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Herbarium specimens provide verifiable and citable evidence of the occurrence

of particular plants at particular points in space and time, and are vital

resources for assessing extinction risk in the tropics, where plant diversity

and threats to plants are greatest. We reviewed approaches to assessing extinc-

tion risk in response to the Convention on Biological Diversity’s Global

Strategy for Plant Conservation Target 2: an assessment of the conservation

status of all known plant species by 2020. We tested five alternative approaches,

using herbarium-derived data for trees, shrubs and herbs in five different plant

groups from temperate and tropical regions. All species were previously fully

assessed for the IUCN Red List. We found significant variation in the accuracy

with which different approaches classified species as threatened or not threa-

tened. Accuracy was highest for the machine learning model (90%) but the

least data-intensive approach also performed well (82%). Despite concerns

about spatial, temporal and taxonomic biases and uncertainties in herbarium

data, when specimens represent the best available evidence for particular

species, their use as a basis for extinction risk assessment is appropriate, necess-

ary and urgent. Resourcing herbaria to maintain, increase and disseminate

their specimen data is essential to guide and focus conservation action.

This article is part of the theme issue ‘Biological collections for

understanding biodiversity in the Anthropocene’.
1. Introduction
Global species extinction risk assessments prepared through application of IUCN

Red List categories and criteria are increasingly important to monitoring progress

against international biodiversity targets [1], informing allocation of conservation

resources [2] and guiding business decisions to mitigate biodiversity impacts [3].

Plants, fundamental support systems for life on Earth and the basis for all terres-

trial ecosystems, are severely under-represented on the IUCN Red List and

increasing their representation is recognized as vital to provide a firm basis for

global decision-making, conservation planning and resource allocation [4].

The scale of the challenge is vast. The number of plant species known to

science is uncertain, with published estimates varying widely depending on

the method of estimation [5], but compared to a recent estimate of ca 384 000
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vascular plants known to science [6], the 24 057 vascular

plant species assessments on the IUCN Red List [7] represent

ca 6% of known vascular plant species, of which 55% are

threatened with extinction.

When assessments other than those on the global IUCN Red

List are taken into account, estimates rise to 21–26% of plant

species assessed of which 30–44% are assessed as threatened

[8,9]. However, assessments of random samples of plants indi-

cate that 21% of species are likely to be threatened [10],

suggesting that levels of threat in other compilations are inflated

due to threatened species attracting more assessment effort.

Achieving greater and more balanced representation of

plants on the IUCN Red List requires assessment of thousands

of plant species previously unassessed, especially from the tro-

pics, home to the majority of plant species and subject to

greater levels of threat [10]. Despite optimism that the rate of

publication of new IUCN Red List assessments for plants

was increasing [10], the mean number of plant species added

each year remains ca 1500, not even sufficient to keep pace

with the rate at which plants are described as new to science

(more than 2000 per year – average for 2008–2017: 2285

[11]). Furthermore, one in three published plant assessments

are outdated, being more than 10 years old.

Calls to increase rates of production of plant extinction risk

assessments, whether by IUCN Red List methods or others

[12,13], were stimulated by the Global Strategy for Plant Conser-

vation (GSPC), adopted by the sixth Conference of Parties (COP

VI) to the Convention on Biological Diversity (CBD) in 2002.

GSPC Target 2 called for a preliminary assessment of the conser-

vation status of all known plant species by 2010. However,

within a few years there was widespread recognition that

Target 2 could not be achieved [14]. Not only was the required

working list of all known species still lacking [15,16] but

difficulties in assembling data needed for IUCN Red List

assessments were daunting [17]. Diverse alternative approaches

were proposed and demonstrated, often relying on data

from herbarium specimens, then becoming increasingly accessi-

ble due to specimen digitization initiatives [18]. In 2010, CBD

COP X re-adopted Target 2 along with 14 other targets in

more-or-less revised forms for completion by 2020. Scientists

continued to propose and refine increasingly sophisticated

methods by which the labour-intensive process of assessing

plant species extinction risk can be facilitated and expedited,

often involving data derived directly or indirectly from

herbarium specimens.

Although herbarium specimens have long been recognized

as an important source of information for extinction risk

assessments [19], many authors have emphasized the proble-

matic aspects of such collections, including biases and errors

in taxonomic, temporal and spatial data gleaned from them

[20,21]. Despite these limitations, herbarium specimens often

represent the best available information for particular species

[22]. Their use in assessments of extinction risk is therefore

consistent with IUCN Red List Guidelines which expect the

assessor to use ‘best available information in combination

with inference, suspicion and projection. . .’ [23].

In this study we review recent use of herbarium specimens in

evaluating plant extinction risk and alternative approaches

which have been proposed to accelerate this process. We compare

performance of a selection of these approaches using five sets of

species already assessed by conventional approaches in the past

decade. We show that several published approaches can classify

species as threatened or not threatened with significant levels
of accuracy and that machine learning methods trained on

herbarium data rival the best-performing published approaches.
2. Use of herbarium specimens in assessments
of extinction risk

(a) Relevance of herbarium specimen information
Limitations of herbarium specimens as data-sources for con-

servation analyses have been extensively documented in

qualitative and quantitative terms over recent years [21,24].

Nonetheless, herbarium specimens have provided the primary

or only data source for assessment of extinction risk of thou-

sands of plant species over the same period [25]. In practice,

extinction risk assessors do not deny the limitations of speci-

men data but counter-balance them with the observation

that herbarium specimens provide citable and verifiable evi-

dence of the presence of particular species at particular

points in space and time. Evidence of this kind is particularly

valuable in the context of tropical assessments, for which field

observations are often scarce and identifications may be inac-

curate due to the exceptional floristic diversity encountered

and the dearth of accessible identification aids. Thus, each

specimen-based extinction risk assessment represents an evi-

dence-based hypothesis of the current level of extinction risk

of a particular plant, to be refined, updated, corrected or

refuted as more specimens become available or when the

scientific identification of one or more included specimens is

corrected or updated in light of new knowledge.

