DNA/siRNA transfection, cells were transfected with firefly control vector plus either intron-containing or intron-less Renilla luciferase
constructs. (C and D) Luciferase activity was measured and normalized to control treated HEK293E cells. Shown are the mean values £ SEM of five
independent experiments. *P < 0.05. Western blotting confirmed equal expression of Myc-SKAR o and Myc-SKAR B (C, right panel). (E) gqRT-PCR
confirmed equal RNA levels of Renilla and firefly luciferase in non-silenced and silenced HEK293E cells. (F) Cells were counted and equal numbers
of cells was collected. Protein amount was determined using BCA protein assay. Shown are the mean values + SEM of five independent experiments.
*P <0.05. (G) Cell size was analyzed by flow cytometry, monitoring the forward scatter parameter. Shown are the mean values = SEM of five

independent experiments. *P < 0.05; **P < 0.005.


http://nar.oxfordjournals.org/cgi/content/full/gkr1082/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr1082/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr1082/DC1

2680 Nucleic Acids Research, 2012, Vol. 40, No. 6

specific subsets of tau-negative, ubiquitin-positive aggre-
gates in FTD/ALS are both linked to transcription,
mRNA splicing and miRNA processing (5). In addition,
other disease-related genes (elongator protein 3, senataxin
and angiogenin) have been functionally connected to
RNA processing (41-43). Thus, RNA mismetabolism
appears as an emerging pathway in FTD/ALS. The vital
importance of TDP-43 is further underlined by the embry-
onic lethality of homozygous knockout animals (36,44—
46), which is besides neurological and muscular defects
one of the frequently observed phenotypes upon
knockout of RBPs (47).

To screen for novel splice targets of TDP-43, we have
performed microarray expression profiling using exon
array technologies. Currently identified disease-associated
genes were neither quantitatively (17) nor qualitatively
(this study) altered upon TDP-43 knockdown in
HEK?293E cells. However, we have discovered a signifi-
cant shift from the SKAR o to the SKAR B isoform
upon depletion of TDP-43. This regulation was further
validated in human neuronal cells and has been confirmed
by others in mouse adult brain tissue upon TDP-43
depletion (20), emphasizing that this effect is evolutionary
conserved and relevant for the nervous system. Using
RNA crosslinking assays, we have further shown that
TDP-43 binds directly to the SKAR pre-mRNA. For
this, the RRM1 is absolutely required, since deletion or
mutagenesis of this domain rendered TDP-43 is incapable
of binding to the SKAR pre-mRNA and also to
restore exon 3 inclusion. In contrast to RRM1, RRM?2
of TDP-43 seems dispensible for SKAR exon 3 inclusion,
which is in accordance with previous publications on
other TDP-43-bound RNAs (12). Similar to reports
on CFTR splicing and HDAC6 regulation (17,48),
disease-associated TDP-43 point mutations, which
mostly cluster within the GRD, did not overtly affect
the splicing activity toward SKAR pre-mRNA. Thus,
these tested pathogenic mutations do not represent
loss-of-function mutations, at least in regard to the until
now tested RNA substrates. Surprisingly, deletion of the
whole GRD only partially reduces SKAR splice activity
of TDP-43. It appears that this particular splicing event
depends more on direct TDP-43 binding than potential
GRD-interacting co-factors (37).

At the RNA level, our mapping experiments show that
TDP-43 binds to a proximal intronic region downstream
of the alternatively spliced SKAR exon 3. The identified
TDP-43 binding region within the SKAR pre-mRNA is
consistent with the reported HITS-CLIP crosslink cluster
(21). We detected three repeat motifs in this region,
and found that each of the repeats contribute to some
TDP-43 binding, but only the deletion of all three motifs
abolished TDP-43 binding. Importantly, this was func-
tionally mirrored in a SKAR exon 3 splice reporter
assay we generated. Deletion of the TDP-43 binding
sites had the same exon 3 skipping effect as TDP-43
silencing for the cell endogenous SKAR pre-mRNA.
In conclusion, TDP-43 binds to a defined region just
downstream of the alternatively spliced SKAR exon 3,
and mediates SKAR exon 3 inclusion.

The functions of SKAR are not very well understood.
However, it is known that SKAR positively affects
cap-dependent protein translation (27). In addition,
SKAR mediates S6K 1-dependent effects on cell size (40),
probably as a result of enhanced protein translation.
However, SKAR o and B isoforms have not been
investigated in comparison so far. While bioinformatic
analyses have not revealed protein motifs or sites for
post-translational modifications in or around exon 3, it
may well be that the sequence encoded by exon 3 regulates
the activity of SKAR. This may be due to altered protein—
protein interactions and/or structural changes caused by
either lack of a inhibitory function encoded by exon 3
itself, or by creation of a novel stimulatory function by
fusion of exons 2 and 4. Indeed, when comparing the
activities of both SKAR isoforms, we found that
reported functions of SKAR were enhanced by expression
of the SKAR B isoform. This included increased phos-
phorylation levels of S6K1 downstream targets and
S6K1 itself. Thus, SKAR B renders S6K1 more active
than SKAR a. Consistently, cells with reduced TDP-43
also showed enhanced phosphorylation levels of S6K1
and of downstream targets. Functionally, this correlated
with enhanced protein translation of intron-containing
RNAs, and with increased total protein content and cell
size.

In summary, we have shown that TDP-43 regulates the
alternative splicing of SKAR. TDP-43 knockdown
almost completely shifts the expression from the predom-
inant SKAR « to the B isoform, which activates S6K1
more efficiently and increases global protein translation.
We have recently shown that TDP-43 knockdown
impairs the turnover of toxic proteins by HDAC6
downregulation. In line with this, enhanced
S6K 1-dependent protein synthesis might be another
mechanism by which TDP-43 depletion may disturb
cellular protein homeostasis. Thus, TDP-43 appears to
be generally involved in protein metabolism by
opposite regulation of anabolic and catabolic cellular
functions that may eventually contribute to disease
pathogenesis.
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