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Abstract: We have developed an alignment-free method that calculates phyloge netic distances using a maximum-like-
lihood approach for a model of sequence change on patterns that are discovered in unaligned sequences. To evaluate 
the phylogenetic accuracy of our method, and to conduct a comprehensive comparison of existing alignment-free 
methods (freely available as Python package decaf+py at http://www.bioinformatics.org.au), we have 
created a data set of reference trees covering a wide range of phylogenetic distances. Amino acid sequences were evolved 
along the trees and input to the tested methods; from their calculated distances we infered trees whose topologies we 
compared to the reference trees.

We find our pattern-based method statistically superior to all other tested alignment-free methods. We also demonstrate the 
general advantage of alignment-free methods over an approach based on automated alignments when sequences violate the 
assumption of collinearity. Similarly, we compare methods on empirical data from an existing alignment benchmark set that 
we used to derive reference distances and trees. Our pattern-based approach yields distances that show a linear relationship 
to reference distances over a substantially longer range than other alignment-free methods. The pattern-based approach 
outperforms alignment-free methods and its phylo genetic accuracy is statistically indistinguishable from alignment-based 
distances. 
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1. Introduction
Tasks like database searching, sequence classification, phylogenetic tree recon struction and detection of 
regulatory sequences are ubiquitous in bioinformatics. Most methods performing these tasks are based 
on (automated) alignments; how ever, alignment-free methods exist for solving the tasks. Recent years 
have seen an increasing number of alignment-free methods (reviewed in Vinga and Almeida 2003; see 
also Snel et al 2005; Vinga et al 2004; Van Helden 2004; Pham and Zuegg 2004; Burstein et al 2005; 
Wu et al 2005). In contrast to methods based on (automated) alignments, alignment-free methods make 
fewer assumptions about the nature of the sequences they work on, and so far are mostly devoid of any 
evolutionary model of sequence change (the only exception being the W-metric by Vinga et al 2004). 
The absence of an assumption of collinearity over long stretches (implicit in any alignment) destines 
them to be especially useful for handling DNA sequences that have undergone recombination, proteins 
with shuffled domains, and genomic sequences (which often feature large-scale rearrangements).

Previously, several alignment-free methods have been compared systematically for classification 
purposes and their ability to detect regulatory sequences. How ever, surprisingly little is known about 
their accuracy in phylogeny reconstruction. So far, new methods have been verified on a few trees only. 
A systematic study is sorely lacking in this field of research.

In Section 2 below we describe several alignment-free methods that we in cluded in our comparison. 
We propose a new alignment-free method based on patterns in sequences, and a variant thereof, in 
Section 3. The phylogenetic accu racy of these methods is comparatively evaluated on synthetic and 
empirical data, covering a wide range of phylogenetic distances, and we assess whether differences are 
statistically significant in Section 4 before presenting conclusions.

2. Previous work
In this section, we provide a summary of previously established alignment-free methods. The first two 
were reviewed in Vinga and Almeida (2003), while the remaining six methods are more recent and are 
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compared here for the first time. We discuss the 
following: d E, the (squared) Euclidean distance; 
d S, the standard ized Euclidean distance; d F, a 
distance based on the fractional common k-mer 
count; d P, a distance based on probabilities of 
common k-mer counts under a mul tiplicative 
Poisson model; d C, the composition distance; d W, 
the W-metric; d LZ, a distance based on Lempel-Ziv 
complexity; d ACS, a distance based on the Average 
Common Substring length. Methods d S and d P 
require a set of equilibrium fre quencies of amino 
acids. We supply amino acid frequencies used in the 
derivation of the JTT model (Jones et al 1992). 

We represent a biological sequence by a string 
X (Y ) of n (m) characters taken from the alphabet 
A which contains c different characters {a1,..., ac}, 
eg all amino acids. Most alignment-free methods 
operate on words of length k, so-called k- mers: 
there are w = c k such different words. We represent 
the set of k-mers in X (or a derived property) by 
vector vX = ( , . . . , )v vX

w
X

1  (similarly for k-mers in 
Y); the parameter k is always implied. Each vector 
element describes the abundance of k-mer i.

The (squared) Euclidean distance was intro-
duced into sequence comparison by Blaisdell 
(1986). The distance between X and Y is calculated 
using c c

i
X

i
Y( )and , the count of k-mer occurrences 

in X (and Y ).
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Later, Blaisdell (1989) found that d E yields 
values about twice the number of mismatch counts 
obtained from alignments.