Unlike the taxonomic identification, which may change mul-

tiple times over the lifetime of a specimen, other data obtained

from herbarium specimens are relatively stable and may be sub-

divided into (i) ‘metadata’ (objective) recorded at the time of

collection; (ii) other narrative (subjective) text added by the col-

lector(s) at the time of collection or label preparation; and (iii)

attributes of the actual plant material mounted on the sheet

which may be observed and documented. Most specimen data-

basing projects aim to include metadata, including coarse-level

geographical information, collector name, collection number,

date, and latitude and longitude coordinates where available

[26]. Resources available for data transcription often limit the

extent to which narrative information is included in specimen

databases, so availability of detailed narrative locality and

habitat information is patchy. Finally, information absent from

the label but gleaned directly from the specimen is rarely

included in major databases [27] and, if captured, may remain

inaccessible in the research databases of taxonomists (e.g.

morphological details) or ecologists (e.g. phenological obser-

vations). All this information is of potential use in extinction

risk assessment, either in assigning species to a particular extinc-

tion risk or as supporting information for the assessment.

However, the degree to which different types of herbarium

specimen data are used and cited in assessments varies greatly,

reflecting not only their relative utility in the assessment process

but also their availability in digital form.

(b) Use of herbarium data in IUCN Red List assessments
The IUCN Red List categories and criteria were designed to

estimate likelihood of extinction risk under prevailing circum-

stances [28]. The criteria reflect the symptoms of extinction risk

such as small, declining or fluctuating populations and small

geographical range size [29]. Of the five criteria, geographical
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range (B) is the most widely applied criterion [30], likely

because of availability of suitable data. In 2003, in an early

attempt to apply herbarium data to IUCN Red List assess-

ments, a case study based on eight African species reported

that herbarium specimen data were most suited to the

application of criteria relating to distribution (extent of occur-

rence, area of occupancy and fragmentation) and population

profile/structure (projected continuing decline and number

of subpopulations) [19]. Estimates of numbers of locations,

numbers of mature individuals, generation length, population

size, reduction or fluctuation from herbarium material were

considered prone to inconsistencies and subjectivity [19]. To

what extent are these conclusions supported by evidence

and experience gained over the past 15 years?
.R.Soc.B
374:20170402
(i) Spatial data
Spatial data is certainly the herbarium-derived information

most widely applied to extinction risk assessments. Most

recent specimens (less than 30 years old, since the advent of

global positioning systems) include latitude and longitude

coordinates, providing a best estimate of the site where the

plant was collected, usually within 10s–100s metres depend-

ing on equipment used. Older specimens (more than 30 years

old) are less likely to include coordinates, but latitude and

longitude can usually be deduced from the textual locality

information on the specimen, when provided (i.e. through

post-collection georeferencing). For very old specimens,

where only minimal locality data is reported on the specimen

label, the collector’s name, number and the collection date

can often be combined with itinerary data from published

or unpublished journals or travel accounts to infer collection

localities. Such labour-intensive approaches for pinpointing

older collections may be rewarded by invaluable insights

into historic species ranges [31].

Spatial data from multiple herbarium specimens can be

collated at species level to provide a distribution map, a

required element of supporting information for all IUCN

Red List assessments. The distribution data can also be

used to calculate two range metrics applicable for the

IUCN Red List criteria: (i) extent of occurrence (EOO),

usually calculated with a minimum convex polygon around

points; and (ii) area of occupancy (AOO), the sum of occu-

pied 2 � 2 km cells. These metrics underpin most plant

IUCN Red List assessments (electronic supplementary

material, table S1). In addition, distribution maps can be com-

bined with other spatial data layers to inform habitat

preference, presence in protected areas, relevant threats, etc.

Inappropriate use of specimen-derived localities to calcu-

late AOO is a common pitfall, which can lead to over-

estimation of extinction risk. Sampling densities of herbarium

specimens are rarely sufficient to support calculation of AOO

using the recommended 4 km2 grid cell [23]. A minimum of

500 specimens is necessary to estimate an AOO larger than

the AOO threshold for a threatened category (2000 km2). As

most species are represented in herbaria by only a few speci-

mens [32], their AOO is often underestimated, and could fall

within the threshold for a threatened category if AOO is esti-

mated using only herbarium specimens and two of the

additional subcriteria are met. A large number of specimens

may signify a large number of locations, reducing the impact

of AOO underestimation, and potentially pushing a species

to a Near Threatened or Least Concern category. However,
locations are defined by threatening processes, not always

dependent on specimen count or collection locality. Choosing

a grid size consistent with sampling density and habitat type

of the species is often considered the pragmatic decision for

calculating AOO [33], though not strictly consistent with

IUCN guidelines.

Both EOO and AOO have also been estimated using other

approaches such as species distribution modelling (SDM)

[34]. By predicting occurrence based on the environmental

attributes of known occurrence, SDMs can ‘fill gaps’ where

sampling intensity of herbarium specimens is low. IUCN pro-

vides guidance on how SDMs can be applied to estimate

EOO and AOO, as the modelled area is often larger than

the actual occupied habitat [23]. When using herbarium

specimens for SDMs, understanding their limitations

becomes particularly important, specifically in relation to

numbers of specimens required for modelling, bias in collect-

ing localities and error radii of georeferenced points [23]. All

too often, the species excluded from analyses due to sample

insufficiency are among the most threatened [35].

Spatial data from herbarium specimens, usually termed

‘locality’ data, is sometimes conflated with the IUCN term

‘locations’, a distinct spatial metric used in the IUCN Red

List criteria, which define ‘location’ strictly as ‘a geographically

or ecologically distinct area in which a single threatening event

can rapidly affect all individuals of the taxon present’ [23].

Location recognition requires identification of plausible threats

and analysis of extent of the most serious plausible threat—a

step often ignored. Spatial data from herbarium specimens

on their own are rarely sufficient to determine threat-defined

locations, though notable exceptions include species new

to science first collected in areas scheduled for immediate

development [36]. However, combining spatial threat datasets

with spatial data from herbarium specimens can enable

identification of the most plausible threat and resulting

threat-defined locations. This step is usually species- or

habitat-specific, and can be time-consuming, but for particular

plant groups or geographical areas, efficiencies can be

achieved when plausible threats are applicable to all species

(e.g. wild harvesting of orchids, or harvesting of timber).

