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Abstract

depth of coverage of exonic regions.

associated with GC content.

application.

Background: Given the growing use of whole-exome sequencing (WES) for clinical diagnostics of complex human
disorders, we evaluated coverage of clinically relevant cardiac genes on WES and factors influencing uniformity and

Methods: Two hundred and thirteen human DNA samples were exome sequenced via lllumina HiSeq using different
versions of the Agilent SureSelect capture kit. 50 cardiac genes were further analyzed including 31 genes from the
American College of Medical Genetics (ACMG) list for reporting of incidental findings and 19 genes associated with
congenital heart disease for which clinical testing is available. Gene coordinates were obtained from two databases,
CCDS and Known Gene and compared. Read depth for each region was extracted from the exomes and used to assess
capture variability between kits for individual genes, and for overall coverage. GC content, gene size, and inter-sample
variability were also tested as potential contributors to variability in gene coverage.

Results: All versions of capture kits (designed based on Consensus coding sequence) included only 55% of known
genomic regions for the cardiac genes. Although newer versions of each Agilent kit showed improvement in capture
of CCDS regions to 99%, only 64% of Known Gene regions were captured even with newer capture kits. There was
considerable variability in coverage of the cardiac genes. 10 of the 50 genes including 6 on the ACMG list had less than
the optimal coverage of 30X. Within each gene, only 32 of the 50 genes had the majority of their bases covered at an
interquartile range >30X. Heterogeneity in gene coverage was modestly associated with gene size and significantly

Conclusions: Despite improvement in overall coverage across the exome with newer capture kit versions and higher
sequencing depths, only 50% of known genomic regions of clinical cardiac genes are targeted and individual gene
coverage is non-uniform. This may contribute to a bias with greater attribution of disease causation to mutations in
well-represented and well-covered genes. Improvements in WES technology are needed before widespread clinical
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Background

Next generation sequencing (NGS) has changed the
diagnostic landscape for complex human disorders. Se-
quencing costs, particularly for exome sequencing,
have plummeted over the last decade [1,2] allowing for
the rapid uptake of technology in both the research
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and clinical realms. NGS platforms capitalize on parallel
processing to generate hundreds of megabases of se-
quence from a single run allowing for deep coverage of
vast regions [3]. A greater understanding of the limita-
tions and potential pitfalls of sequencing technology is
essential before clinical uptake of this technology [4].
Whole exome sequencing (WES) represents one NGS
platform that has been effective in the study of rare
Mendelian diseases and has become widely popular as
an efficient method of identifying genetic variants
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within an individual’s genes. Currently WES has two
major limitations: lower accuracy in nucleotide calls
compared with Sanger sequencing and the lack of uniform
coverage of exonic regions. The considerably higher rate
when compared to Sanger sequencing of both false-
negative and false-positive calls, can be minimized by
increasing the depth of sequencing [5]. However, variant
identification in whole exome sequencing is still limited
by the non-uniformity of overall coverage which in turn is
determined by sequence capture and read depth. Previous
studies report considerable variability in uniformity and
depth of coverage across the exome including base-to-base
and gene-to-gene coverage [6-9]. Although newer versions
of capture kits are designed to target a greater number of
bases, it is unclear if capture of exonic loci is uniform
across genes. In 2013, the American College of Medical
Genetics (ACMG) published recommendations for
reporting of incidental findings in clinical exome se-
quencing. Since a large number of genes for cardiac
disorders are included in the ACMG reporting list [10],
we assessed targeted capture and coverage of clinically
relevant cardiac genes with whole exome sequencing
and investigated factors contributing to heterogeneity
in coverage.