The standardized Euclidean distance was 
found to improve on d E without in curring the 
computational problems associated with the 
slightly better performing Mahalanobis distance 
(Wu et al 1997). 
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Divide f f
i
X

i
Y( ) , the relative frequencies of k-mer 

occurrences in X (Y ), by their standard deviations 
s s

i
X

i
Y( )  as calculated from a set of equilibrium 

frequencies (Gentleman and Mullin 1989).

Edgar (2004a) described the fractional common 
k-mer count; it is used in a dis tance measure that 
speeds up guide tree construction in MUSCLE 
(Edgar 2004b).

Let C c c
i
XY

i
X
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Y= ( )min ,  denote the common 

k-mer count.
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 d X Y FF ( , ) log( )= − +ε  (4) 

F, the fraction of common k-mers between X 
and Y, ranges from 0 to 1 and d F transforms this 
into a distance: ε, a small value added to prevent 
taking the logarithm of zero (at least in Edgar 
2004a), is 0.1 there but 0.02 in MUSCLE. Both 
versions employ d F in slightly different ways; here, 
we directly use this common basis with ε = 0.1. 

Van Helden (2004) compared several metrics 
for their suitability in classifying genes based on 
their regulatory sequences. He found a similarity 
measure based on probabilities from common 
k-mer counts under a multiplicative Poisson model 
to be best-performing. In our adaptation, we 
directly use the probabilities from Equation 5 
without transforming them into similarities.
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Here, in the calculation of C
i
XY  the occurrence 

counts of k-mers are filtered to obtain recurrence 
counts, thereby justifying the Poisson assumption. 
If k-mer i occurs more than once in a sequence, 
we record the starting positions (p1, . . . ) and 
proceed as follows. We accept p1 and discard all 
positions overlapping the corresponding k-mer. 
We repeat this process with the remaining
positions until the list is exhausted; the accepted 
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positions represent recurrences of i. F P refers to 
the Poisson probability distribution function and 
its parameter Ei is the expected count under a set 
of equilibrium frequencies. P x C

i
XY( )≥  is the 

probability that we observe a k-mer count x at least 
as high as that between X and Y.

The last word-based alignment-free method 
considered here is the composition distance of
Hao and Qi (2004). Under a Markov model for 
k-mer occurrence of order k − 2 (assuming word 
length k ≥ 3) we predict the probability p0 of
a word (the ci refer to its characters) from the 
probabilities p (ie relative frequencies) of appro-
priate shorter subwords. To obtain the expected 
count E X of a k-mer in X, we re-arrange Equation 
7 slightly.
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We can now assemble the composition vector 
(Hao and Qi 2004) for k-mer occurrence counts c X 
in X: vX = (cX − EX )/EX. Then we calculate the 
correlation between X and Y as the cosine of the 
angle between their composition vectors, and 
obtain a normalized dissimilarity d C.
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Vinga et al (2004) introduced the W-metric 
which they categorise as “word-based” but we note 
that for amino acid sequences (to which it was 

applied originally), it effectively operates on 
1-mers only:
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Differences in amino acid composition,
f f

i
X

i
Y− , between all pairs of amino acids, are 

weighted by their entries Wij in scoring matrix W. 
Vinga et al (2004) found their results virtually the 
same for different matrices (BLOSUM62, 
BLOSUM50, BLOSUM40 and PAM250); we use 
BLOSUM62 (Henikoff and Henikoff 1992). 

Otu and Sayood (2003) showed how Lempel-
Ziv complexity, computed in a simple fashion 
utilizing two elementary operations (Lempel and 
Ziv 1976), can be used to define distance measures. 
We examine their final measure (that they call d**

1 ): 
c(X) denotes the Lempel-Ziv complexity of X, and 
XY refers to the concatenation of X and Y.
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Most recently, Burstein et al (2005) proposed 
the Average Common Substring (ACS) approach. 
They define L(X, Y ) = Σn

i=1 �i
XY / n, where �i

XY is the 
length of the longest string starting at Xi that exactly 
matches a string starting at Yj. L provides a normal-
ized length measure, from which we obtain an 
intermediate (asymmetric) distance d and finally 
d ACS.

