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Abstract: Chronic kidney disease is highly prevalent worldwide. The decline of renal function is
associated with inadequate removal of a variety of uremic toxins that exert detrimental effects on cells
functioning, thus affecting the cardiovascular system. The occurrence of cardiovascular aberrations in
CKD is related to the impact of traditional risk factors and non-traditional CKD-associated risk factors,
including anemia; inflammation; oxidative stress; the presence of some uremic toxins; and factors
related to the type, frequency of dialysis and the composition of dialysis fluid. Cardiovascular diseases
are the most frequent cause for the deaths of patients with all stages of renal failure. The kidney is one
of the vital sources of antioxidant enzymes, therefore, the impairment of this organ is associated with
decreased levels of these enzymes as well as increased levels of pro-oxidants. Uremic toxins have been
shown to play a vital role in the onset of oxidative stress. Hemodialysis itself also enhances oxidative
stress. Elevated oxidative stress has been demonstrated to be strictly related to kidney and cardiac
damage as it aggravates kidney dysfunction and induces cardiac hypertrophy. Antioxidant therapies
may prove to be beneficial since they can decrease oxidative stress, reduce uremic cardiovascular
toxicity and improve survival.
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1. Introduction

Chronic kidney disease (CKD) is highly prevalent worldwide (between 11 and 13%), and it is
most frequent in developed countries in Europe, USA, Canada, and Australia [1,2]. CKD progresses as
GFR decreases and this process results from the deterioration of kidney function, which greatly
influences body homeostasis and leads to biological and clinical dysfunctions, including the
disturbances in cellular energetic metabolism, protein malnutrition, change in nitrogen input/output,
insulin resistance, and significant increase in the synthesis of inflammation/oxidative stress mediators [2].
Finally, it progresses to end-stage renal disease (ESRD) and ends up with the necessity for renal
replacement therapy (hemodialysis or peritoneal dialysis) or renal transplantation [3]. The decline
of renal function is associated with inadequate removal of a variety of uremic toxins that should be
excreted by the kidney. Due to the fact these substances are biologically active, they are both the cause
and consequence of CKD [4]. According to studies, uremic toxins exert a detrimental effect on cells
involved in the functioning of myocardium and vessels, including smooth muscle cells, endothelial cells
(ECs), and platelets leucocytes, thus affecting the cardiovascular system [5]. Cardiovascular diseases
(CAD) are the most frequent cause of death for patients with all stages of renal failure, and they are
present in >50% of patients undergoing dialysis [4].
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2. Cardiovascular Diseases in ESRD Patients