Spatial data from herbarium specimens have also been

considered for calculation of other spatial metrics such as

‘severe fragmentation’. However, specimen data alone are

insufficient to determine severe fragmentation as data on

population size, structure and connectivity are required but

usually lacking from herbarium specimen labels [23,37].
(ii) Temporal data
Temporal data are almost always present on herbarium speci-

mens in the form of collection dates (even if only year, or a

range of years for some older specimens) and are usually cap-

tured in digitization initiatives. These data are useful for

inferring the existence of a particular habitat at a particular

point in time. These data can be compared with present

day habitat data, such as maps derived from Earth Obser-

vations, opening up the possibility of inferring decline of a

species’ geographical range over time, if present day habitat

has been reduced or degraded. By relating the loss of geo-

graphical range (EOO, AOO or even quality of habitat) to a

decline in the population size of a species, it is possible to

apply criterion A if generation length can be estimated [23]

or at least to estimate continuing decline as applied in
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criterion B. Specimen collection dates can also support extinc-

tion risk assessments through Population Viability Analysis

in which collection dates of the species of interest are inter-

preted in the context of collection dates of associated

species as a proxy for collection effort, facilitating application

of criterion E (e.g. [38]). However, no current plant IUCN Red

List assessments cite criterion E.

(iii) Demographic data
Population size and population decline feature prominently

in IUCN Red List categories and criteria. Mathematical

models of population dynamics can be incorporated in cri-

terion E to measure the probability of extinction in the

wild. However, criterion E and other criteria relying on popu-

lation data are often not applied because data are not

available. Population size is rarely documented on herbarium

specimen labels, aside from generalized descriptions e.g.

‘rare’, ‘common’, which are of use as supporting evidence,

but not directly applicable to the criteria.

(iv) Traits and contextual data
Additional narrative information from specimen labels such

as description of the plant (habit), habitat description, uses

and threats, although subjective and patchy in availability

are of value to the assessor. Phenology information, such as

the flowering and fruiting, can also be determined using her-

barium specimens. This can be useful in conjunction with size

of plants to infer age of mature individuals.

(c) Errors of omission, inclusion and taxonomic
identification

Although increased availability of herbarium specimen data

in freely accessible databases has greatly facilitated use in

extinction risk assessments it has also given rise to unantici-

pated issues which merit attention in the hope that they

can be avoided in the future.

With rapid growth in the proportion of the world’s her-

barium specimens represented in databases, such as the

Global Biodiversity Information Facility (GBIF), there is a

growing tendency to base assessments only on digitally avail-

able information (DAI). Analysis has shown that just 10–15

herbarium specimens can be sufficient to produce reliable

extinction risk assessments [32] but it should not be forgotten

that these analyses were based on well-curated and near-

comprehensive collations of extant herbarium material.

When relevant material is deposited in herbaria for which

digital data are not available, consulting these herbaria to

access relevant data remains an important step in ensuring

that assessments use the best available evidence. For

example, for a range of threatened species in South Africa,

provincial herbaria were found to be important sources of

data not available elsewhere but drove significant changes

to range estimates [39].

Even where all relevant material has been digitized,

over-reliance on DAI is a source of error in extinction risk

assessments. Relying exclusively on the georeferences in

DAI can result in overestimation of extinction risk by omit-

ting specimens which, if georeferenced, would increase

estimated range. Without additional georeferencing effort,

numbers of species assessed as threatened may be overstated

by 50% [17]. In contrast, the opposite may also be true, where
extinction risk is underestimated if all specimen records are

included uncritically, without checking for and excluding

any localities based on cultivated material or from areas no

longer likely to support the species (i.e. due to habitat con-

version and/or destruction). Exclusive reliance on DAI can

also result in propagation of errors due to misinterpretation

of label data at the time of transcription. Examination of

specimen images, where available, can enable pinpointing

and elimination of straightforward transcription errors and

georeferencing errors, as well as errors due to misinterpreta-

tion of handwritten specimen labels or failure to recognize

cultivated specimens.

Another perverse outcome of the rapid growth in herbar-

ium digitization is that many herbarium curators lack

resources to maintain digital resources, so that specimen

identification records are not updated as they are changed

to reflect correction of misidentifications and/or new taxo-

nomic insights. As a result, up-to-date identifications for a

taxon of interest often reside not in online databases but on

herbarium sheets annotated by specialist monographers as

part of their research. While monographic work is often per-

ceived as proceeding at a glacial pace, recent research has

shown that cumulated identification changes to specimens

over a few years can result in significant changes to extinction

risk assessments based on this material [40]. It is therefore

vital to ensure that specimen-based assessments include the

latest available taxonomic updates.
3. Accelerating extinction risk assessments
(a) Reviewing alternative approaches
Although the IUCN Red List categories and criteria are

widely respected, accepted and applied, many scientists

report that they are time-consuming to apply and require

data that is not readily available [41]. For some, the sol-

ution is to develop an independent system tailored to the

realities of assessment challenges in their particular con-

text. For example, Mexico’s Method for Evaluation of

Risk of Extinction for Mexican Wild Species [42] was intro-

duced as a reasonably reliable way to identify species of

conservation concern in the face of rapid extinction in a

large, extremely diverse country [43]. Similarly, Brazil

adopted IUCN categories and criteria, but is developing

national microservices-based computational approaches

to implement them seamlessly with Brazilian information

resources [44]. Here we focus on approaches proposed to facili-

tate assessment while adhering as closely as possible to IUCN

Red List principles, with a view to maximizing consistency of

results with those of full IUCN Red List assessments. These

‘IUCN-consistent’ approaches tend to focus primarily on tack-

ling time constraints or limited data availability, though in

practice these challenges often co-occur.
(i) Time savers
Calculation of EOO and AOO, formerly one of the most

time-consuming aspects of IUCN Red List assessment, was

transformed by the advent of geographical information

systems (GIS). Algorithms first published as the Conservation

Assessment Tools (CAT) extension to Arc View 3.3 [45], have

been reprogrammed in JavaScript to create GeoCAT, an open

source, browser-based tool for EOO and AOO estimation [46]
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which is exceptionally user-friendly, widely used by bota-

nists and cited over 100 times a year. GeoCAT provides a

preliminary estimate of IUCN category based on EOO and/

or AOO. This functionality was recently published as an R

package rCAT [47]. Another R package, ConR [48], calculates

EOO and AOO, and also estimates numbers of locations and

subpopulations, creates species maps and offers preliminary

estimates of IUCN category based on these results. Tested

on herbarium data for African palms previously assessed

individually, default settings on ConR correctly classified

71% of species as threatened or not [48].