Methods

Whole exome sequencing and candidate gene selection
Participants from six centers in Ontario were recruited
prospectively to the Heart Centre Biobank Registry at
the Hospital for Sick Children in Toronto. Details of the
Biobank Registry have been published previously [11].
All probands/parents/legal guardians provided informed
consent and the study was approved by the local research
ethics boards at all participating sites (Hospital for Sick
Children, Hamilton Health Sciences Centre, London
Health Sciences Centre, Kingston General Hospital,
Children’s Hospital of Eastern Ontario, and Toronto
General Hospital). Probands with congenital heart disease
and affected and unaffected relatives who underwent
whole exome sequencing were included. All sequencing
was performed using Illumina HiSeq with sequence cap-
ture performed using 3 different versions of the Agilent
SureSelect Human All Exon capture kit. Twenty individ-
uals were sequenced using Agilent 44 MB Version 2 (V2),
94 individuals were sequenced using the 50 MB Version 3
(V3), and 93 individuals were sequenced using the 51 MB
Version 4 kit (V4). Additionally, we analyzed 6 exomes
that were sequenced using the 50 MB Version 5 kit (V5)
provided by the Wellcome Trust Sanger Institute. All
exomes were aligned to the human genome version 19
using Burrows-Wheeler Aligner [12] to generate BAM
files, and variant calling was performed using the Genome
Analysis Tool Kit (GATK) [13]. For the purpose of cover-
age analysis, 50 clinically relevant cardiac genes were
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selected. These included 31 genes associated with cardiac
disorders derived from the ACMG list for reporting of
incidental findings i.e. genes associated with congenital
heart disease (CHD), cardiomyopathies, vascular and
rhythm disorders [10], and 19 additional genes associ-
ated with CHD not on the ACMG reporting list for
which sequencing-based clinical genetic testing is cur-
rently available (Table 1).

Exonic regions represented in reference datasets

Agilent capture kits are primarily designed to target
genes based on the National Center for Biotechnology
Information Consensus Coding Sequence (CCDS) dataset.
The CCDS database [14] is built by consensus among four
major collaborating partners: European Bioinformatics In-
stitute, National Center for Biotechnology Information
(NCBI), Wellcome Trust Sanger Institute, and the UCSC
[15-17]. The University of California, Santa Cruz (UCSC)
Known Gene dataset houses a larger database that encom-
passes not only all the CCDS transcripts but also any pro-
tein coding genes that are substantiated by a transcript in
GenBank mRNA or NCBI RefSeq and have a UniProt pro-
tein. Alternative splicing isoforms are also included in
Known Gene if they represent a UniProt protein and have
a transcript [18]. We therefore compared how well each
gene was represented in both datasets by first obtaining
gene coordinates for all protein coding regions of every
available transcript in BED format from the CCDS and
the Known Gene databases using the UCSC table browser
[19]. BEDTools [20] was then used to collapse coordinates
to unique locations in order to avoid overlap and also
ensure all CCDS coordinates were contained within the
Known Gene coordinates. For each gene the exonic re-
gions included within the CCDS database were repre-
sented as a percentage of the Known Gene superset for
that gene.

Cardiac gene coverage

Coverage across the 50 cardiac genes was analyzed as a
combination of sequence capture and read depth. The
read depth at each nucleotide was extracted from each
subject’s exome BAM file using SAMtools mpileup [21].
Subsequent data handling was performed with custom
scripting using the Python programming language (v2.7.1)
[22]. The read depth or coverage was the number of
independent times a particular nucleotide is represented
in a collection of raw sequences, and was expressed
numerically as 1X, 2X, 30X, etc. [23]. The read depth
in every captured location was averaged across the
samples sequenced for each capture kit. This produced
an average capture per coordinate within both the
CCDS and Known Gene datasets for each kit that was
used in subsequent analyses.
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Table 1 Clinically relevant cardiac gene list
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Phenotype

Associated genes

American College of Medical

= Hypertrophic cardiomyopathy

MYBPC3, MYH7, TNNT2, TNNI3, TPM1, MYL3, ACTCI,

Genetics  Dilated cardi h PRKAG2, GLA,
ilated cardiomyopathy MYL2, LMNA
= Catecholaminergic polymorphic ventricular RYR2
tachycardia
= Arrhythmogenic right ventricular PKP2, DSP DSC2, TMEM43, DSG2
cardiomyopathy
= Romano-Ward long QT syndrome KCNQT, KCNH2, SCN5A
* Brugada syndrome
= Familial hypercholesterolemia LDLR, APOB, PCSK9
= Ehlers-Danlos syndrome, vascular type COL3A1
* Marfan syndrome FBN1, TGFBR1, TGFBR2, SMAD3, ACTA2, MYLK, MYHT1
= Loeys-Dietz syndromes
= Familial thoracic aortic aneurysms and
dissections
CHD genes = Genes associated with congenital BRAF, NOTCH1, CFCI1, NRAS, CHD7, PTPNT1, GATA4,

heart disease

RAFI1, HRAS, SOSI, JAGI, TBX1, KRAS, TBX5, MAP2K1,
ZIC3, ELN, NKX2-5, NF1

Gene list includes American College of Medical Genetics list for reporting of incidental findings (n =31) and genes associated with congenital heart disease (CHD)
for which clinical testing is available (n = 19). All genes are listed according symbol.to their HUGO Gene Nomenclature Committee (HGNC).