The occurrence of cardiovascular aberrations in CKD is related to the influence of traditional risk
factors (hypertension, diabetes mellitus, etc.) and also non-traditional CKD-associated risk factors,
including anemia; inflammation; mineral and bone disease abnormalities; oxidative stress; the presence
of some uremic toxins; and factors related to the type, frequency of dialysis and the composition of
fluid used during the procedure [6–9]. Increased CAD risk in ESRD patients is also related to the fact
that this disease frequently results from hypertension and diabetes mellitus [4]. The prevalence of
coronary heart disease and ventricular hypertrophy has been reported to be 40% and 70%, respectively,
in renal replacement therapy patients [10]. The likelihood of developing CAD increases linearly in
patients whose glomerular filtration rate (eGFR) decreases below ~60–75 mL/min/1.73 m2, and CAD
mortality risk in patients with CKD stages G3a to G4 is twice or three times higher compared to
patients without CKD [6,11,12]. Also, the prevalence of clinical manifestations of CAD as well as the
frequency of arteriosclerosis, LVH, large-vessel coronary disease, myocardial fibrosis, and microvascular
disease rises along with the decline of eGFR. The mortality of patients with end-stage renal failure is
considerably higher (20 times higher in HD patients) than in the general population [13,14]. Nearly 50%
of patients undergoing hemodialysis die of cardiovascular causes [15]. The rate of cardiovascular
death is increasing with aggravating kidney impairment even after the adjustment for common
CAD risk factors [6,11,16]. Hemodialysis offers a temporary solution for renal dysfunction since
it replaces some filtration functions of the kidney, however, it does not diminish morbidity and
mortality related to inflammation and its complications, such as cardiovascular disease or oxidative
stress [17]. The long-term survival and prognosis of patients undergoing dialysis after acute myocardial
events are poor [18]. Numerous studies confirmed that the calcification of the sub-intima and
media of large vessels increased the risk of all-cause and cardiovascular mortality in this group [19].
The autopsy studies of patients with chronic kidney disease have revealed the presence of more
advanced atherosclerotic plaques, more aggravated medial calcifications of these lesions compared
to patients without kidney impairment, as well as inflammation in the coronary plaques [20–23].
High mortality of dialysis patients may also be ascribed to sudden deaths, which are associated with
arrhythmia triggered by shifts in volume, electrolytes and drug concentrations in patients with a
myocardial disease (LVH and heart failure) [6]. Mortality related to sudden death and heart failure
decreases after kidney transplantation [6]. The impairment of renal clearance in CKD results in
the accumulation of toxins, such as p-cresol and indoxyl sulphate, which not only stimulate the
expression of intercellular adhesion molecule-1 (ICAM) and monocyte chemotactic protein-1 (MCP-1),
but also induce the activation of NADPH oxidase, increasing the production of reactive oxygen species,
as well as pose surplus cardiovascular risk in CKD [24,25]. Also, uremic immune dysfunction is
considerably associated with high rate of premature mortality in ESRD patients due to the impact on
cardiovascular and infectious complications [26]. Malnutrition–inflammation–atherosclerosis (MIA)
syndrome is an important complication observed in patients with advanced stages of CKD, and it is
accompanied by higher incidence of CVD and rapid progression of atherosclerotic organ damage [27].
The prevalence of MIA in CKD is associated with hypercatabolism, malabsorption due to overhydration
and swelling of the gastrointestinal mucous, weakened appetite, loss of protein in the urine and during
dialysis, as well as hormonal imbalances. Hormonal disturbances (especially those affecting insulin,
insulin-like growth factor (IGF-1), adiponectin, ghrelin, and somatostatin (GH)) contribute to the
state of chronic inflammation [26]. In ESRD patients, impaired balance between anti-inflammatory
adiponectin and proinflammatory leptin is particularly visible [28]. The presence of proinflammatory
cytokines is associated with disturbances of signal transduction and the development of insulin
resistance, resulting in lipid metabolism disorders involving abnormal triglyceride metabolism,
the rise in lipolysis with an enhanced release of free fatty acids (TNF-α, IL-6), and stimulation of
ectopic lipid deposition (leptin) [29]. Moreover, insulin resistance is associated with endothelial
dysfunction and an increase in blood pressure, which are both related to increased cardiovascular
morbidity. Furthermore, the development of protein–energy wasting (PEW) is one of the strongest
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predictors of mortality in patients with CKD [26]. Systemic inflammation; uremic toxins; dialysis
techniques promoting enhanced catabolism and systemic inflammation; and metabolic dysfunction
involving the stimulation of appetite suppression hormones, such as insulin and leptin, which leads to
diminished nutrient intake, are all of key importance for the development of PEW [30]. Among adverse
effects of PEW there are: poor quality of life, sarcopenia, vascular calcifications, changes in lipid
metabolism, increased inflammation and higher prevalence of cardiovascular disease, elevated rates
of the number of hospitalizations, and increased mortality [31]. In ESRD, inflammation seems to
be further aggravated by uremic immune dysfunction, deficient renal cytokine clearance, as well as
inflammatory responses to dialysis. Some authors suggest that the improvement of ESRD patients’
prognosis is possible only as a result of the implementation of several actions targeted at tackling single
causes of inflammation in the inflammatory cascade [32]. Apart from chronic inflammation in patients
with CKD, especially with ESRD, as well as anemia, the rise in sympathetic tone, uremic toxin activity,
aforementioned protein–energy malnutrition, endothelial dysfunction, calcium phosphate disorders,
and pro-coagulation contribute to the accelerated development and progression of atherosclerosis [26].
Finally, ESRD is associated with modifications of lipid components, lipoproteins, and proteins.
Dyslipidemia observed in ESRD is characterized by the hypertriglyceridemia, increase in IDL-C and
chylomicron remnants, and a reduction in HDL-C and apolipoprotein (apo) AI (apoA-I) as well as
apoC-II/apoC-III ratio [33,34]. Also, uremia-associated inflammation in ESRD can convert HDL from
an antioxidant into a pro-oxidant particle [33]. Again, a vicious circle is observed in uremic patients
and it involves reduced catabolism of intermediate-density lipoprotein (IDL) and LDL, which results
in their longer residence time in plasma and further in alteration of the apolipoprotein B (apoB)
contained in these lipoproteins via carbamylation, oxidation and glycation. Considering changed
lipid subfraction turnover, the time of lipoproteins residence in the circulation of CKD patients is
prolonged, which translates into higher risk of post-ribosomal modification of lipoproteins (such as
glycation, oxidation, and carbamylation). According to studies, extensively modified lipoproteins
show decreased affinity towards classic LDL-C receptors, thus they are captured by scavenger receptors
(SR) on the surface of abundant macrophages, which in consequence promote atherosclerosis [34,35].
The mechanism underlying the oxidative stress in CKD patients is complex, multifactorial and not
fully explained [26]. Due to the importance of oxidative stress in CKD patients, this review purpose
is to shed some light on the mechanisms related to enhanced cardiovascular risk in patients with
renal insufficiency.

3. Oxidative Stress

The kidney is one of the vital sources of antioxidant enzymes, including glutathione peroxidases,
and therefore, the impairment of this organ in the course of CKD is associated with decreased levels of
these enzymes as well as increased levels of pro-oxidants [36]. The interplay between oxidants and
antioxidants controls crucial pathways and cell metabolism [37,38]. In healthy conditions, reactive
species are removed by natural endogenous defense mechanisms. However, in some diseases the
defense mechanisms are impaired and/or the production of reactive species is so enhanced that it
results in oxidative stress. Numerous studies confirmed the impairment of antioxidant systems (e.g.,
reduced activity of glutathione peroxidase and copper, zinc superoxide dismutase, and paraoxonase)
in patients with CKD [39,40].

Oxidative stress is defined as the imbalance between the production of pro-oxidants and antioxidant
defense mechanisms based on reactive oxygen species degradation. Reactive species generation and
their cellular localization are usually in equilibrium with the availability of antioxidant enzymes
including cystolic catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (Gpx).
The normal functioning of cells requires appropriate levels of both elements. In oxidative stress,
the production of reactive oxygen species (ROS) exceeds the scavenging capacity of antioxidant
systems [3,40]. The enhancement of oxidative stress has been demonstrated already in the early stages
of CKD [41–43]. Numerous studies indicated that oxidative stress was significantly increased in patients
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with advanced renal impairment, but this state is exacerbated by hemodialysis [2,7,9,44]. Some authors
suggested on the basis of in vivo studies that increased oxidative damage was the result of diminished
levels of these enzymes rather than enhanced ROS production [45,46]. However, according to others,
oxidative stress is associated with the production of highly reactive intermediates during inflammation;
on the other hand, also reactive oxygen species (ROS) are able to stimulate pro-inflammatory mediators,
such as NF-κB, thus promoting inflammatory response [41]. Inflammatory cells have been confirmed
to be a source of free radicals, such as reactive oxygen and nitrogen species [47]. The upregulation of
inflammatory markers observed in CKD patients (including platelet-derived growth factor and tumor
necrosis factor-α) results in NADPH oxidase activation and subsequent generation of intracellular
O2
• and H2O2 [48,49]. The presence of aggravated inflammatory state in CKD can stimulate the

activation/recruitment of polymorphonuclear neutrophils and monocytes, which leads to stimulation
of myeloperoxidase (MPO) and enhanced ROS production [50,51].