(ii) Less data-intensive approaches
Addressing limitations to availability of data from the world’s

herbaria, Krupnick et al. [49] proposed an algorithm to run on

a subset of all herbarium specimens using numbers of verified

specimens, the ‘breadth of the localities’ represented and the

range of collection dates in a ‘first pass’ to place species in

one of three preliminary Red List categories: Potentially Extinct

(includes Extinct and Extinct in the Wild); Potentially Threa-

tened (Critically Endangered (CR), Endangered (EN) and

Vulnerable (VU)) or Not Threatened (Near Threatened (NT)

and Least Concern (LC)). Using Hawaiian plant species well-

represented in the Smithsonian Institution’s herbarium, their

algorithm, later dubbed the ‘US Method’ [17], was calibrated

to achieve 95% accuracy in classifying Hawaiian species

previously assessed as threatened. The challenge of retrospec-

tively georeferencing large volumes of specimen data

prompted the development of the New York (NY) method

[17]: EOO is first estimated using existing georeferenced

data, then species with EOO estimates exceeding 20 000 km2

are tagged as Not at Risk so that retrospective georeferencing

efforts are focused on limited numbers of specimens of less

common species, for which additional georeferenced data is

most likely to influence the extinction risk assessment. When

applied to the Puerto Rico flora, the NY and US methods

gave results highly congruent with previously completed

IUCN assessments, identifying 47 and 42 of the 53 threatened

species respectively [17].

(iii) Machine learning
Until recently, the lack of high-resolution, high quality occur-

rence data for most plant species has impeded widespread

adoption of machine-learning approaches, despite the success

of these powerful, pattern-finding computational techniques

in predicting extinction risk for animals [50]. The first

report of use of machine learning models to evaluate extinc-

tion risk at global scale for a species-rich plant group [51]

relied primarily on coarse-scale species distribution data

but, for a subset of assessed species for which suitable data

were available, models were also tested based on fine-scale

range size data, including point data from herbarium speci-

mens. The best such model correctly classified all but one

of 81 species (as threatened or not threatened), with range

size contributing much more to model performance than

when only coarse-scale distribution data were used.

(b) Comparison of selected approaches
(i) Methods
Approaches selected. We compared five approaches for predict-

ing threat status of species from herbarium data: (i) Random
Forests—using climatic and threat data derived from species

ranges; (ii) rCAT—preliminary assessments by the rCAT

package [47] based on species’ EOO; (iii) ConR—approximate

assessments using default settings in the ConR package [48]

based on IUCN Red List criteria B; (iv) US Method [49]

based on specimen collection data and locality; and (v) Speci-

men Count—a naive approach based on classifying a species

as potentially threatened if the number of specimens is

lower than a threshold value (table 1). We defined threat

status of each species as either ‘threatened’ or ‘not threa-

tened’ based on its IUCN Red List assessment category;

species categorized as CR, EN or VU were ‘threatened’,

while species categorised as NT or LC were ‘not threatened’.

Validation data preparation. We tested the different

approaches for assessing threat status using species already

assessed for the IUCN Red List as a validation set. Data

were assembled from five distinct assessment efforts focused

on the following plant groups: global Coffea (hereafter

‘Coffea’); legumes for the sampled Red List index (‘Legumes’);

Myrcia sect. Aulomyrcia (‘Myrcia’); orchids of New Guinea

(‘OrchidsNG’); and Madagascan palms (‘MadPalms’). Species

numbers for each group are given in table 2. Information was

collated from published global IUCN Red List assessments

[7], from completed assessments in the process of submission

and publication on the IUCN Red List, and from specimen

records underpinning all these assessments. Specimen records

had been gathered, as part of the assessment process, from

records held at Kew as well as from specialists’ databases

and aggregators such as GBIF. Duplicate records and those out-

side a species’ native range were removed and coordinates

were checked and filled by georeferencing where locality infor-

mation was available in order to carry out the assessments.

After excluding extinct, not evaluated and data deficient

species from our dataset, we were left with 1311 species

(table 2). All unpublished assessments included in the

analysis were reviewed and submitted to the IUCN Red

List by October 2018, for processing and publication.

Due to differing requirements, we drew individual sets of

predictors (predictor sets) for each approach tested. For

Random Forests, we used predictors (features) as described

by Bland et al. [50] where applicable to plant species and

where information was readily available. The US Method

required specimen collection year, locality and number of

specimens for each species, while both rCAT and ConR

required only specimen coordinates, and Specimen Count

required only the number of specimens (table 3).

Many of the specimens had missing or non-standard

locality descriptions. To maximize the number of specimens

with locality information for inclusion in the US Method (in

which locality is defined at the level of state, province or

island ‘depending on regional geography and nationally

designated boundaries’), we back-computed the locality for

all georeferenced specimens, using the GADM dataset of

worldwide administrative areas [53]. Where coordinates were

missing, we chose the administrative area that corresponded

best to the narrative specimen locality information. The

GADM dataset provides a nested hierarchy of administra-

tive units, with the number of levels populated varying

between countries. Following testing (electronic supplemen-

tary material, table S3), we selected the first level below

country (GADM level 1) as representing the best compromise

between the stated objectives of the US Method and its

published protocol [49].
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Table 2. Groups included in our dataset, with number of species and their
distribution.

group

species
(specimens)
included

total
known
species distribution

Coffea 105 (4352) 124 global

(confined

to Old

World)

Legumes 837 (166532) 22347 global

Myrcia (sect.