Gene size and GC content

Gene size was calculated as the sum of unique bases of
each candidate cardiac gene from the CCDS dataset.
GC content was analyzed using BEDTools’ nuc function,
along with UCSC’s human genome version 19 FASTA file,
to output counts for each of the four nucleotides in a
given region.

Statistical analysis

The proportion of bases in Known Gene regions cap-
tured by different versions of CCDS-based capture kits
was compared. The comparison was performed across
the entire targeted region as well as a gene by gene com-
parison to identify which genes had the highest discord-
ance between databases. Actual coverage of the targeted
region at a minimum read depth of 3X (the minimum
depth required to identify a heterozygous mutation) and
at an optimal read depth of 30X or higher (the minimum
requirement for a confident genotype call) was then
determined and influence of capture kit version and
observed sequencing depth on coverage was analyzed.
Uniformity of coverage was assessed across the candi-
date genes by calculating the median coverage of each
gene as well as the variability in base to base coverage
within each gene. Inter-sample variability was assessed
for all bases within the CCDS targets by plotting the
read depth confidence interval across all samples.
Finally, the association between gene size and GC
content on coverage of candidate cardiac genes was
analyzed using linear regression. All statistical analysis

was performed using the R statistical programming
package (v3.0.1) [24].

Results

Study cohort

207 participants underwent whole exome sequencing
between April 2012 and January 2013. 196 participants
had a diagnosis of CHD and 17 had no structural heart
defects. The average age at enrollment was 14.7 + 11.7 years.
109 participants (53%) were male. Racial distribution in-
cluded 85% Caucasians, 9% Asians, 1% African American,
and 5% of mixed or unknown ethnicity. Six additional
exome datasets were obtained from the Wellcome Trust
Sanger Institute HapMap data with no information on
disease status available.

Cardiac gene sequences represented in CCDS vs. known
gene

The Agilent capture kits are designed to capture se-
quence data derived from the CCDS dataset. For the 50
cardiac genes, this amounts to a total of 166,271 bp of
unique protein coding bases. For the Known Gene
dataset, this amounts to 300,468 bp unique protein
coding bases. Additional file 1: Table S1 shows the pro-
portion of Known Gene regions that are also included in
the CCDS. Overall only 55% of the regions within the
Known Gene dataset for all genes were represented in the
CCDS dataset. At individual gene level, this ranged from
10.1% (KRAS) to 96.8% (APOB).
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Capture of cardiac genes by kit version

The extent to which each capture kit targeted the candi-
date gene sequences of the 50 cardiac genes was first
assessed (Figure 1). For research studies, exomes are
currently sequenced between 30X to 50X depth of
coverage to confidently distinguish heterozygous or
homozygous mutations from misaligned reads or
artifact. However, to compare overall capture between
various capture Kkits, regions covered at a read depth of
at least 3X were included. At a read depth of 3X or
higher, the Agilent V2 captured 92% of the CCDS car-
diac gene region. This increased to 97% with Agilent
V3, 98% with Agilent V4, and 99% with Agilent V5.
While each newer kit version showed improved cap-
ture of CCDS regions, capture of the Known Gene
regions remained low. The Agilent V2 captured only
55% of the Known Gene cardiac regions. Captured
improved to 60% with V3, 64% with V4, and 63% with
V5. The exonic regions within the CCDS versus Known
Gene database targeted and captured for each gene are
shown in Additional file 1: Table S1. Only 55-64% of
the Known Gene regions were captured by the current
CCDS-based capture kits. Therefore, although newer
capture kit versions showed improvement in the
amount of CCDS regions captured reaching up to 99%,
the Known Gene capture only improved marginally up
to 64% with the V5 kit showing no improvement over
its predecessor V4.
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Uniformity of coverage of cardiac genes