Uremic toxins have been shown to play a vital role in the onset of oxidative stress.
Martinon et al. [52] demonstrated that uremic toxins promoted the development of inflammatory state
and oxidative stress via priming acute inflammatory polymorphonuclear lymphocytes, stimulating
interleukin (IL)-1β and IL-8. In turn, Sakamaki et al. [53] suggested that they stimulated the innate
immune response through CD8+ cells. Stockler-Pinto et al. [54] revealed that indoxyl sulphate-related
ROS production primarily resulted from the activation of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase. Also, the synthesis of uric acid can aggravate oxidative stress via the activity of
xanthine oxidoreductase, which generates reactive oxygen species [55]. However, some other reports
suggest that in the presence of specific components, in various physiochemical circumstances and
in different compartments of the human body, uric acid may play an anti-oxidant role in vivo [56].
Uric acid poses strong reducing and antioxidant properties, however, its elevated levels in CKD
patients are believed to pose potential risk factors for CVD [57]. Under conditions of oxidative stress,
high concentrations of uric acid have been shown to act as a pro-oxidant, particularly when antioxidant
systems are impaired. However, it was also found to be cleared by HD as evidenced by a reduction in
uric acid levels compared to pre-HD state [58].

The hemodialysis itself also enhances the oxidative stress due to the fact that antioxidant systems,
particularly those of low or very-low molecular weight, are filtered during the procedure, and both the
dialysis membrane and dialysate can activate leukocytes, leading to the aggravation of inflammation
and enhanced ROS production [3]. Increased oxidative stress occurring in HD patients depends on
many factors including aging, impairment of the residual renal function and subsequent uremic state,
as well as the HD procedure itself [58]. During the initiation of the dialysis process, the membrane and
dialysate induce inflammation and promote an important increase in ROS production. Post-dialysis,
the levels of oxLDL have been shown to be elevated. However, post-dialysis, the activity of XOD
and 8-OHdG levels are considerably diminished, which suggests that markers of oxidative stress are
efficiently filtered during the dialysis process [3]. Also, markers of antioxidant defense decreased
after HD [3]. Also, Liakopoulos et al. [59] stated that excessive oxidative stress in HD patients
was related with the loss of antioxidants during the procedure and the accumulation of oxidative
products. The level of oxidative stress was shown to be higher in ESRD patients on peritoneal
dialysis (PD) compared to non-dialyzed uremic patients, however, it is lower in comparison to HD
patients [59,60]. This observation was confirmed by Chen et al. [61] who demonstrated higher resting
levels of superoxide anion in the whole blood after each HD session. Moreover, Granata et al. [62]
revealed that patients with CKD and those undergoing hemodialysis show impaired mitochondrial
respiration. The aggravation of oxidative stress can also be associated with the impaired activation
of nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the regulation of genes
encoding detoxifying and antioxidant proteins and enzymes (e.g., CAT, NAD(P)H dehydrogenase
[quinone] 1 (NQO1), SOD [63]. Oxidative stress in patients with advanced stages of CKD can also
be exacerbated by iron therapy, which is frequently used to treat anemia [36]. This phenomenon is
associated with the fact that the administration of intravenous iron and the supersaturation of iron
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sequestration proteins (e.g., ferritin and transferrin) may result in the formation of free iron showing
oxidative properties.

Decreased NO production, the formation ofreactive nitrogen and oxygen species are responsible
for the detrimental effects related to oxidative stress

3.1. Nitric Oxide (NO)

The kidney is an important source of L-arginine, which is a precursor for nitric oxide (NO); therefore,
the decrease in its mass may result in diminished production of L-arginine and NO activity [47]. Due to
the fact that nitric oxide is essential for vascular endothelial cell function, its decreased bioavailability
is associated with endothelial dysfunction observed in hypertension, diabetes mellitus, atherosclerosis,
and CKD [4]. Asymmetric dimethylarginine (ADMA), which is an endogenous amino acid resembling
L-arginine, inhibits endothelial nitric oxide synthase, thus impairing NO synthesis. Elevated ADMA
concentrations have been reported in ESRD. Moreover, Ravani et al. [64] suggested that elevated
ADMA levels were a strong independent risk factor for the progression of CKD and patient mortality.
O2
− and H2O2 are the precursors used for the production of even more powerful oxidants. The first

of them shows the affinity towards free radical NO and their reaction results in the formation of
peroxynitrite (ONOO−). The effects of both ONOO− and hydroxyl (OH−) involve extensive nitrosative
and oxidative modifications to proteins, lipids and nucleic acids [41].

3.2. Reactive Oxygen Species (ROS)

Reactive species produced in normal physiological state are inactivated by enzyme systems (e.g.,
glutathione) as well as other antioxidants (called scavengers) [41]. However, the excessive amount
of ROS cannot be neutralized by scavenger systems, and therefore, they cause oxidative damage to
proteins, nucleic acids and lipids; impair cellular activity; and hinder enzymatic activity [41]. In the
kidneys, ROS are primarily synthesized by the mitochondrial respiratory chain and by enzymes such as
NADPH oxidase (NOX) [41]. According to studies, NOX isoforms are vital players in the aggravation
of oxidative stress, which results in the worsening of vascular function and promoting fibrosis [65,66].
To a lesser extent, ROS are produced by endoplasmic reticulum, peroxisomes and lysosomes [67].
Nox4 belonging to NADPH oxidase family is expressed in smooth muscle cells, vascular endothelial,
as well renal proximal tubules, which explains why renal impairment may influence its expression or
activity [68,69]. Also, pro-oxidant enzymes such as xanthine oxidase (XOD), in which activity has been
shown to be considerably increased in uremia, is an additional possible source of ROS in CKD [3,70].

