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Cellular plasticity, or the ability of a cancer cell to adapt to changes in the

microenvironment, is a major determinant of cell survival and functionality that require

the coordination of transcriptional programs with signaling and metabolic pathways. In

this scenario, these pathways sense and integrate nutrient signals for the induction of

coordinated gene expression programs in cancer. This minireview focuses on recent

advances that shed light on the bidirectional relationship between metabolism and gene

transcription, and their biological outcomes in cancer. Specifically, we will discuss how

metabolic changes occurring in cancer cells impact on gene expression, both at the level

of the epigenetic landscape and transcription factor regulation.

Keywords: cancer metabolism, nutrient sensing networks, transcription factors, histone acetylation, DNA and

histone methylation, gene expression regulation

INTRODUCTION

The advances toward curative treatments for cancer are nowadays based on three pillars of research:
(i) early detection, (ii) molecular stratification of high-risk patients and (iii) the selection of the
most appropriate therapeutic strategy. New insights in the molecular understanding of cancer has
led to a paradigmatic change in the way we combat the disease, introducing the concept of precision
medicine: patient’s stratification and personalized therapy.

In the recent years there has been a renaissance in the study of the cross-interaction between two
important “usual suspects” in cancer: gene expression and metabolism (Hanahan and Weinberg,
2011). Both research areas have inherited potential to be applied to precision medicine. On the one
hand, the study of transcriptional regulators can potentially lead to the development of stratification
tools. On the other, the stratification can define which cancer patients will benefit from a given
metabolic-based therapeutic approach (Figure 1A).

Along the process of transformation, the acquisition of pro-survival abilities is a crucial
determinant that enables cancer cells to adapt to the ever-changing environment (Hanahan and
Weinberg, 2011). This master adaptation is based, in part, on the connection between nutrient
sensing and gene expression programs. As a consequence, cancer cells rewire their metabolism to
activate the fittest metabolic rate for cancer homeostasis. This type of response requires a circuit
in which cellular metabolism and gene transcription must be bidirectionally connected and tightly
coordinated (Figure 1B).

One of the most important cellular regulatory mechanism that determine which genes are
activated is the packing of DNA and histones in chromatin or epigenetic remodeling. Post-
translational modifications of histones and DNA—mainly acetylation and methylation—alter the
structure of chromatin, helping or preventing the recruitment of transcription factors complexes
that will ultimately regulate gene expression. At the same time, changes in gene expression in
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FIGURE 1 | Transcription and metabolic programs as potential tool for precision medicine. (A) The application of the precision medicine concept will depend on the

selection of specific cancer therapies based on both transcriptional and metabolic programs of cancer patients. (B) Mechanistic basis of precision medicine.

Bidirectional interplay between transcription and metabolic programs. T, transcription programs; M, metabolic programs. Each color exemplifies different programs.

response to environmental fluctuations are led by post-
translational modifications or activation of transcription
factors. Metabolism is the process of energy transduction that
encompasses a network of chemical reactions tightly regulated
by environmental changes. The idea that epigenetics and
gene transcription can be influenced by products of metabolic
pathways was proposed many years ago (Shi and Shi, 2004), but
the biological relevance of this concept in tumorigenic processes
has remained largely unknown.

Systematic profiling of cancer specimens has determined
the existence of epigenetic alterations across the genome that
potentially regulate gene expression and are associated with
tumor progression (Baylin and Jones, 2011). This expanding
field is coming together with cancer metabolism. During
transformation, the entire metabolic network is rewired to
efficiently convert nutrients to biosynthetic precursors to sustain
cancer cell growth (Hanahan and Weinberg, 2011).

Metabolic and epigenetic enzymes are frequently components
of the same tumorigenic pathway. Thus, metabolic rewiring
occurring in cancer can impact on the regulation of chromatin
structure and, therefore, cancer-related gene expression.
Conversely, nutrient availability, or extracellular signals within
the tumor microenvironment can fine-tune the expression
of metabolic genes through epigenetic modifications and
transcriptional regulation (Figure 2).

IMPACT OF METABOLISM AND ITS
PRODUCTS IN GENE EXPRESSION
PROGRAMS

Most chromatin-modifying enzymes use co-factors and
substrates that are critical metabolites of the intermediary
metabolism. The availability of these metabolites can influence
the capacity of the cell to write or erase chromatin marks,
highlighting the intimate link between the metabolic state,
epigenetic regulation and gene expression.