Since each capture kit was sequenced at a different
intended depth, we used the exome dataset that had the
highest observed average read depth for further analysis
of uniformity of coverage across cardiac genes. The ob-
served average read depth for Agilent V2 capture kit
was 30.5X, for the Agilent V3 capture kit was 80X, for
the Agilent V4 capture kit was 48X, and for the Agilent
V5 capture kit was 63X (Figure 2). Therefore, given that
the Agilent V3 capture kit had the highest overall observed
read depth, this dataset (n =94) was further analyzed to
assess the uniformity of coverage of each of the 50 cardiac
genes. Despite high read depths, Figure 3A shows the con-
siderable variability in coverage between genes and within
genes. Ten genes were covered at a median read depth of
less than the optimal 30X. These included 2 genes as-
sociated with long QT syndrome (types 1, 2, and 3) and
Brugada syndrome (KCNQI1, KCNH2), 3 genes associated
with hypertrophic and dilated cardiomyopathy (LMNA,
MYBPC3, TNNI3), 1 gene associated with familial hyper-
cholesterolemia (PCSK9), and 4 genes associated with
CHD (GATA4, NKX2-5, NOTCH1, TBX1I). For compari-
son Figure 3B shows the same plot but for the Agilent
V2 data that had the lowest observed average read depth
of 30.5X. Here we see that 30 of the 50 genes had me-
dian read depth below 30X and only 5 genes had an IQR
above 30X. Expressing gene coverage as a median read
depth does not imply that all bases within that gene are

92.48%

97.46%

44MB_V2 Capture kit 50MB_V3 Capture kit

60.38% '

50MB_V3 Capture kit

44MB_V2 Capture kit

A CCDS Regions (166,271bp)

/

B Known Gene Regions (300,468bp)

Figure 1 Agilent capture kit target size. Graphical representation of the proportion of bases captured by the Agilent 44MB_V2 (green),
50MB_V3 (purple), 51TMB_V4 (orange), and 50MB_V5 (blue) capture kits. The grey wedges indicate the proportion not captured by the kits. A.
Percentage of the total number of bases from CCDS genomic locations for all 50 clinically relevant cardiac genes. B. Percentage of the total
number Known Gene genomic locations for all 50 clinically relevant cardiac genes.

51MB_V4 Capture kit 50MB_VS5 Capture kit
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Figure 2 Cumulative coverage with Agilent capture kit versions. Graph showing proportion of CCDS and Known Gene datasets covered at
various read depths by four Agilent capture kit versions. Coverage of CCDS coordinates is shown in blue while coverage of Known Gene
coordinates is depicted in red. There was good coverage, 92-99% of CCDS target regions, at a minimum read depth of 3X but only 55-64%
coverage of Known Gene target regions at 3X. A. Proportion of CCDS and Known Gene read depths for the Agilent 44MB_V2 capture kit.

B. Proportion of CCDS and Known Gene read depths for the Agilent 50MB_V3 kit. This capture kit version demonstrated the highest overall
observed read depth. C. Proportion of CCDS and Known Gene read depths for the Agilent 51MB_V4 kit. D. Proportion of CCDS and Known Gene

read depths for the Agilent S5OMB_V5 kit.

covered at the same depth. A small number of highly
covered bases may skew the average toward the higher
end despite the majority of bases having low read depth.
Therefore the inter-quartile range (IQR) for base-by-
base coverage for each gene was measured. Only 32 of
the 50 genes examined had the majority of their bases
covered at an IQR >30X. To determine if there was
inter-sample variability, the 95% confidence interval per
captured CCDS base by each of the three capture kits
across samples was calculated (Figure 4). Despite the
use of different capture kits and different intended se-
quencing depths, the consistency in capture across
exomes was maintained with very minimal inter-sample
variability (over 85% of bases fell within +5 reads, with
the exception of the V5 capture kit data that only in-
cluded 6 exomes and therefore 85% of bases fell within
+10 reads). Overall, these findings suggest that while
higher sequencing depths improved average coverage
across targeted genomic regions, the gene-by-gene and
base-by-base coverage remained non-uniform.

Association of gene size and GC content with genomic
coverage

The potential contribution of gene size and GC content
to the gene-to-gene variability in coverage was evaluated.
Gene size showed a significant but modest correlation
with median coverage (r* =0.19; p =1.46 x 10~°) and
accounted for less than 20% of the variance in coverage of
the cardiac genes. There was however a strong negative

correlation between mean coverage and GC content as
higher GC content was associated with lower median
coverage per gene (Figure 5A). Figure 5A shows median
coverage and GC content of each gene sorted with highest
coverage on the left. Figure 5B shows the significant in-
verse relationship between GC content and median cover-
age (r* =0.55; p =8.66 x 107*°). Figure 5C shows the
significant difference in percent GC content of the 5
best-covered genes and the 5 worst-covered genes (p
=148 x 107°). In fact, of the 50 cardiac genes, genes with
highest coverage had a GC content of <50% while poorly
covered genes had a GC content of >50%.