Reactive oxygen species (ROS) mainly include (O2
•−), the hydroxyl radical (•OH) and hydrogen

peroxide (H2O2) [47]. In healthy metabolic cells, their production is counteracted by mitochondrial
or cystolic catalase (CAT) or thiol peroxidases, which catalyze H2O2 reduction into water and
O2. Mitochondria comprise also other antioxidants, including manganese-SOD (Mn-SOD) and
Gpx, which neutralize formed ROS. Mn-SOD converts O2

•− to H2O2, which in the next step is
decomposed by CAT and Gpx [71]. In peroxisomes, the stabilization of O2

•− is related to the
activity of copper/zinc-SOD (Cu/Zn-SOD) [72,73]. Also, glutathione homeostasis (Gpx, glutaredoxins,
glutathione-S-transferase, peroxiredoxins and thioredoxins) is vital for maintaining cellular redox
balance [47,74]. Xanthine oxidase (catalyzes the oxidation of hypoxanthine to uric acid, releasing in
consequence ROS (O2

•, •OH, and H2O2) are by-products [51]. The formed uric acid accelerates CKD
progression to renal failure and enhances the risk of cardiovascular events [75]. Reactive oxygen species
are highly reactive and thus damage the variety of cellular structures and functional pathways [47].
Cellular H2O2 is rather stable, however, it still has potential to interact with numerous substances and
cause destruction. Ferrous iron (Fe2+) can interact with H2O2, resulting in its cleavage and formation
of the most reactive •OH form [76]. Protein tyrosine phosphatases have been shown to be major targets
for oxidant signaling due to the fact that they are greatly susceptible to oxidative modification of amino
acid residue of cysteine [77].
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The presence of oxidative stress and the impairment of antioxidative defense mechanisms in
patients with CKD/ESRD have been confirmed in numerous studies. Some products of oxidative
metabolism, including advanced glycation end products (such as pentosidine or advanced oxidation
protein products), have been demonstrated to accumulate in renal failure [78,79]. Kinugasa E [80]
demonstrated increased circulating levels of oxidative stress markers, including advanced glycation
end products (AGEs), malondialdehyde (MDA) and 8-hydroxyde-oxyguanosine in blood and/or tissue
in CKD patients. Advanced glycation end products (AGEs) acting via a specific receptor (RAGE)
activate MAP kinase transduction pathway and in consequence lead to an increase in the level of
pro-inflammatory cytokines, enzymes and adhesion molecules [81,82]. Colombo et al. [83] confirmed
the existence of a relationship between uremia and oxidative stress, which was assessed on the basis of
severe protein oxidative damage (including plasma advanced oxidation protein products) in end-stage
renal disease (ESRD) patients on maintenance hemodialysis (HD).

3.3. Consequences of Oxidative Stress

Aggravated oxidative stress has been reported to be involved in the pathomechanisms of several
diseases, including cardiovascular disease and chronic kidney disease. Elevated oxidative stress
has been demonstrated to be strictly related to kidney and cardiac damage as it aggravates kidney
dysfunction and induces cardiac hypertrophy, which is an independent risk factor for heart failure
(HF) [43,51]. Oxidative stress has been shown to affect upstream transcriptional gene regulation.
Numerous studies provided evidence that proliferator-activated receptors (PPARs), which play key
roles in the transcriptional regulation of cell cycle progression, cell differentiation, glucose homeostasis,
lipid metabolism, and inflammation, are altered in CKD and CVD [84–86]. Oxidative stress results in
the damage of nucleic acids, including the modifications of bases (especially guanine in DNA) and
covalent crosslinks, leading to single- and double-strand breaks. The oxidation of guanine is associated
with the formation of oxidized products including 8-hydroxy-20-deoxyguanosine (8-OH-dG), which
are highly prevalent in chronic and degenerative diseases, including CKD [87].

Oxidative stress is responsible for progressive renal damage, which in consequence may lead
to renal ischemia, glomeruli damage, cell death and apoptosis, and further worsening of the severe
inflammatory processes [41,88]. Fujii et al. correlated oxidative stress with glomerular abnormalities,
including glomerular hypertrophy and mesangial proliferation, observed in the course of diabetic
nephropathy [89]. It is also an infamous factor responsible for cardiac damage, such as hypertrophy,
fibrosis, apoptosis, and remodeling [90]. Numerous mechanisms via which oxidation products
promote vascular injury have been suggested [91–94]. NADPH oxidases, which are the major sources
of ROS, participate in the pathogenesis of cardiac remodeling via its impact on redox-sensitive
signal transduction [43]. Numerous studies confirmed that both the expression and the activity of
NADPH oxidase were elevated in the myocardium of patients with ischemic and non-ischemic heart
failure [95–97]. Moreover, higher activation of NADPH oxidase was involved in fibrosis and cardiac
hypertrophy [98,99]. Uremic toxin, indoxyl sulphate, which promotes the production of ROS through
the stimulation of NADPH oxidase or NADPH-like oxidase, has been shown to be involved in vascular
disease, as it promotes vascular smooth muscle cell proliferation and vascular calcification; in addition,
it is associated with higher mortality observed in CKD patients [100–102]. Moreover, this toxin also
reduces levels of total glutathione in endothelial cells [43,103].

Oxidative stress-induced endothelial dysfunction and subsequent reduction in NO bioavailability
promote the development of atherosclerosis. Peroxynitrite generated from NO is involved in numerous
unfavorable vascular actions. The inactivation and the deficiency of NO resulting also from the actions
of reactive species decrease the protection of kidney function, which is related to NO-dependent
increase in renal blood flow, stimulation of pressure natriuresis, regulation of tubuloglomerular
function, and maintenance of fluid and electrolyte homeostasis [41,104].