DNA and Histone Methylation
In human DNA, cytosines are typically methylated at CpG
islands located in promoter regions and associated with

transcriptional regulation. Cancers frequently display global
DNA hypomethylation but hypermethylation of CpG islands
in genomic regions where tumor suppressor genes are located
(Hansen et al., 2011). These histone methyl marks can either
activate or repress gene expression (Kinnaird et al., 2016).

Methylation is linked to the intermediary metabolism through
S-adenosyl methionine (SAM), the primary source of methyl
groups that is generated in the folate and methionine cycles
(Maddocks et al., 2016; Mentch and Locasale, 2016). The
activities of both histone methyltransferases (HMT) and DNA
methyltransferases (DNMT) depend on the levels of intracellular
SAM which varies based on serine and methionine availability.
The deprivation of these essential amino acids induce reversible
and rapid changes in histone and DNA methylation, which in
turn change the transcriptional landscape of cancer cells (Mentch
et al., 2015; Maddocks et al., 2016). In the light of these data,
the methionine cycle and the sensing of SAM availability provide
a direct link between intermediary metabolism and chromatin
state in cells.

Interestingly, system biology approaches have revealed
methionine cycle and one-carbon metabolism gene networks
as major determinants of DNA methylation status in human
cancer and cancer survival predictors (Mehrmohamadi et al.,
2016). Indeed, dysregulation of histone methylation in specific
chromatin regions is a major selective force for tumor
progression and metastatic potential (McDonald et al., 2017). Of
note, the epigenetic changes associated with distant metastasis
are strongly dependent on the oxidative branch of the pentose
phosphate pathway (oxPPP). This dependency confers selective
advantages to the disseminated cells enabling their metastatic
spread. In distal metastasis sites, oxPPP is coupled to epigenetic
programs that promote tumorigenesis (McDonald et al., 2017).

The demethylation reaction is also susceptible to metabolic
fluctuations. The enzymatic removal of methyl groups is
regulated by histone and DNA demethylases whose activities are
modulated by the tricarboxylic acid (TCA) cycle intermediates
alpha-ketoglutarate (α-KG), fumarate and succinate. When
presented in sufficient concentration, α-KG acts as a positive co-
factor of the demethylase activity, while fumarate and succinate
are competitive inhibitors of multiple histone demethylases (Xiao
et al., 2012). The activity of these enzymes can be dramatically
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FIGURE 2 | Schematic representation of the complex relationship between metabolism and gene expression. Metabolic perturbations, as a result of environmental,

mutational and metabolic insults, directly impact on gene expression programs, both at the level of epigenetic changes and transcriptional activities. The final outcome

is that the conjunction of metabolism and transcription have a profound impact on oncogenesis.

altered by mutations in key metabolic enzymes. Inactivating
mutations affecting the mitochondrial succinate dehydrogenase
(SDH) complex subunits and fumarate hydratase (FH) are driver
mutations in a subset of cancers (Tomlinson et al., 2002; Janeway
et al., 2011; Pantaleo et al., 2011; Castro-Vega et al., 2014;
Clark et al., 2014). These mutations lead to the accumulation
of succinate and fumarate and the subsequent inhibition of
α -KG-dependent dioxygenases (Xiao et al., 2012). The direct
contribution of fumarate accumulation and epigenetics to
tumorigenesis has been elegantly shown in the context of FH
loss. In this scenario, fumarate accumulation elicits epigenetic
changes in a regulatory region of the antimetastatic miRNA
cluster mir-200ba429. In turn, the suppression of miR-200
leads to the expression of epithelial-to-mesenchymal-transition
(EMT)-related transcription factors and the enhancement of
migratory properties (Sciacovelli et al., 2016). Deficiency of SDH
is associated with global DNAmethylation changes (Killian et al.,
2013) and the downregulation of neuroendocrine differentiation
genes linked to a migratory phenotype (Letouze et al., 2013).

Upstream of SDH in the TCA cycle, isocitrate dehydrogenase
(IDH) catalyzes the oxidative decarboxylation of isocitrate,
producing α-KG and CO2. IDH genes are the most frequently
mutated metabolic genes in cancers driving global epigenetic
changes (Figueroa et al., 2010; Ward et al., 2010; Cairns et al.,

2012). Mutations in IDH1/2 have oncogenic properties and
impede the synthesis of α-KG but favor the formation of the
oncometabolite 2-hydroxyglutarate (2-HG) (Dang et al., 2009;
Ye et al., 2013). In turn, 2-HG accumulation inhibits DNA
demethylation (Losman et al., 2013) and primes cancer cells for
transformation (Figueroa et al., 2010; Lu et al., 2012; Turcan
et al., 2012). However, the production of 2-HG is not restricted
to an IDH mutated background. For example, in hypoxia
wild-type IDH2 produces 2-HG as a by-product (Wise et al.,
2011). In ER-negative breast cancer patients, the accumulation
of 2-HG define a subgroup of wild-type IDH2 patients with
specific hypermethylation phenotype and poor clinical outcome
(Terunuma et al., 2014). This work suggests that the metabolic-
epigenetic axis could be reflected in tumor subtypes of clinical
relevance.