Discussion

The increasing use of next generation sequencing for
research and clinical genetics and the move towards
scanning the genome or exome not only for variation
in targeted genes of relevance to the disease under study,
but also for variant-detection in other disease-associated
genes has intensified the focus on the technical accuracy
and validity of the technology [10]. Coverage analysis of
50 clinically important cardiac genes using data from re-
search based WES demonstrated considerable base-by-
base and gene-by-gene variability in coverage within and
across the candidate genes. Sources of variability included
incomplete targeting of exonic regions, low capture effi-
ciency, low sequencing depth, larger gene size and high
GC content within the target region. Despite improve-
ment in median coverage across the exome with newer
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Figure 3 Gene by gene coverage of cardiac genes. A. Box-and-whisker plots showing median read depth and 25% to 75% interquartile ranges
(IQR) for the 50 cardiac genes in 94 exome samples captured using Agilent V3 that had high observed sequencing depth, 80X. Plots represent
the read depth coverage for transcripts found within the CCDS. There was variability in depth of coverage between genes and variable coverage

had an IQR above 30X. B. Box-and-whisker plots showing median read depth and 25% to 75% interquartile ranges (IQR) for the 50 cardiac genes
in 20 exome samples captured using Agilent V2 that had the lowest observed sequencing depth, 30.5X. Based on the CCDS dataset, 30 of the 50
genes had median read depth below 30X and only 5 genes had an IQR above 30X.

the 50 genes had median read depth below 30X and only 32 genes

capture kits and with higher sequencing depths, the cover-
age of individual genes was non-uniform. Overall, these
results highlight the importance of assessing adequacy of
coverage of target genes when analyzing whole exome
data for disease genes and the need to improve current
technology before whole exome sequencing can be widely
deployed towards clinical cardiac diagnostics.

The first important finding was incomplete capture of
clinically important cardiac genes with whole exome
sequencing. Currently, exome sequencing capture kits
are primarily designed to capture regions identified within
the CCDS database. However, unlike the Known Gene
database, the CCDS does not contain all possible tran-
scripts, thereby restricting target regions to just over 50%
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Figure 4 Inter-sample variability of observed read depths. Plot
of the 95% confidence interval per captured CCDS base across
samples for the Agilent 44MB_V2 (green) 50MB_V3 (purple),
5TMB_V4 (orange), and 50MB_V5 (blue) capture kits. For V2, V3, and
V4 kit versions, over 86% of captured bases varied less than +5 reads
between samples, with the largest variation coming at higher read
depths. Given that V5 had only six exomes, the variability is more
pronounced due to the small sample size, however, over 85% of
captured bases varied by more than +10 reads between samples.
The largest variability was seen at higher read depths (>30X). The
depth of sequencing and version of the capture kit did not affect
inter-sample variability.

of known genomic regions. Missing exonic nucleotides
not captured with these kits may result in non-detection
of variants in alternate isoforms. The difference in exonic
region definition varies greatly at the gene level as shown
in Additional file 1: Table S1 where the number of bases per
gene for the 50 cardiac genes in the CCDS dataset can range
from 10% to 96% of their size in the Known Gene dataset.
Given that some known transcripts identified within the
Known Gene dataset have yet to be approved in the CCDS
dataset, there is a potential bias in gene discovery towards
genes that are already well defined within the CCDS.
Further increase in target regions is necessary to enhance
more uniform and complete capture across the exome.
The most important metric of efficiency for a capture
experiment is the proportion of targeted DNA inserts
that are specifically hybridized and recovered from the
capture. Our results showed that, for the 50 genes studied,
minimum coverage (3X) was obtained to a high degree
(92% to 98%) for all the capture kit versions within the
CCDS. Higher depth of sequencing can improve coverage
across difficult targets and as expected, the proportion of
the genomic regions with high read depth was improved
when intended sequencing depth was also higher with
optimal coverage (30X) reached for 82.0% of the targets
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that were sequenced using the Agilent V3 kit that had an
observed average depth of 80X. Despite overall improve-
ment in coverage, there remained significant gene-to-gene
variability in coverage. Ten of the 50 cardiac genes
(including 6 on the ACMG list) had a median coverage
that was less than optimal (<30X), increasing the risk of
under-detection of true positives (Type II error). Thus a
high intended depth of sequencing can improve the
efficiency of capture but it increases costs and did not
increase the number of genomic regions covered. Improving
coverage will therefore require improvement in the capture
technology and probe capture design to capture previously
missing regions of the exome.