Oxidative stress is also associated with the formation of oxidized low density lipoprotein (ox-
LDL), which play a crucial role in the pathogenesis of atherosclerosis [105]. The accumulation
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of oxidized low-density lipoproteins in arterial intima is the initial step of atherosclerotic process
development [13]. Also, advanced glycation end products, in which production is enhanced in renal
failure, exert atherogenic effects [13].

The link between cardiovascular disease and CKD may also involve the actions of the functional
mitochondrial angiotensin system, which is regulated by oxidative stress [106]. Angiotensin type II
receptors co-localized with angiotensin on the inner mitochondrial membrane of human mononuclear
cells were shown to control mitochondrial NO production and respiration. The activation of the
renin–angiotensin system (RAAS) in the course of renal impairment is involved in the process of
left ventricular (LV) remodeling [107]. Ang II induces vasoconstriction and aldosterone release
and it mediates hemodynamic alterations, which in consequence, lead to cardiac and vascular
remodeling [108]. Furthermore, both angiotensin II and aldosterone actions involve the activation
of mitogen-activated protein kinases (MAPKs), as well as c-Src and Ki-ras2A pathways engaged in
the development of inflammation, in the production of O2 and H2O2, endothelial dysfunction, as
well as hypertrophic growth [109,110]. Higher O2 levels are associated with enhanced protein
kinase C (PKC) activity and NOS uncoupling, as well as consequent loss of vasodilation [51].
ONOO-associated loss of vasodilation and subsequent endothelial dysfunction play a vital role
in the development of hypertension and further contributes to hypertrophic remodeling [111]. In CKD
patients, oxidative stress leads also to left ventricular hypertrophy (LVH). The role of oxidative stress
in the development of cardiac remodeling and heart failure has been summarized at Figure 1.
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According to studies, oxidative stress as well as excessive ROS production are important factors
mediating osteochondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) and
enhanced vascular calcification [112]. The development of vascular calcifications (VC), which occurs
commonly in CKD patients, exerts a direct impact on vessel functions and CVD development.
Considerable leukocyte infiltration and the presence of IL-1β and MMP-1 have confirmed that
human calcified areas in aortic valves lead to accelerated atherosclerosis, as well as higher rates
of cardiovascular and all-cause mortality [113–116]. Oxidative stress has been demonstrated to
contribute to the phenotype switch of vascular smooth muscle cells (VSMCs) even in early CKD [116].
Huang et al. [116] provided evidence for the existence of a kinetic relationship between oxidative stress
and vascular calcification and osteoblastic transition. They observed that serum derived from patients
with early stage CKD directly induced osteoblastic transition of primary rat VSMCs and calcium
deposition in VSCMs, but it did not affect serum phosphorus level. In in vitro studies, hydrogen
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peroxide (H2O2) and xanthine/xanthine oxidase, which generates superoxide anion, were shown
to boost osteochondrogenic transdifferentiation of VSMCs [112,117,118]. Intensified calcification
in the presence of H2O2 was associated with higher expression of osteogenic markers, such as
osteocalcin (OCN), runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP),
and lower expression of the contractile VSMCs phenotype markers, such as smooth muscle α-actin
(α-SMA) and SM-22α [118]. It has been suggested that Msx2 is an important factor involved not only in
transcriptional programming of osteoblastic lineage development but also in BMP-2-mediated vascular
calcification through the activation of Wnt catenin signaling and β-catenin-induced activation of Pit1,
a type III sodium-dependent phosphate cotransporter [119–121]. Cai et al. found that WNT/β-catenin
signaling directly elicited osteogenic transdifferentiation and calcification of VSMCs though the
modulation of Runx2 gene expression [122]. Huang et al. [116] suggested that the development of
vascular calcification could be partly mediated by upregulation of NOX1 as well as ERK kinases as
downstream events of NOX1-induced VC. Oxidative stress also indirectly may stimulate vascular
calcification. It has been demonstrated that lipid oxidation products present in oxidized low-density
lipoprotein rise the activity of ALP and promote calcification of vascular cells, which in consequence
may lead to atherosclerosis-associated intimal calcification [123]. Moreover, it seems that oxidative
stress in uremia enhances the formation of advanced oxidation protein products (AOPP), but at the
same time, the accumulation of AOPP may pose a trigger for enhanced oxidative stress, which gives a
positive feedback loop of elevated and maintained oxidative stress in uremic patients [124]. The results
of in vitro study revealed that AOPP could directly stimulate osteoblast differentiation and calcification
of smooth muscle cells [124]. You et al. [124] demonstrated that AOPP rose the calcium level in
human aortic smooth muscle cells (HASMCs) (probably inducing their calcification) and considerably
enhanced protein levels and mRNA expression of osteopontin (OPN), which may suggest that
AOPP could promote osteoblast differentiation of HASMCs. Moreover, AOPP up-regulated mRNA
expression of a transcription factor CBF-α1, which had earlier been found to increase the expression
of osteoblast-specific genes, e.g., osteocalcin and alkaline phosphatase [125,126]. Finally, they were
shown to considerably lower the expression of SM-α-actin expression [124]. According to in vitro
studies, advanced oxidation products can not only trigger the oxidative burst of human monocyte and
neutrophil but also induce enhanced production of oxidants by leukocytes [124,127,128]. It has been
suggested that the mechanism of AOPP-stimulated smooth muscle cells differentiation may involve
the activation of extracellular signal-regulated kinase (ERK), which is a part of MAPK pathway [124].
ERK is able to induce the osteoblast-related gene expression by extracellular matrix-integrin receptor
interaction, bone morphogenetic protein 2 (BMP-2) and growth factors, thus leading to osteoblast
differentiation [129–131]. Moreover, MAPK increases the expression of osteocalcin and AOPP-induced
calcium deposition, which results also in the calcification of HASMC [130,132]. The role of oxidative
stress in the development of atherosclerosis and other adverse consequences has been presented at
Figure 2.
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Finally, oxidative stress, especially the exposure to H2O2, has been demonstrated to alter membrane
properties of red blood cells (RBC) and accelerate RBC removal in the spleen [51,133]. The increased
susceptibility of RBCs to oxidative damage along with the higher risk of ROS production in iron
deficiency anemia in CKD create a vicious cycle of enhanced RBC death, anemia and oxidative
stress severity [51,133,134]. The lowering of hemoglobin content in iron deficiency-related anemia is
associated with the decrease in partial pressure of oxygen, and this hypoxia-resembling state aggravates
oxidative stress via auto-oxidation of hemoglobin to met-hemoglobin (metHb) with accompanying
generation of O2 [135,136]. Iron deficiency also affects the expression of iron-containing endogenous
antioxidant proteins e.g., peroxidase and catalase, as well as concentration of selenium, thus decreasing
the activity of selenium-dependent enzyme GPx [137–139]. Therefore, it seems that timely intravenous
iron replacement and the administration of antioxidants in clinical setting could improve CKD patients’
quality of life and decrease the risk of morbidity [140].