Aulomyrcia)

97 (3239) 124 Neotropical

MadPalms 176 (1997) 203 Madagascar

OrchidsNG 96 (1001) 3136 New Guinea

endemics

total 1311
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We removed species from predictor sets for Random For-

ests and ConR species with ranges spanning the 180th

meridian, as these approaches produced infeasible ranges

for them. Since each predictor set had differing numbers of

species with missing information, different numbers of

species remained for each modelling approach (electronic sup-

plementary material, table S4). Although this means that our

comparison is not based on exactly the same datasets, this

reflects the reality of applying these approaches.

All data collation was undertaken using the Python pro-

gramming language. For more details of predictors and

data-processing see electronic supplementary material.

Execution of analysis. We used the entire dataset available to

test rCAT, ConR, US Method and Specimen Count. Random

Forest classification is a supervised machine learning algor-

ithm, and therefore needs to be trained on a subset of

the data. We took 75% of our Random Forest dataset as the

training set. We used repeated cross-validation (10-folds, five

repeats) on the training set to tune the hyperparameters of

the Random Forest classifier, chose the best model based

on the area under the receiver operator curve (ROC), and

tested the performance of the best model on the remaining

25% of the dataset. We measured predictor importance in the

best Random Forest classifier as mean decrease in accuracy

by predictor permutation on the out-of-bag samples.

We chose the threshold value for the Specimen Counts

approach as the number of specimens that gave the highest

accuracy on the whole dataset (electronic supplementary

material, figure S1).

Comparison of threat assessment approaches. We compared

approaches based on their accuracy, sensitivity (correctly pre-

dicting threatened species), and specificity (correctly

predicting not threatened species). We also compared the

accuracy of all approaches to the default accuracy, defined

as the accuracy that could be achieved by classifying all

species to the most common threat status in the dataset.

We tested differences in value by using Bayesian par-

ameter estimation to model the probability distribution of

differences, and we defined a difference as significant when

zero was outside of the 95% credible interval of the
distribution. We chose a binomial likelihood for differences

in accuracy, and a multinomial likelihood for differences in

sensitivity and specificity. For ease of computation, we

chose flat conjugate priors, and drew 10 000 samples from

the modelled posterior distributions. We ran and compared

all approaches using R [54].
(ii) Results
Overview of performance by approach. Accuracy in correctly

classifying as threatened or not threatened species of

known extinction risk ranged from 90% to 77% (figure 1a
and table 4). Across the whole dataset, all approaches

achieved accuracies significantly greater than default accu-

racy but there were significant differences in performance

between approaches. Accuracies for Random Forests

(90%) and rCAT (89%) were significantly greater than

those for Specimen Count, ConR (both 82%) and US

Method (77%). Specificity (correctly predicting not threa-

tened species), showed a similar pattern to accuracy, but

with ConR and US Method showing significantly lower

specificity than the other three methods. ConR achieved

the highest sensitivity (correctly predicting threatened

species), though not significantly greater than rCAT,

Random Forests or US Method.

Extent of occurrence was the most important predictor

in our Random Forest classifier, associated with a mean

decrease in accuracy of 11%. Minimum Human Population

Density (min_hpd), Order, and Family were next in order

of importance, each associated with a 2–5% decrease in

accuracy (figure 2a).

Comparison by plant group. Although all approaches

achieved classification accuracies greater than default accu-

racies for the dataset as a whole, considerable variation was

evident between groups (figure 1b). At the level of individual

groups, rCAT was the most successful approach, achieving

accuracies significantly greater than default accuracy in

three groups: Coffea, Legumes and Myrcia. ConR and US

Method performed best on Coffea and MadPalms. Accuracies

greater than default accuracy were not achieved for any

group with Specimen Count or Random Forest, nor for any

approach applied to OrchidsNG.

Extent of occurrence was the most important predictor

for Random Forest classification of each group, associated

with mean decrease in accuracy of over 10% for each

group, except orchids (8%) (figure 2b). Minimum Human

Population Density was second in importance in predicting

extinction risk in all groups. Environmental predictors were

next in importance for OrchidsNG and Myrcia while for

other groups Order and Family were more important, as

for the whole dataset.

Comparison by IUCN category and criterion. The best-per-

forming approaches, Random Forests and rCAT, showed

highest accuracy in correctly classifying threat status of LC

and CR species (see electronic supplementary material,

table S5). Random Forests showed good discrimination for

LC and CR species, but had a large overlap in predicted prob-

abilities for VU and NT species (figure 2c). ConR matched or

exceeded these approaches in accuracy of classifications for

CR and EN species but performed less well in classifying

species categorized as LC. Accuracies achieved by the US

Method were comparable to those of rCAT, Random Forests,

and ConR for all threatened categories, but were significantly



Table 3. List of predictors used for each of the compared approaches.

predictor

threat assessment approach

short name typerCAT ConR US
Specimen
Count

Random
Forests

collection year 3 — collection-

related

locality 3 3 3 — collection-

related

number of specimens 3 3 — collection-

related

genus 3 genus taxonomic

family 3 family taxonomic

order 3 order taxonomic

number of habitats 3 n_habitats geographical

biogeographic realm 3 realm_value geographical

extent of occurrence (EOO) 3 range_eoo geographical

maximum elevation 3 elevation_max geographical

minimum elevation 3 elevation_min geographical

latitude of range centroid 3 latitude_centroid geographical

mean annual temperature 3 av_temp climatic

mean temperature

seasonality

3 season_temp climatic

mean annual precipitation 3 av_precip climatic

mean precipitation

seasonality

3 season_precip climatic

external threat index 3 eti threat-related

mean GDP 3 mean_gdp threat-related

mean human population

density

3 mean_hpd threat-related

minimum human

population density

3 min_hpd threat-related

mean human footprint 3 mean_hfi threat-related
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lower for LC species. All four of these approaches were at

their least accurate in classifying threat status of NT species.

Naive Specimen Count outperformed other approaches in

classifying NT species and, like the best-performing

approaches, showed its highest accuracies in classifying

threat status of LC and CR species.