Beyond cancer biology, but conceptually connected, 2-
HG has been proposed to act as an immunometabolite that
links the environmental context to immune fate and function
through a metabolic–epigenetic axis (Tyrakis et al., 2016;
Xu et al., 2017). Given the important role of the immune
system in the maintenance of chronic inflammation during
tumorigenic processes (Numasaki et al., 2003; Grivennikov
et al., 2012), these results may have implications for tumor
immunology.
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In summary, the accumulation of succinate, fumarate, and 2-
HG contribute to cancer progression and position the Krebs cycle
as mitochondrial custodian of the methylome (Figure 2).

Histone Acetylation
Global levels of nuclear histone acetylation are sensitive to
overall acetyl CoA levels. Acetyl CoA is a key intermediate of
central metabolism, which not only fuels ATP production via
the TCA cycle, but also functions as an essential building block
for the synthesis of fatty acids and sterols, and importantly
histone acetylation. Acetyl CoA is generated from catabolic
pathways of intermediary metabolism and at the same time used
by anabolic processes such as lipid synthesis. In mammalian
cells, there are three major enzymes that generate acetyl CoA:
acetate-dependent acetyl-CoA synthetase 2 (ACSS2), citrate-
dependent ATP-citrate lyase (ACLY) andmitochondrial pyruvate
dehydrogenase complex (PDC). The relative importance of
ACSS2, ACLY and PDC for nuclear histone acetylation differs on
the basis of the developmental state, disease, tissue type and even
subcellular location.

ACLY is the primary enzyme responsible for the synthesis of
acetyl CoA from glucose-derived citrate and connects oncogenic
signals to histone acetylation (Wellen et al., 2009; Lee et al.,
2014). In the absence of ACLY, under nutrient deprivation or
stress conditions, cells upregulate ACSS2, enabling cancer cells to
utilize acetate to sustain tumor growth (Comerford et al., 2014;
Mashimo et al., 2014; Schug et al., 2015) by providing acetyl CoA
for fatty acid and phospholipid synthesis and histone acetylation
(Zhao et al., 2016). In addition, under hypoxic conditions,
acetate mediates epigenetic changes that specifically activate
a lipogenic program and promote cancer cell survival (Gao
et al., 2016). Importantly, ACSS2 has been recently identified
as a chromatin-bound factor that regulates and coordinates
gene expression programs related to long-term spatial memory
(Mews et al., 2017). This is the first evidence of the direct and
causal contribution of ACSS2-derived acetyl CoA to epigenetic
modulation and gene expression.

Lipid-derived carbons are also a bona fide physiological
source of acetyl CoA for histone acetylation. The acetyl CoA
produced via the activation of fatty acid oxidation (FAO)
is selectively used by histone acetyl transferases located at
gene locus where key lymphatic and lipid-specific genes reside
(McDonnell et al., 2016; Wong et al., 2017). These studies expand
the landscape of nutrient sensing and uncover how lipids and
metabolism are integrated by epigenetic events that control gene
expression. In a cancer scenario, the uptake of fatty acids—
mediated by CD36—and their oxidation sustain cancer-initiating
cells and promote metastasis. Interestingly, these metastasis-
initiating cells with high expression of CD36 are defined by a
lipid metabolism transcriptional signature (Pascual et al., 2017).
Although no link with epigenetic changes have been associated
with this phenotype, we could predict that lipid uptake, and
presumably its oxidation could play and important role in cell
survival and cancer progression by regulating the epigenetic and
transcriptional landscapes.

Due to its biochemical properties, the biosynthesis of acetyl
CoA is thought to occur in the subcellular compartment where it
is required. Therefore, the localized production of acetyl CoA by

spatial regulation of its enzymatic producers would confer a high
degree of specificity tometabolic regulation of histone acetylation
and gene expression.

In the mitochondria, acetyl CoA is the main product of FAO,
branch chain amino acid catabolism and pyruvate oxidation
through the activity of PDC. Although PDC has classically been
localized to themitochondria, undermetabolic insults, functional
PDC translocate to the nucleus. There, it generates a nuclear
pool of acetyl CoA that increases the acetylation of core histones
important for S phase entry (Sutendra et al., 2014). In line,
spatial regulation of ACSS2 confers specificity to the metabolic
regulation of histone acetylation and together with ACLY were
found in the nucleus (Takahashi et al., 2006; Wellen et al., 2009).
Importantly, the “on site” generation of ACSS2-derived acetyl
CoA at specific chromatin domains favors histone acetylation of
key genes involved in long-term spatial memory, autophagy, cell
survival and tumorigenesis (Bulusu et al., 2017; Li et al., 2017a;
Mews et al., 2017).