Numerous studies have confirmed that oxidative stress-related oxidation of fatty acid
end-products (malondialdehyde) and serum albumin is associated with higher mortality in
hemodialysis [141]. According to some authors, the decrease in antioxidant defense in
hemodialysis results in enhanced all-cause and cardiovascular mortality in these patients [142–144].
Sangeetha Lakshmi et al. [58] revealed that the concentration of malondialdehyde (biomarker of
oxidative stress) was considerably increased in patients with CKD and accompanying cardiovascular
disease compared to patients with CKD but without cardiovascular disease. Substantial elevation of
serum malondialdehyde levels observed in HD patients suffering from CVD, compared with those
without CVD, indicated an association between oxidative stress and the development of atherosclerosis
in these patients [9]. Juretic et al. [141] observed reduced PON in those patients with uremia who
were at higher risk of cardiovascular disease, compared to persons with normal kidney function.
It has been suggested that the loss of PON activity may increase the risk for oxidative stress and
cardiovascular disease patients with chronic kidney disease, despite the lack of correlation with
oxidized LDL [40]. Finally, Russa et al. [2] observed higher values of both oxidative stress and
antioxidant barrier in hemodialysis patients with previous acute myocardial infarction compared to
patients without cardiovascular events.

Enhanced risk of mortality risk might be mitigated by diminishing of oxidative stress, for example
through the use of less aggressive types of dialysis (e.g., peritoneal) or antioxidant therapies [3]. Table 1
presents the results of selected articles concerning adverse impact of oxidative stress.
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4. Treatment Aiming to Decrease the Risk Resulting from Oxidative Stress

According to studies, antioxidant therapies may prove to be beneficial since they can decrease
oxidative stress, reduce uremic cardiovascular toxicity and improve survival [104]. Endogenous or
dietary antioxidants have also been suggested to exert protective effects against inflammation and
kidney damage in patients with CKD [41]. The application of mitochondrial-targeted antioxidant
therapy resulted in the improvement of cardiac hypertrophy and diastolic dysfunction through the
diminution of oxidative stress, which confirms the role of oxidative stress in the progression of
heart failure [145]. Antioxidant supplementation with vitamins A, C, and E; β-carotene; or N-acetyl
cysteine (NAC) seems to be beneficial in decreasing cardiovascular risk in hemodialysis patents [3,146].
Vitamin E is a powerful antioxidant exerting anti-inflammatory properties; it has been shown to interfere
with cell membrane lipid peroxidation [147]. Observational clinical studies have shown that the intake
of vitamin E (more than 100 IU/day), which inhibits oxLDL formation by hindering lipid peroxidation,
reduced the rate of coronary events in hemodialysis [41,148,149]. Randomized placebo-controlled
Secondary Prevention with Antioxidants of Cardiovascular Disease in End-stage Renal Disease
(SPACE) trial revealed that in hemodialysis patients, the supplementation of alpha-tocopherol (800 IU)
decreased cardiovascular disease endpoints and resulted in a substantial improvement of cardiovascular
complications (myocardial infarction) [149]. Antioxidant therapy with DL-α-tocopherol has been
revealed to improve left ventricular hypertrophy (LVH) and to decrease adverse changes within the
myocardium in experimental CKD [150].

Vitamin C plays a significant antioxidative role as it can reduce ROS levels, thus providing
protection against kidney oxidative damage and helping to maintain vascular and endothelial
function [151]. Wang et al. [152] demonstrated that vitamin C (ascorbic acid) diminished
oxidative damage, inflammation and renal injury in ischemia nephrotoxic acute kidney injury and
rhabdomyolysis-induced renal injury. Deicher et al. observed deficiency of vitamin C (non-enzymatic
antioxidant) in hemodialysis patients, which was associated with dietary restrictions and/or its loss
during dialysis. Study of HD patients demonstrated that low plasma vitamin C levels predicted fatal
and major non-fatal adverse cardiovascular events in this group [153]. Some studies indicate that
patients with chronic kidney disease and ESRD patients should be administered a limited dose of daily
vitamin C supplement of 75 mg for females and 90 mg for males [154]. However, Jankowska et al. [155]
suggested that the supplementation of vitamin C might lead to oxalate accumulation and subsequent
elevation in oxidative stress, and therefore, antioxidants administration may not always be the
best alternative.