IUCN Red List criterion B was the most commonly cited

criterion among complete assessments in our dataset and

78% of species assessed as threatened cited criterion

B. Criterion D was the next most commonly cited for threa-

tened species at 31%, while criteria A and C were each

cited by just 6% of threatened species assessments. Species

assessed as threatened citing criterion B had a significantly

greater probability of being correctly classified by rCAT and

ConR than threatened species not citing criterion B, and

species assessed as threatened citing criterion D had a signifi-

cantly greater probability of being correctly classified by all

methods except rCAT than threatened species not citing cri-

terion D. Conversely, species classified as threatened citing
criterion A had a significantly lower probability of being cor-

rectly classified by any of the five approaches (electronic

supplementary material, figure S2).

Further analysis of these performance differences by

group revealed that these effects detected in the dataset as

a whole were largely driven by differences in performance

in Legumes and Myrcia for which all approaches tested

except Random Forests had a significantly greater probability

of correctly classifying threatened species citing criterion B

and a significantly lower probability of correctly classifying

threatened species citing criterion A (electronic supplementary

material, figure S3).
(iii) Overview of comparison results
Both Random Forests and rCAT performed consistently well

across our three metrics and did not differ significantly from

each other in overall classification accuracy, correct prediction

of threatened species (sensitivity) or correct prediction of not
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Figure 1. Comparison of each approach (a) on the whole dataset by accuracy
(correct prediction of threat status), sensitivity (correct prediction of species as
threatened), and specificity (correct prediction of species as not threatened)
and (b) on each group by accuracy. Stars indicate a significant difference from
the default accuracy.
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threatened species (specificity). Specimen Count and ConR

had lower accuracy (82%) and specificity but ConR compared

favourably in terms of sensitivity, while Specimen Count had

the lowest sensitivity of all methods. The US Method was

outperformed by all other approaches in terms of accuracy

and specificity but did not differ significantly from Random

Forests, rCAT or ConR in terms of sensitivity.

Unexpected results. That rCAT, analysing only specimen

occurrence data, should match the performance of the

much more data-intensive Random Forests approach could

be seen as counterintuitive but it may be attributable in

part to the fact that most of the completed extinction risk

assessments in our dataset were undertaken with the support

of GeoCAT, the online tool which uses algorithms almost

identical to those of rCAT. Arguably our most surprising

result is that the least data-intensive approach, Specimen

Count, performed extremely well, matching the classification

accuracy of ConR, an approach more comparable to rCAT in

terms of data requirements.

Most important predictors. Range (EOO) was the most

important predictor in our Random Forests model, associated
with a mean decrease in accuracy of 11%, similar to results of

the only comparable study based on herbarium specimen

data [51]. Next in importance in our model were Human

Population Density, Order and Family. Population and

Family were also recognized as significant correlates of

extinction risk in the earlier study [51], in which Order was

not considered.

Best approaches by group. Drilling down into performance

on our different groups revealed significant variation

between approaches. The most successful approach at

group level was rCAT, with accuracies significantly exceeding

default accuracies for Coffea, Legumes and Myrcia, though

rCAT accuracy did not differ significantly from Random

Forest accuracy for any group. Random Forest results

showed all groups had Range (EOO) and Human Population

Density as most important predictors.

Impact of categories and criteria in original assessment. Dis-

crimination accuracies between threatened and not threatened

species were greater for species assessed in categories at the

extremes of the scale: CR or LC. Most approaches were least

accurate for species assessed as NT, consistent with the fact

that this category is the least explicitly based on quantitative

parameters [23]. Specimen Count represented a notable excep-

tion with 74% accuracy in predicting as threatened species

which had been assessed as NT.

Investigating whether performance might vary depend-

ing on the criteria on which each original assessment was

based, we found that species assessed as threatened had sig-

nificantly different probabilities of being correctly classified

depending on the criteria cited in their assessment. This

effect, seen to some extent in all approaches except Random

Forests, was particularly evident in Legumes and Myrcia,

which may be attributable to the fact that these groups tend

to have mean EOO greater than in the other groups (electronic

supplementary material, figure S4).

ConR. Results for ConR exceeded accuracy levels reported

by its creators but were significantly lower than those

achieved by Random Forests and rCAT in our study. How-

ever, a particular strength of ConR is its high sensitivity, a

priority for scientists wishing to minimize the risk that a

threatened species is misclassified as not threatened.

ConR infers locations from localities and states explicitly

an assumption of continuing future decline in habitat

quality [55]. Thus, despite statements to the contrary, the

resulting preliminary assessments will not be strictly con-

sistent with the theoretical framework provided by IUCN,

which requires locations to be defined in relation to the

most plausible threat, which will not be habitat decline in

all cases. Nonetheless, the breadth of functionality offered

by this new R package will likely be of interest to those

wishing to extract maximum value from herbarium data

for extinction risk assessment.

The US Method. The 77% accuracy achieved by US Method

on our dataset is significantly lower than other approaches

tested, but it significantly exceeds default accuracy and there-

fore merits consideration. Sensitivity achieved here with US

Method (86%) does not differ significantly from that achieved

with other methods, and is markedly better than the 79%

reported for its use on the Puerto Rico flora [17]. The US

Method is therefore an interesting option for its proposed

purpose, as triage for separating species which are clearly not

threatened from those meriting more in-depth analysis [49].

A particular strength is its apparent simplicity, likely to



Table 4. Summary of results for each method applied to the test sets overall and to each plant group. Italicized accuracies are significantly better than the
default accuracy. Superscript letters indicate significantly better performance than Random Forests (RF), rCAT (RC), ConR (CO), Specimen Count (SC), or the US
Method (US).