 
d X Y

m

L X Y

n

L X X
( , ) log ( )

( , )
log ( )
( , )

= −
 

(13)

 
d X Y d X Y d Y XACS ( , ) [ ( , ) ( , )]= +1

2  
(14)

3. Pattern-Based Approach
We use pattern discovery to find regions of simi-
larity (presumed homology) occurring in two or 
more sequences; no alignment is necessary. To 
estimate phylogenetic distances, the patterns are 
considered to be local alignments. Adopting this 
point of view enables us to apply an established 
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maximum-likelihood (ML) approach. Both the 
application of pattern discovery, and distance
estimation by ML, repre sent novel steps in this 
context. We infer pairwise distances from the 
sequence data covered by patterns, yielding a 
distance matrix. Distance-based tree inference then 
proceeds by conventional means. 

There is a fundamental distinction between our 
pattern-based approach and word-based methods: 
patterns are expressive enough to accommodate 
similar but non-identical stretches of sequence 
(see below), allowing us to calculate distances from 
the differences contained therein. Methods based 
on words cannot extract differences between two 
sequences from the sequence data covered by a 
k-mer that, by definition, occurs identically in these 
sequences.

3.1 Terminology 
We briefly introduce some basic terminology for 
TEIRESIAS; for more details, including a descrip-
tion of the algorithm, the reader is referred to 
Rigoutsos and Floratos (1998). Let A denote the 
alphabet of characters, eg all amino acids. Let ‘.’ 
∉ A be the wildcard character that represents any 
amino acid. Define a pattern P to be the regular 
expression A(A ,  {‘.’})*A, ie P starts and ends 
with amino acids, and may contain wildcard char-
acters. A subpattern of P is any substring that is a 
pattern. Call P a < L,W > pattern (L ≤ W ) if any 
subpattern of length ≥ W has ≥ L characters ∈A. 
A pattern P has support K if it occurs (has instances) 
in K sequences. A pattern P can be made more 
specific by replacing wildcard characters by char-
acters ∈A and/or extending P to the left or right. 
Call P maximal with respect to a sequence set S if 
making P more specific reduces its total support 
(irrespective of the number of sequences).

We are now ready to state the behaviour of the 
algorithm: TEIRESIAS finds all maximal < L,W > 
patterns (with support ≥ K) in a set S of unaligned 
sequences. In the context of this work, we set
L = 4, W = 16 and K = 2. As described below, 
distances between sequences are calculated using 
paired residues from patterns. Two residues are 
said to be paired if they occupy the same column, 
ie position in different instances of a pattern.

3.2 Distance Calculation
The pairwise distance d PB between two sequences 
Si and Sj is computed as follows: first, we filter out 

patterns with more than one instance in any 
sequence, for two reasons. a) This reduces the 
number of false positives, ie patterns with non-
homologous instances that arise purely by chance. 
b) It also ensures that the distance from a sequence 
to itself is zero, a mathematically desirable prop-
erty. (This filtration step is meaningful only for 
patterns, not for words.) Second, all instances of 
patterns occurring simultaneously in (at least) Si 
and Sj are concate nated, resulting in two new 
sequences S′ij and S′ji of the same length. For 
example: pattern P1 = “A.RC” occurs in S1 and S2 
with instances “AIRC” and “ALRC”, pattern P2 = 
“MA..D” occurs in S1, S2 and S3 with instances 
“MAMAD”, “MAVID” and “MALVD”. After 
concatenation, we obtain S′12 = “AIRCMAMAD” 
and S′21 = “ALRCMAVID”. Note that a pattern 
may occur in three or more sequences, in which 
case we project it on multiple pairs of sequences. 
For example: P2 contributes to (S′12, S′21), (S′13, 
S′31) and (S′23, S′32). Also note that generally S′ij 
(and S′ji) will differ in length from S′ik (and S′ki) 
because the patterns occurring simultaneously in 
(at least) Si and Sj will differ in number (and number 
of residues they cover) from those appearing in (at 
least) Sk and Sj. For example: the length of S′12 (and 
S′21) is 9, whereas the length of S′13 = “MAMAD” 
(and S′31 = “MALVD”) is 5. Third, these new, 
concatenated sequences are used to estimate pair-
wise distances. This is done by applying a 
maximum-likelihood approach that optimizes with 
re spect to a model of amino acid evolution. For the 
purpose of this work we use the JTT model (Jones 
et al 1992) as implemented in PROTDIST from the 
PHYLIP package (Felsenstein 2005). 