Gene-to-gene variability in coverage was not accounted
for by inter-sample variability, which was consistently low
across all 50 genes, and only modestly related to the size
of the exonic regions examined for each gene. It did
however correlate with GC content with lower coverage
in regions that showed a high GC content. This limitation
in sequencing regions with high GC content has been
identified previously [6,25]. Targeted re-sequencing and
modified sequencing techniques, such as oligonucleotide-
selective sequencing, may provide a more efficient strategy
to deal with GC rich genes [26]. Therefore, a preliminary
screen for the amount GC content of candidate genes
prior to sequencing is recommended.

In summary, these results highlight the importance of
assessing adequacy of coverage of candidate or target
genes in genomic analyses to avoid false negative results.
When comparing cohorts sequenced using different cap-
ture kits or sequencing platforms, coverage analysis
plays an even more significant role. Underreporting of
variants due to lower coverage in one cohort can result
in false ascertainment of enrichment of variants in the
well covered cohort resulting in a Type II error. Accurate
assessment of coverage between cohorts should also look
beyond the commonly reported mean/median depth per
base. This type of measure for overall coverage gives no
indication of the uniformity of coverage across the gene.
Base-by-base read depth comparison should be assessed
to ensure cohorts are comparable at specific variant sites.

A limitation of our study is that we did not assess if
structural variation, such as common and rare copy num-
ber variants (CNVs), contribute to the discrepancy in
coverage when analyzing a small subset of genes especially
in the presence of population specific CNVs. Another
limitation is that we did not study the impact of coverage
on variant detection sensitivity. However, several other
studies have already evaluated variant detection sensitivity
with exome data and identified numerous factors that in-
fluence variant detection sensitivity including coverage,
quality of alignment and mapping, duplicates, strand bias,
and type of algorithm used [5,27-29]. A recent study also
found that a mean on-target read depth of 17-37X is
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Figure 5 GC content analysis. A. GC content (blue) and median coverage (red) for each of the 50 cardiac genes was plotted in decreasing
order of from highest to lowest coverage. The linear average was plotted as the dark line in blue for GC content and red for median coverage.
These linear averages show that as median coverage decreased from left to right, GC content increased. B. For each of the 50 genes, the median
coverage and GC content percentage was plotted. There was a negative correlation between median coverage and total GC content of the 50
cardiac genes (* = 0.547; p =866 x 10~ '%). C. Percent GC content of the top five well covered genes in green and the bottom five poorly
covered genes in red showed a significant difference (p =1.48 x 107).

required to identify 90% of heterozygous SNVs in the Conclusions

targeted regions, depending on the uniformity of read
coverage [30]. Therefore strategies to enhance capture
and coverage as well as the sensitivity in variant detection
are needed.

In conclusion, non-uniformity of coverage is a limitation of
exome sequencing and may introduce bias into gene and
variant discovery. As the application of exome sequencing
expands into the clinical domain, careful interpretation of
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findings in the context of coverage is essential. Improve-
ments to sequencing capture technology to expand the
targeted regions and advances in bioinformatic approaches
to account for differential coverage are essential to improve
clinical implementation. From a research perspective, care
should be taken when assessing overall mutation burden or
identifying casual variants or genes. There is a bias towards
well-covered and easy to sequence genes and a risk of
under-reporting of mutation burden in poorly covered
genes.

Additional file

Additional file 1: Table S1. Cardiac genomic regions targeted in the
CCDS vs Known Gene datasets. Total size in unique base pairs for all
exons of all transcripts contained within the CCDS, Ensembl, and Known
Gene datasets for all 50 cardiac genes. The Ensembl database is included
for reference as well given it is a widely used data source and therefore
provides context for the other databases. The proportion of Known Gene
bases represented in CCDS for each gene is shown as percentages as
well as the proportion of Ensembl bases represented in CCDS for each
gene. The number of bases targeted and captured (minimum 3X) for
each capture kit is shown as a percentage of the total bases found in
each dataset per gene.
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