group number of species accuracy/% default accuracy/% sensitivity specificity

Random Forests all 326 90CO,SC,US 72 0.85SC 0.91CO,SC,US

Coffea 32 75 62 0.80 0.67

Legumes 204 94 93 0.64 0.96

MadPalms 52 88 85 0.98 0.38

Myrcia 19 74 63 0.67 0.86

OrchidsNG 19 84 89 1.00 0.82

rCAT all 1311 89CO,SC,US 72 0.83SC 0.92CO,SC,US

Coffea 105 87 68 0.86 0.88

Legumes 837 92 89 0.78 0.94

MadPalms 176 84 83 0.85 0.8

Myrcia 97 81 62 0.7 0.88

OrchidsNG 96 82 76 0.96 0.78

ConR all 1303 82US 72 0.87SC 0.80US

Coffea 105 93 68 0.94 0.91

Legumes 829 83 89 0.73 0.85

MadPalms 176 91 83 0.92 0.83

Myrcia 97 67 62 0.76 0.62

OrchidsNG 96 51 76 1.00 0.36

Specimen Count all 1311 82US 72 0.69 0.87CO,US

Coffea 105 73 68 0.62 0.97

Legumes 837 87 89 0.45 0.93

MadPalms 176 84 83 0.84 0.87

Myrcia 97 65 62 0.65 0.65

OrchidsNG 96 53 76 1.00 0.38

US Method all 1311 77 72 0.86SC 0.74

Coffea 105 78 68 0.73 0.88

Legumes 837 78 89 0.75 0.78

MadPalms 176 91 83 0.99 0.53

Myrcia 97 64 62 0.78 0.55

OrchidsNG 96 58 76 1.00 0.45
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appeal to practitioners with limited computing resources or

coding skills, who may also appreciate the fact that they can

readily visualize the pathway each species follows

(figure 3). However, the sensitivity of the US Method is

very dependent on the definition of locality used. In our

application of the method, following testing, localities

were standardized to the first administrative level below

country but using finer-grained localities, as also suggested

for the US Method, can reduce the sensitivity to 75%

(electronic supplementary material, table S3). Given the

non-standard nature of specimen locality strings, and the

substantial computational effort needed to back-compute

and standardize localities as we did, the US Method may

prove less simple to apply than it seems. In fact, if sensi-

tivity and simplicity are the key considerations, then the

most cost-effective approach to applying the US Method

may be to broaden the definition of locality to country
(almost always present in herbarium data) at the cost of

reducing the specificity (to 55%) and thereby inflating the

number of species requiring full assessment.

4. Discussion
In our study we have shown that herbarium specimens pro-

vide invaluable data for extinction risk assessment of plants;

collated and analysed appropriately, they constitute the fun-

damental resource for increasing the number of plant species

that are represented by an evidence-based extinction risk

assessment. We also found that several published approaches

to accelerating extinction risk assessment of plants offer good

discrimination between threatened and not threatened

species for a global dataset of tropical and temperate tree,

shrub and herb species previously assessed individually fol-

lowing IUCN Red List categories and criteria. Strikingly, the
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Figure 2. Random Forest classification results: predictor importance
measured as mean decrease in accuracy by permutation for (a) all predictors
and (b) the five most important predictors for each group, accompanied by
(c) the probability of threat by IUCN Red List category predicted by the
Random Forest classifier, with the dashed line showing the threshold for
classification as threatened. (See table 3 for abbreviations).
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at each step in the US Method for all plant groups in our study.
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least data intensive approach, simply designating as threa-

tened all species with fewer specimens than a threshold

number, showed strong discrimination, offering a useful

first step before investing in further collation of data. This is

important because the rate at which plants are evaluated

for their extinction risk must increase considerably, not only

to respond to international targets [1,4,8,14] but also so that

plants attract conservation resources proportionate to their

importance to life on Earth.

Use of spatial data from herbarium specimens for extinction

risk assessment is now widespread and well-established, sup-

ported by a range of guidelines, methodological studies and

tools which collectively support appropriate use [23,37,46].

Most of the assessments of tropical species added to the

IUCN Red List in recent years are based directly or indirectly

on herbarium data. Increased DAI from herbarium specimens
has been important in extending use of herbarium data for

extinction risk assessment, though confining analyses to DAI

can markedly reduce assessment accuracy. The increasing dis-

connect between herbarium specimens and their digital

surrogates must be remedied by allocation of sufficient resources

for herbaria to update DAI in line with changing specimen

identifications. Without such action, ongoing extinction risk

assessments based on specimen data will be compromised.

International policies and initiatives to increase the pro-

portion of plant species represented by extinction risk

assessments have varied in effectiveness. The CBD’s GSPC

Target 2 highlighted the low representation of plants,

engaged scientists based in herbaria and botanic gardens to

a greater extent than ever before, lent a sense of urgency to

assessing plant extinction risk using the IUCN categories

and criteria and prompted development of technical

approaches and tools to accelerate these processes. Despite

the failure to meet Target 2 by 2010, lasting positive outcomes

include significant engagement in extinction risk assessment

by plant taxonomists, many of whom now regularly use

extinction risk assessment tools. For example, 84% of recent

new species from Brazil were published with extinction risk

assessments and 25% of these cite GeoCAT (Canteiro 2018,

unpublished data). The Barometer of Life initiative is likely

to meet its target for numbers of plants added to the IUCN

Red List but has focused on new assessments to the detriment

of reassessments which are vital for evaluation of trends and

inclusion in international biodiversity indicators [1,4,10].

Our comparison of a selection of more-or-less quantitative

approaches to classifying plant species as threatened or not

threatened using herbarium data showed that the most

data-intensive approaches are not always the most accurate

and that effective discrimination may be achieved with sur-

prisingly small quantities of herbarium data. Although

more work is needed to test the approaches on a wider

range of species assessed in different contexts, the results

reported will be useful to guide practitioners in selecting

approaches most appropriate for their situation and purpose.

For example, if the purpose is broad estimates of overall

levels of threat in a country, Specimen Count could be a

very useful, quick and informative first step. However, if the

intention is to proceed to a full extinction risk assessment for

most species, then a more data-intensive approach may be

appropriate from the outset. And, of course, if the ultimate

objective is to inform and influence conservation action,

rather than merely contribute to conservation biology literature,

then choice of assessment approach must take into account the

requirements of funders and the conservation goal.
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Despite the innovative approaches to accelerating plant

extinction risk assessment discussed here, it is doubtful

whether GSPC Target 2 can be met by 2020 [8] but there can

be little doubt that without access to and use of herbarium

specimen data we might never achieve our goals. Continuing

efforts to generate robust, high quality herbarium specimen-

based datasets should be a priority, as this will lead to an

increase in the number and accuracy of extinction risk assess-

ments for plants. Although herbarium specimen data are

likely to remain central to plant extinction risk assessment for

the foreseeable future, their value for this purpose and for

broader studies of global change will rapidly diminish without

support for ongoing collection activity and updating of digital

resources on which so much current specimen use depends.
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Akçakaya HR, Leader-Williams N, Milner-Gulland EJ,
Stuart SN. 2008 Quantification of extinction risk:
IUCN’s system for classifying threatened species.
Conserv. Biol. 22, 1424 – 1442. (doi:10.1111/j.1523-
1739.2008.01044.x)