Note that the algorithm for calculating distances 
from patterns is general. Our means for pattern 
discovery is TEIRESIAS, but, in principle at least, 
other tools could also be used (eg Apostolico
et al 2005). To retain the alignment-free property 
of our approach, any replacement needs to have 
that property as well.

3.3 Setting parameters 
Our rationale for setting TEIRESIAS parameters 
to L = 4, W = 16 is as follows. Consider ordinary 
k-mers: higher values for k reduce chance occur-
rences among a set of sequences, thus reducing 
false positives. We observe that TEIRESIAS 
pat terns and k-mers bear a relationship; to this end 
we introduce elementary patterns: an elementary 
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pattern is a < L,W > pattern with exactly L residues. 
TEIRESIAS discovers maximal < L,W > patterns 
using elementary patterns as building blocks during 
its convolution phase (Rigoutsos and Floratos 
1998). For the special case W = L (no wildcard 
characters are allowed), setting L = k leads to 
elementary patterns capturing a subset of all
k-mers. The only difference is that K = 1 for k-mers 
(a k-mer may occur only once) whereas we use
K = 2 for TEIRESIAS (a pattern must occur in at 
least two sequences). Thus we see that higher 
values for L reduce the number of false positives. 
For our distance calculation, however, we need 
pat terns capable of accounting for differences 
between sequences, hence we require W > L. Our 
approach differs from word-based methods: only 
the use of patterns allows us to formulate and 
satisfy this requirement. In preliminary experi-
ments on data described in Section 4.2, we tried 
several higher values for L with W > L first. We 
found for L = 4, W = 16 (a ratio of L/W = 0.25), the 
values that we use throughout Section 4, all pair-
wise distances are defined, ie every pair of 
sequences is covered by at least one pattern with 
an instance in both sequences. For W = 8, corre-
sponding to a ratio of L/W = 0.5, and higher values 
of W, approaching the ratio L/W = 0.25, the number 
of undefined distances is 229, 127, 63, 32, 23, 8, 
5, and 2 out of 8667. (On data from Section 4.1, 
all distances are defined for W = 8.) 

Undefined distances point towards a problem: 
some sequence pairs are too divergent—no pair of 
substrings can be described by (elementary) 
< L,W > pat terns. The ratio L/W determines the 
minimum similarity any subpattern must pos sess: 
it effectively specifies a local similarity threshold. 
Thus, undefined distances mean that no pair of 
substrings reach or exceed this threshold. Our solu-
tion to the problem is to make sequences more 
similar by encoding them in a reduced alphabet. 
Following Rigoutsos et al (2000) and earlier work 
by Taylor (1986), we choose a reduction based on 
chemical equivalences: [AG], [DE], [FY], [KR], 
[ILMV], [QN], [ST], [BZX] where ‘[. . . ]’ groups 
similar amino acids together, and unlisted amino 
acids form classes of their own. The phylogenetic 
distance calcu lation is based on the original 
sequence data covered by the resulting patterns; 
this usually improves phylogenetic accuracy (see 
Section 4.1.1 and 4.2.2). As a result of encoding 
sequences, all pairwise distances for eg L = 4, 
W = 8 are defined.

We also find that for sufficiently small values 
of L, the phylogenetic accuracy is virtually inde-
pendent of the particular choice of L, and largely 
depends on the ratio L/W (see Appendix). Gener-
ally, the accuracy of tree reconstruction improves 
as the local similarity threshold is lowered, with 
diminishing improvement and higher computa-
tional costs the further it is lowered.