Interestingly, the modulation of the mitochondrial protein
VDAC1 induced a coordinated cascade of changes in
mitochondrial metabolites that elicited a global metabolic
re-programming in glioblastoma cells. This metabolic rewiring
led to the activation of neural cell differentiation transcriptional
programs and reversal oncogenic properties of glioblastoma cells
(Arif et al., 2017).

In summary, chromatin-associated enzymes sense
intermediary metabolism products and process this information
into dynamic chromatin modifications that will ultimately
regulate adaptive transcriptional programs associated with
oncogenic processes.

TRANSCRIPTIONAL REGULATION OF
METABOLIC PROGRAMS

The metabolic switch in cancer encloses a plethora of discrete
enzymatic activities that must be coordinately altered in order to
ensure the adaptation of cancer cells to environmental alterations
(Loo et al., 2015). In the recent years, numerous reports have
provided evidences of the cues regulating one or few enzymes
within a metabolic pathway in cancer. However, the means of
coordinated regulation of complex metabolic networks is starting
to be elucidated (Torrano et al., 2016; Valcarcel-Jimenez et al.,
2017).

Nutrients perturbations can be sensed directly by master
transcriptional regulators of metabolism that will ultimately
elicit the coordinated expression of genes required for metabolic
adaptation in cancer cells (Figure 2). These programs allow
the rapid adaptation to new biological states or external
insults, and their contribution to cancer pathogenesis
and progression has begun to emerge (Mouchiroud et al.,
2014). More than fifty years ago an association between
lipid metabolism and tumor progression was reported
(Weinhouse et al., 1951) and since that time, the involvement
of lipid metabolism in tumorigenesis has been thoroughly
investigated.

Peroxisome-proliferator-activated receptors (PPARs), PPAR-
α, PPAR-δ (also known as PPAR-β) and PPAR-γ, are members
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of the nuclear receptor superfamily of transcription factors
that control lipid sensing and the transcriptional regulation of
metabolic pathways (Michalik et al., 2006). PPARs regulate gene
expression programs that impact on proliferation, differentiation
and survival, thus controlling carcinogenesis in various tissues
including liver, breast, lung, colon and bone marrow. The role
of these nuclear factors in transformation has been controversial
during the past years, being described as either tumor suppressor
or oncogenes (Carracedo et al., 2012; Ito et al., 2012; Peters
et al., 2015; Lakshmi et al., 2017; Martin-Martin et al., 2017;
Sun et al., 2017). The activity of PPARs is modulated upon
ligand binding and by a number of coactivator and corepressor
proteins, the presence of which can stimulate or inhibit the
transcriptional function of the receptor (Feige and Auwerx,
2007; Martin-Martin et al., 2017). One of the most studied co-
regulators of PPARs function is PPAR gamma co-activator 1
alpha (PGC1α), a master transcriptional co-activator with broad
functions in energy metabolism. Together, PPARs and PGC1α
control mitochondrial function and FAO (Sugden et al., 2010)
and have been implicated in the maintenance of hematopoietic
stem cell pool, cancer survival and progression (Carracedo et al.,
2012; Ito et al., 2012; Torrano et al., 2016; Valcarcel-Jimenez et al.,
2017).

The classical nuclear receptors are known as the receptors
for steroids such as estrogen, androgen, glucocorticoid, and
progesterone, which are derivatives of cholesterol. Among these
classical nuclear factors, the sterol regulatory element binding-
proteins (SREBPs) are the master transcription factors that are
highly sensitive to the intracellular levels of cholesterol. The
cholesterol composition of cellular membranes is an essential
metabolic requirement for cell division (Bengoechea-Alonso
and Ericsson, 2016). Different cancer cell types adapt their
metabolism to maintain high intracellular cholesterol levels
through increased cholesterol uptake and the activation of
lipogenic transcriptional programs dependent on SREBP-1 (Guo
et al., 2011; Huang et al., 2012; Li et al., 2017b). These
pathways converge into the accelerated endogenous production
of cholesterol. It has been recently described the regulation
of ACSS2 by SREBP in mammary epithelial cells, having this
regulation an effect on fatty acid synthesis (Xu et al., 2018).
Given the important role of ACSS2 as a central node between
metabolism and epigenetic regulation in cancer, it is tempting
to speculate that the cholesterol levels in cancer cells may have
an impact on gene regulation through the modulation of ACSS2
enzymatic activity.