In turn, vitamin D is vital not only for the homeostasis of calcium/phosphorus and skeletal health
but also for renal functioning. The deficiency of this vitamin is frequently observed in CKD and ESRD
and has been shown to contribute to the deterioration of renal function and increased morbidity and
mortality in patients with CKD [56]. Some studies have demonstrated that the intake of vitamin D
can reduce kidney injury by suppressing inflammation, fibrosis and apoptosis, via hindering multiple
pathways crucial in kidney injury, including renin-angiotensin-aldosterone system (RAAS), NFκ-B,
Wnt/β-catenin, and TGF- β/Smad signaling pathways [156–158].

Due to the fact that indoxyl sulphate stimulates oxidative stress and hastens the progression
of CVD in CKD, the lowering of its concentration may prove beneficial in this group of patients.
This suggestion was confirmed in several studies that demonstrated that the use of oral charcoal
adsorbent, which decreases the levels of circulating uremic toxins, prevented histological and functional
aggravation of CKD and suppressed oxidative stress and the advancement of cardiac damage in
CKD [159–161]. In other studies, the decrease in heart and left ventricular volumes, cardiac fibrosis,
as well as the attenuation of cardiac concentric change were observed in pre-dialysis CKD patients
after AST-120 administration [162,163]. Taken together, these results suggest that the administration of
AST-120 may become a useful option for improving cardiovascular health in CKD patients [43].

Also, melatonin (N-acetyl-5-methoxytryptamine) has been proven to be highly efficient in many
disorders associated with oxidative stress and inflammation in experimental animals [164–166].
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It is an endogenous neurohormone modulating sleep, immune function, circadian rhythm, and sexual
behaviors, which exerts free radical scavenger, antioxidant and anti-inflammatory effects [165,167].
Due to the fact that it scavenges reactive oxygen and nitrogen species and enhances antioxidant defense
systems, melatonin prevents tissue damage and hampers transcriptional factors of pro-inflammatory
cytokines. Numerous studies have indicated that it indirectly decreases oxidative stress via stimulation
of the expression and function of some antioxidant enzymes, enhancing the activities of antioxidative
defense systems and glutathione as well as rising the efficacy of the mitochondrial electron transport
chain [168–170]. CKD patients have been shown to have impaired night-time secretion of melatonin,
which is further associated with higher stimulation of intrarenal renin–angiotensin system (RAS),
leading to enhanced reactive oxygen species (ROS) production, sodium retention, inflammation, and
fibrosis [171]. These pathologies accelerate the progression of CKD to end-stage renal disease (ESRD).
The results of studies indicated that the supplementation with exogenous melatonin can reverse adverse
changes, slow down the progression of kidney impairment, reduce blood pressure, and also help to
maintain the bioavailability of nitric oxide by acting on melatonin receptor MT2 [172]. Studies on
animal models indicated that prolonged administration of melatonin enhanced the expression of
markers associated with decreased oxidative stress, inflammation and vasoprotection [173]. It has also
been shown to improve cardiovascular function as well as renal, cardiac and cerebral damage [174].

The introduction of therapy based on the thiol-containing compound acetylcysteine has been
demonstrated to diminish the toxic effects of ischemia reperfusion syndromes of the heart, kidney,
liver, and lung and enabled the reduction in the risk of primary cardiovascular endpoint (fatal and
non-fatal myocardial infarction) by 40% in hemodialysis patients [13]. Tepel et al. [13] revealed that
after adjustment for age, baseline systolic and diastolic blood pressure, medications, smoking, and
the duration of hemodialysis, in the study group treated with acetylcysteine, the survival related
to the primary end point was higher compared with the control group. Moreover, they observed
30% decrease in cardiac events, 69% reduction in ischemic strokes, and 36% drop in peripheral
vascular disease in the acetylcysteine group, however, the differences did not reach the level of
statistical significance [13]. Due to the fact that acetylcysteine acts as a free-radical scavenger or as a
reactive sulfhydryl compound, it enhances the reductive capacity of the cell ameliorating coronary and
peripheral vascular function [175]. However, this antioxidant therapy proved ineffective in patients
with heart failure without renal disease [176]. Therefore, it seems that the systemic oxidative stress in
uraemic milieu plays a vital role in the development of cardiac disease in renal patients

Some studies indicated that in patients undergoing maintenance, HD plasma concentrations of
CoQ10 are reduced, which suggests that CoQ10 supplementation could represent a great antioxidant
therapy for these patients [177]. Randomized, double-blind, placebo-controlled study carried out by
Rivara et al. [178] demonstrated that administration of CoQ10 (1200 mg daily) as an antioxidant therapy
was safe and well tolerated in patients receiving MHD, and it resulted in a substantial, dose-dependent
rise in plasma CoQ10 levels compared to placebo and considerably diminished plasma concentrations
of F2-isoprostanes, which are considered a robust plasma marker of oxidative stress.

Antioxidative properties have also been observed in the case of angiotensin-converting enzyme
inhibitors and lipid-lowering agents [179–181].
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Table 1. The results of selected articles concerning the adverse impact of oxidative stress.

Type of Study Study Group Most Important Results Ref

Prospective, randomized,
placebo-controlled trial

134 HD patients
randomly assigned either
to receive acetylcysteine
(600 mg BID) or placebo

Patients in the
acetylcysteine group had

40% lower risk of
reaching the primary end

point (cardiac event,
ischemic stroke,

peripheral vascular
disease) compared with

the control group
(relative risk, 0.60 [95%

CI, 0.38 to 0.95], p = 0.03).
Oxidized LDL was

significantly lower in the
acetylcysteine group
compared with the

control group (0.13 ±
0.22 arbitrary units vs.
0.55 ± 0.14 arbitrary

units, p < 0.01).
Conclusions: In

hemodialysis patients,
treatment with

acetylcysteine reduces
composite

cardiovascular end
points.