3.4 Majority consensus
and consistency
One property of TEIRESIAS is that each residue 
can (and given our parameterization, usually will) 
participate in multiple patterns. This may lead to 
situations where a particular residue in one 
sequence pairs with two or more different residues 
in a second sequence. For example: assume 
patterns P1 and P2 have overlapping instances in 
S1, both covering position p1,19 = ‘M’. It is possible 
that their instances in S2 have two different posi-
tions p2,18 = ‘A’ and p2,23 = ‘L’ paired to p1,19. It is 
not clear how this should be interpreted with 
respect to homology. We propose a variant, dPBMC 
that resolves this conflict by way of (relative) 
majority consensus and consistency. We discover 
patterns as before but introduce an intermediate 
step before distance estimation. We record paired 
positions across all patterns. For any two sequences 
Si and Sj, we accept positions (pik, pjl) if and only 
if a) pik is paired with p jn more often than with any 
other position in Sj, b) pjl is paired with pim more 
often than with any other position in Si, and c) pik 
= pim and pjl = pjn, ie the positions in a) and b) 
correspond to each other. For example: assume 
p1,42 is paired with p2,52 three times and twice with 
p2,43. Hence, condition a) is met. Assume further 
that p2,52 is paired with p1,42 once, meeting condi-
tion b). Additionally, condition c) is met, thus we 
accept pair (p1,42, p2,52). This ensures that every 
residue participates at most once for a given 
sequence pair in the distance calculation step. For 
parameters L = 4, W = 16, the constraints prove to 
be stringent and discard most of the data.

4. Comparison of Alignment-Free 
Methods

4.1 Synthetic Data 
We use a birth-death process to model cladogenesis 
(Nee et al 1994) and sample from several tree
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distributions. The effects of different taxon sampling 
strategies are described in Rannala et al (1998). Trees 
resulting from a birth-death process are rooted,
bifurcating and ultrametric; we deviate them from 
ultrametricity by an additive process to keep the 
expectation of the phylogenetic distances 
unchanged.

Using PHYLOGEN V1.1 (Rambaut 2002) we 
sampled seven sets of 100 four-taxon reference 
trees each; the parameters were birth = 10.0 and 
death = 5.0, with extant ∈[40, 133, 400, 133, 
4000, 13333, 40000] corresponding to a sam ple 
fraction of [0.1, 0.03, ..., 0.0001]. The induced 
pairwise phylogenetic reference distances have 
medians of [0.71, 1.11, 1.61, 2.08, 2.46, 2.96, 3.39]
 substitutions per site; their upper and lower quar-
tiles are within 0.35 units of these values. For later 
use, we label the first, fourth and last set as having 
small, medium and large phylogenetic distances. 
Sequences were evolved along the branches of the 
deviated trees using SEQ-GEN V1.3.2 (Rambaut 
and Grassly 1997) under the JTT model (Jones 
et al 1992), and for a sequence length of 1000 
amino acids. (Where possible, we parameterized 
alignment-free methods with the JTT model, or its 
equilibrium frequencies.) 

To compare alignment-free methods with 
alignment-based methods when the assumption 
of collinearity is violated, we constructed an 
additional data set with a wide distribution of 
phylogenetic distances. We sampled one four-
taxon tree each from 100 different distributions 
specified by sample fractions that varied evenly 
on a logarithmic scale. The induced pairwise 
phylogenetic reference distances have a median 
of 1.77 substitutions per site; the upper and lower 
quartiles are 2.54 and 1.02, respectively, and the 
maximum is 4.88. Sequences of length 1000 were 
evolved as before, and for every sequence set the 
first and last halves of two sequences were 
exchanged. This corresponds to a recent domain 
shuffle event. We deliberately chose an extreme 
example to show the severity that a non-justified 
assumption of collinearity can have.

The generated sequences were input to the 
tested alignment-free methods, and the resulting 
test distances were used to infer neighbor-joining 
(NJ: Saitou and Nei 1987) trees. Phylogenetic 
accuracy is measured by the Robinson-Foulds (RF: 
Robinson and Foulds 1981) tree metric: we 
compute the topological difference be tween a test 
tree and its corresponding (unrooted) reference 

tree, and report results for each set. To assess the 
statistical significance of differences between 
methods we employ the Friedman test (corrected 
for tied ranks), followed by Tukey-style posthoc 
comparisons if a significant difference is found 
(see eg Siegel and Castellan 1988). 

4.1.1 Phylogenetic accuracy
Here, and in Section 4.2.2 we are interested in the 
accuracy of methods in reconstructing the phylo-
gentic relationships among a set of sequences; we 
refer to this quantity as phylogenetic accuracy for 
short. We measure and report the topological differ-
ences between test and reference trees: better 
methods yield fewer differences, and hence have 
a higher accuracy. When we assess methods based 
on their ranksums of the Friedman test, better 
methods obtain lower numbers and rank first.