29. IUCN. 2001 IUCN Red List Categories and
Criteria: Version 3.1. Gland, Switzerland and
Cambridge, UK: IUCN.

https://github.com/barnabywalker/threatened_species_classification_comparison
https://github.com/barnabywalker/threatened_species_classification_comparison
https://github.com/barnabywalker/threatened_species_classification_comparison
http://dx.doi.org/10.1080/14888386.2015.1075903
http://dx.doi.org/10.1080/14888386.2015.1075903
http://dx.doi.org/10.1073/pnas.0509060102
http://dx.doi.org/10.1073/pnas.0509060102
http://dx.doi.org/10.1111/conl.12353
http://dx.doi.org/10.1111/conl.12353
http://dx.doi.org/10.1126/science.1188606
http://dx.doi.org/10.1016/j.tree.2017.09.005
http://dx.doi.org/10.1016/j.tree.2017.09.005
http://dx.doi.org/10.11646/phytotaxa.272.1.5
http://www.iucnredlist.org
http://www.iucnredlist.org
http://dx.doi.org/10.1111/cobi.13071
https://www.bgci.org/threat_search.php
https://www.bgci.org/threat_search.php
http://dx.doi.org/10.1371/journal.pone.0135152
http://www.beta.ipni.org
http://www.beta.ipni.org
http://dx.doi.org/10.2307/25065491
http://dx.doi.org/10.2307/3298559
https://www.cbd.int/doc/publications/plant-conservation-report-en.pdf
https://www.cbd.int/doc/publications/plant-conservation-report-en.pdf
http://dx.doi.org/10.1098/rstb.2003.1446
http://dx.doi.org/10.1007/s10531-012-0285-3
http://dx.doi.org/10.1016/j.tplants.2009.08.014
http://dx.doi.org/10.1016/j.tplants.2009.08.014
http://dx.doi.org/10.1023/A:1023679329093
http://dx.doi.org/10.1111/nph.14855
http://dx.doi.org/10.1111/ele.12624
http://dx.doi.org/10.1098/rstb.2014.0015
http://www.iucnredlist.org/documents/RedListGuidelines.pdf
http://www.iucnredlist.org/documents/RedListGuidelines.pdf
http://www.iucnredlist.org/documents/RedListGuidelines.pdf
http://dx.doi.org/10.3732/ajb.1000215
http://dx.doi.org/10.3897/phytokeys.78.10936
http://dx.doi.org/10.3732/apps.1500065
http://dx.doi.org/10.3732/apps.1500065
http://dx.doi.org/10.1111/j.1523-1739.2008.01044.x
http://dx.doi.org/10.1111/j.1523-1739.2008.01044.x


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

374:20170402

13
30. Collen B et al. 2016 Clarifying misconceptions of
extinction risk assessment with the IUCN Red List.
Biol. Lett. 12, 20150843. (doi:10.1098/rsbl.2015.0843)

31. Bove CP, Philbrick CT. 2014 Rediscovery of a
Neotropical rheophyte (Podostemaceae) after 160
years: implications for the location of conservation
unit boundaries (Tocantins, Brazil). Check List 10,
1170 – 1173. (doi:10.15560/10.5.1170)

32. Rivers MC, Taylor L, Brummitt NA, Meagher TR,
Roberts DL, Nic Lughadha E. 2011 How many
herbarium specimens are needed to detect
threatened species? Biol. Conserv. 144, 2541 – 2547.
(doi:10.1016/j.biocon.2011.07.014)

33. Mai P, Rossado A, Bonifacino JM, Waechter JL. 2016
Taxonomic revision of Peperomia (Piperaceae) from
Uruguay. Phytotaxa 244, 125 – 144. (doi:10.11646/
phytotaxa.244.2.2)

34. Syfert MM, Joppa L, Smith MJ, Coomes DA,
Bachman SP, Brummitt NA. 2014 Using species
distribution models to inform IUCN Red List
assessments. Biol. Conserv. 177, 174 – 184. (doi:10.
1016/j.biocon.2014.06.012)

35. Duffy KJ, Kingston NE, Sayers BA, Roberts DL, Stout
JC. 2009 Inferring national and regional declines of
rare orchid species with probabilistic models.
Conserv. Biol. 23, 184 – 195. (doi:10.1111/j.1523-
1739.2008.01064.x)

36. Cheek M, van der Burgt X, Momoh J, Lebbie A.
2017 Ledermanniella yiben sp. nov.
(Podostemaceae), critically endangered at the
proposed Yiben Reservoir, Sierra Leone. Kew Bull.
72, 31. (doi:10.1007/s12225-017-9699-0)

37. Rivers MC, Bachman SP, Meagher TR, Nic Lughadha
E, Brummitt NA. 2010 Subpopulations, locations
and fragmentation: applying IUCN Red List criteria
to herbarium specimen data. Biodivers. Conserv. 19,
2071 – 2085. (doi:10.1007/s10531-010-9826-9)

38. Skarpaas O, Stabbetorp OE. 2011 Population
viability analysis with species occurrence data from
museum collections. Conserv. Biol. 25, 577 – 586.
(doi:10.1111/j.1523-1739.2010.01636.x)
39. Williams VL, Crouch NR. 2017 Locating sufficient
plant distribution data for accurate estimation of
geographic range: the relative value of herbaria and
other sources. S. Afr. J. Bot. 109, 116 – 127. (doi:10.
1016/j.sajb.2016.12.015)

40. Nic Lughadha E, Staggemeier VG, Vasconcelos TNC,
Walker BE, Canteiro C, Lucas EJ. In press. Harnessing
the potential of integrated systematics for the
conservation of taxonomically complex,
megadiverse plant groups. Conserv. Biol.

41. Wulff AS, Hollingsworth PM, Ahrends A, Jaffré T,
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