[13]

Case-control

244 nondiabetic patients
with CKD (57 patients
with stages 1 to 2 CKD
and 187 patients with

stages 3 to 5 CKD and 52
normotensive healthy

subjects (controls)

LVH is already present in
the early stages of renal

disease.
Strong relationship

between elevated pulse
pressure and LVH in

those with more
advanced CKD suggests

that increased arterial
stiffness might have a

role for LVH well before
the start of dialysis

therapy.

[182]

Randomized
placebo-controlled

Secondary prevention
with antioxidants of

cardiovascular disease in
end-stage renal disease

(SPACE) trial

196 HD patients with
pre-existing CAD

randomized to receive
800 IU/day vitamin E or

matching placebo

Fifteen (16%) patients
assigned to vitamin E
and 33 (33%) of those

assigned to placebo had
a primary endpoint

(relative risk 0.46 [95% CI
0.27–0.78], p = 0.014);

5.1% patients assigned to
vitamin E and 17.2%
patients assigned to

placebo had myocardial
infarction (0.3 [0.11–0.78],

p = 0.016).
Conclusions: In

hemodialysis patients
with prevalent

cardiovascular disease,
supplementation with
800 IU/day vitamin E

reduces composite
cardiovascular disease

endpoints and
myocardial infarction.

[149]
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Table 1. Cont.

Type of Study Study Group Most Important Results Ref

A meta-analysis of
prospective studies

30 articles reporting
calcifications and

cardiovascular
end-points

The presence of
calcifications increased the
risk for any cardiovascular

event.
In a population with renal
insufficiency, the event rate
for all-cause mortality in

patients with calcifications
was more than five times

higher than in patients
without calcifications.

The presence of
calcifications had the

highest predictive power
for a cardiovascular or

cerebrovascular event in
subjects with renal

insufficiency.

[114]

Randomized controlled
trial

280 patients with CKD
not on HD enrolled in the

MASTERPLAN study

AAC occur commonly in
populations of

non-dialysis CKD patients.
Calcification score ≥ 4 was

associated with
cardiovascular events; HR
for cardiovascular events
in the high calcification

score group was 5.5 (95 %
confidence interval
1.2–24.8), p = 0.03

[115]

Case-control and animal
models

Patients from a clinical
trial

ChiCTR-OCH-14004447:
(a) 24 HD patients vs. 13

healthy individuals
(b) patients with CKD

stage 2–3 (n = 30),
patients with CKD5 (n =
30), and normal adults (n

= 15)

A robust elevation in
oxidative stress in HD

patients vs healthy
individuals; the elevation

was higher in patients with
VC than those without VC.
Kinetic relationship among

oxidative stress,
osteoblastic transition and

VC following CKD
progression were indicated;

the magnitude of
osteoblastic transition did
not further increase from

E4wkCKD to E5wkCKD in
rats, suggesting complex

contributions of
osteoblastic transition to

OS-associated VC in early
stage CKD.

Serum OS levels were
increased in both CKD2–3

and CKD5 patients
compared to healthy

controls, which is
consistent with a role of OS

in causing osteoblastic
transition-mediated VC.
This study supported a

direct role of NOX1 in the
induction of VC in patients

with CKD.
Conclusions: Oxidative
stress plays a role in VC

development in HD
patients. OS without an

increase in serum
phosphorus concurrently
exists with VC in patients
with early stage CKD and

in a rat model for early
stage CKD. Serum from

CDK2–3 patients with OS
abnormalities and normal

levels of serum
phosphorus directly

induce calcium deposition
in primary VSMCs.

Osteoblastic transition of
VSMCs contributes to VC

in CKD patients; the
phenotype switch is in part

enhanced by OS, NOX1,
and ERK.

[116]
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Table 1. Cont.

Type of Study Study Group Most Important Results Ref

VSMC culture; Western
Blot Analysis N/A

H2O2 at concentrations
of 0.1 to 0.4 mm induced
osteogenic differentiation

and
calcification of VSMC in a
concentration-dependent

manner.
Runx2, a key

transcription factor for
osteoblast and
chondrocyte

differentiation, was
required for oxidative
stress-induced VSMC

calcification.
Conclusions: Enhanced
expression of Runx2 is

sufficient to induce
VSMC calcification.
Activation of AKT

signaling appears to
mediate oxidative

stress-induced Runx2
expression and activity

during VSMC
calcification.

[118]

Cell culture; animal
model N/A

Runx2 is a direct
transcriptional target of

WNT/β-catenin signaling
pathway.

WNT/β-catenin signaling
could play a crucial role

in promoting VSMCs
osteogenic

trans-differentiation and
the development and

progression of vascular
calcification.

[122]

Human Smooth Muscle
Cells (HASMC) Culture N/A

AOPP increased the
calcium content of

HASMCs suggesting that
AOPP can induce

calcification of HASMCs
AOPP considerably

increased the protein and
mRNA expression of

OPN in HASMCs,
indicating that AOPP can

induce osteoblast
differentiation of

HASMCs;
AOPP up-regulated the

mRNA expression of
CBF-α1 transcription
factor. enhancing the

expression of
osteoblast-specific genes

(osteocalcin, alkaline
phosphatase).

Conclusions: AOPP can
trans-differentiate the

HASMCs to
osteoblast-like cells.

[124]

CRF—chronic renal failure; HD—maintenance hemodialysis; AAC—abdominal aortic calcification; HR—hazard
ratio; AOPP—advanced oxidation protein products.

5. Conclusions

Elevated cardiovascular morbidity and mortality in patients with end-stage renal failure remains
to be a challenge in medicine. Numerous studies indicate that oxidative stress may play an important
role in the development and progression of cardiovascular disease. However, antioxidant therapies
seem to exert beneficial effects as they decrease cardiovascular risk and they bring hope for less
cardiovascular complications in this group of patients.
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