Influence of k and alphabet Here, we look at 
the performance of word-based alignment-free 
methods as a function of the length of k-mers and 
the alphabet in use. We varied k from 1 to 9 where 
possible: the composition distance requires a 
minimum of k = 3. The alphabet consisted of either 
the original amino acids (AA) or the chemical 
equivalence classes (CE) from Section 3.3.

For AA sequences, word length k = 4 performs 
best for methods d E, d S, d F and d P as judged by 
their ranksums based on phylogenetic accuracy 
over all seven reference sets. Second- and third-
ranking word lengths for d E and d P are k = 5 and 
k = 3. For d F these lengths have tied ranks, and for 
d S this order is reversed. Method d C performs best 
for k = 3, with k = 4 (k = 5) ranking second (third).

For CE sequences, slightly higher values for k 
yield lower ranksums. Methods d E, d F and d P 
perform best with word length k = 5. Second- and 
third-ranking word lengths for d E and d P are k = 
6 and k = 7, for d F this order is reversed. For d S, 
word lengths k = 5 and k = 6 rank equal best, 
followed by k = 4. Again, method d C shows a 
preference for lower values: it performs jointly best 
for k = 4 and k = 5, followed by k = 3.

What we have described so far is based on the 
ranksums over all seven reference sets spanning the 
relevant space of phylogenetic distances for tree 
inference. Looking at the phylogenetic accuracy of 
word-based methods on individual sets with narrow 
distributions of phylogenetic distances reveals a 
more complex picture. As expected, the topological 
difference between test and reference trees increases 
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with increasing phylogenetic reference distances. 
However, depending on the choice of word length 
k, the absolute values of this difference may vary 
con siderably. This leads to a number of curves with 
different shapes when plotting the accuracy for a 
particular method on the Y-axis with the X-axis 
showing values for k (Fig. 1). We find that overall, 
the choice of method has less impact on the shape 
of these curves than does phylogenetic distance. 
Comparing AA with CE sequences shows similarly 
shaped curves that are shifted to the right for CE. 
Note that we are interested only in general trends 
apparent from these curves, and do not attempt to 
attach significance to differences; this is done below 
for differ ences between methods (where word-
based methods are parameterized with their best-
performing word length).

Figure 1 (a,c,e) shows curves for method d E for 
three out of seven different reference sets with 
small, medium and large phylogenetic distances. 
The curves for methods d S, d F and d P are similar 
and appear in the appendix. The curve for medium 
distances corresponds to our overall findings. Small 
and large distances hint at a better performance for 
small values of k. Inspection of these plots for the 
remaining methods fails to identify a single best 
k. Figure 1 (b,d,f) for d C reveals some striking 
peculiarities of this method. In these three sets, for 
k = 6 the topological difference between test and 
reference trees is often the highest, even though 
the neighbor value k = 5 may yield a low topo-
logical difference (medium distances): thus the 
parameter space is uneven, more so than for other 
methods.

Taken together, these results indicate that, 
depending on the phylogenetic dis tance of the 
sequences, the word length most appropriate for 
analysis of a particular data set may well be 
different from the one performing best over all sets 
tested here. In practice, intermediate word lengths 
(performing best overall in our setup) should work 
well on a large variety of data sets.

Statistical significance Here, we conduct a 
comprehensive comparison of all methods: we 
show their phylogenetic accuracy and assign statis-
tical significance to our findings. For k-mer-based 
methods, we select the best-performing word 
lengths on the two alphabets as described above. 
We compare these methods to d ACS , d LZ and d W, 
and to two variants of the pattern-based approach: 
d PB and d PBMC. As a baseline, we include d ML,
the maximum-likelihood (ML) estimate of

phylogenetic distances between the (already 
correctly aligned) sequences.

Table 1 lists selected methods in ranksum order 
based on all 700 trees, from best to worst. For every 
method, we show the number of incorrectly recon-
structed trees in each of the seven sets. Recall that 
unrooted, bifurcating four-taxon trees can be recon-
structed either correctly or incorrectly: the RF 
distance will be 0 or 1, with no intermediate values 
possible. There are 3 distinct possible topologies 
for such trees, hence we expect a method based on 
random choice to correctly reconstruct 1

3  of all 
trees, and conversely, to incorrectly reconstruct 2

3  
of all trees. For each reference set, the expected RF 
distance of the random tree reconstruction method 
thus amounts to about 67 out of 100 trees. 