The transcriptional agonist properties of cholesterol are not
limited to SREBPs. Cholesterol has been recently identified as a
physiological and functional endogenous agonist of the estrogen-
related receptor alpha (ERRα). Upon cholesterol binding,
ERRα recruits PGC1α coactivators to DNA promoters and
together serve as a critical metabolic sensors that regulate gene
expression programs associated to osteogenesis, myogenesis and
macrophage activation (Wei et al., 2016). This is the first evidence
for cholesterol and the cholesterol biosynthetic pathway in the
regulation of ERRα activity and biology.

Taken together, all these data position cholesterol as a master
metabolite that control gene transcription programs via its
interaction with nuclear factors.

ERRα and its transcriptional programs are implicated in
metabolism and cancer progression. Increased ERRα activity is
observed in melanoma, breast and ovarian cancer, colorectal
carcinoma and osteosarcoma (Stein and McDonnell, 2006;
Vazquez et al., 2013; Chen et al., 2014; Thewes et al., 2015). ERRs
are nuclear receptors that exhibit ligand-dependent regulation,
and their activity relies on the status of transcriptional co-
activators and co-repressors (Feige and Auwerx, 2007). One
such co-activators, PGC1α has been extensively studied in
physiological conditions (Handschin, 2009). PGC1α controls
transcriptional programs that increase the energetic yield
(Scarpulla, 2011) and counteract oxidative stress (St-Pierre
et al., 2006; Haq et al., 2013; Vazquez et al., 2013), which
enables elevated oxidative mitochondrial activity (OXPHOS)
coping with the accumulation of reactive oxidant species (ROS).
PGC1α exerts paradoxical activities in different tumor types and
biological conditions and recent studies highlight the importance
of it in cancer metabolism (Vazquez et al., 2013; LeBleu et al.,
2014; Sancho et al., 2015; Luo et al., 2016) and specifically through
the regulation of ERRs (Haq et al., 2013; Vazquez et al., 2013;
Torrano et al., 2016; Valcarcel-Jimenez et al., 2017).

The classical view of cancer metabolic wiring (Warburg
effect) would predict that the PGC1α-ERRα axis and OXPHOS
triggered are inherently tumor suppressive. However, recent
studies uncover that factors such as mutational background,
tissue or cell of origin and disease stage impose a pressure toward
the best-adapted metabolic wiring during cancer progression.
In melanoma and breast cancer, cells turn on PGC1α and
their OXPHOS program, which impacts on cancer cell survival,
proliferation and contribution to therapy resistance (Haq et al.,
2013; Vazquez et al., 2013; LeBleu et al., 2014). Interestingly,
during the process of metastasis, melanoma cells need to
suppress PGC1α expression in order to regulate an adhesion
and invasion transcriptional program (Luo et al., 2016).
In line, OXPHOS PGC1α-induced metabolism represents a
disadvantageous metabolic state in prostate cancer. Moreover,
the decrease of PGC1α-ERRα transcriptional activity provides
a selective advantage to metastasize and correlates with an
increased disease recurrence (Torrano et al., 2016; Valcarcel-
Jimenez et al., 2017).

These studies elegantly illustrate how the PGC1α-ERRα

transcriptional axis can exert opposing activities in cancer
progression, highlighting the metabolic diversity leading to
metabolic adaptations during cancer progression in different
cancer types.

CONCLUDING REMARKS

Metabolic rewiring and gene deregulation are both hallmarks
of cancer (Hanahan and Weinberg, 2011) and are addictive
for tumor cells (Bradner et al., 2017; Vander Heiden and
DeBerardinis, 2017). Thus, the crosstalk between gene
expression and metabolism are fundamental aspects of cellular
adaptation to nutritional changes during tumorigenesis.
An attractive approach to understand cancer and identify
therapeutic targets is to discover the key components on
which deregulated transcriptional and metabolic programs
depend in cancer cells. We have outlined recent advances
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that described how coordinated gene expression programs are
tightly and dynamically regulated by the metabolome, either at
the level of chromatin modifications and transcription factor
activities. In this scenario, metabolic alterations during cellular
transformation drive aberrant gene expression which in turn
will be key contributors to tumor development and progression.
However, much remains to be discovered, and the study of the
bidirectional contribution of metabolism to gene expression
regulation will bring a more integrated understanding of
cellular adaptations during cancer progression and, possibly new
therapeutic opportunities.
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