The test statistic of the Friedman test (corrected 
for tied ranks) is FR = 709.6 (N = 700, k = 19). This 
is highly significant (p-value < 10−10) at or beyond 
the α = 0.05 level. Significant differences are found 
between the following pairs (num bers refer to 
entries in column ‘#’ of Table 1): method 1 vs 
methods 19–4, method 2 vs methods 19–5, method 
3 and 4 vs methods 19–15, and methods 5–16 vs 
method 19. Thus the performance of most align-
ment-free methods as tested here is statis tically 
indistinguishable from one another. The ranksums 
of methods 5–14 range from 6951.0 to 7074.5, 
differing by ≤ 123.5. However, the pattern-based 
method d PB with CE, L = 4, W = 16 (ranksum: 
6058.0) is significantly better than all alignment-
free methods not based on patterns. The ML esti-
mate based on the correct alignment, d ML, is 
significantly better than all traditional alignment-
free meth ods and the pattern-based method 
working on original AA sequences. Note that d ML 
is not significantly better than the two best-
performing pattern-based variants working on CE 
sequences.

By far the worst method tested here is the W-
metric d W (ranksum: 8281.0): differences to nearly 
all other methods are significant. The lack of phylo-
genetic accuracy originates from being based on 
1-mers. For comparison, d E with AA, k = 1 incor-
rectly reconstructs the following number of trees 
for the seven reference sets: 38, 30, 39, 53, 58, 66, 
59. These numbers are quite similar to the ones in 
Table 1, as are the numbers for equally parameter-
ized methods d S and d F. In the case of d P, however, 
they are 59, 56, 65, 75, 59, 71, 65. This is an arti-
fact of the method for k = 1 (and to some extent 
for k = 2) and vanishes for higher values. Also 
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apparent is the poor performance of both param-
eterizations of d LZ and d C, the Lempel-Ziv and 
composition distances, respectively, with ranksums 
between 7359.5 and 7635.0. 

Domain shuffling We now describe our 
findings from the reference set with simulated 
domain shuffling data. We apply the same align-
ment-free methods with parameter settings as 
before on the unaligned, partly shuffled sequences. 
Additionally, we run a number of multiple 
sequence alignment (MSA) programs on these 
data (Thompson et al 1994; Morgenstern 1999; 
Edgar 2004b; Do et al 2005), and estimate ML 
distances from these alignments (d  CLUSTALW,
d DIALIGN, d MUSCLE and d PROBCONS, respectively). 

Aligning sequences that contain shuffled domains 
is inappropriate and our setup corresponds to an 
undesirable situation where, for example, in an 
automated environment tests have failed to detect 
the presence of domain shuffling. Hence, distances 
are estimated from alignments where not all 
homologous residues can possibly be aligned, and 
it is likely that in fact a substan tial fraction of 
aligned residues are non-homologous. 

The Friedman test (FR = 270.3, N = 100, k = 22) 
detects the presence of a dif ference that is highly 
significant (p-value < 10 −10) at or beyond the α = 
0.05 level. However, pairwise differences are 
statistically significant only between d  CLUSTALW and 
all other methods; this is likely due to lack of 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9

R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e

word length k

AA
CE

a

 0

 0.2

 0.4

 0.6

 0.8

 1

 3  4  5  6  7  8  9

R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e

word length k
b

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9

R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e

word length kc

 0

 0.2

 0.4

 0.6

 0.8

 1

 3  4  5  6  7  8  9

R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e
word length k

d

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9

R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e

word length ke

 0

 0.2

 0.4

 0.6

 0.8

 1

 3  4  5  6  7  8  9

R
ob

in
so

n-
Fo

ul
ds

 d
is

ta
nc

e

word length k
f

Figure 1: Average Robinson-Foulds distance (Y-axis) for two methods (a,c,e: d E; b,d,f: d C) on three reference sets (top to bottom: small, 
medium and large phyloge netic distances). Each subfigure shows the behaviour as a function of word length k (X-axis) under two alphabets 
(AA: original amino acids, CE: chemical equivalence classes). Points are joined for ease of visual inspection only. The expectation of a tree 
reconstruction method based on random choice is 3

2 , or about 0.67.



Evolutionary Bioinformatics Online 2006: 2 367

Pattern-Based Phylogenetic Distance Estimation

statistical power. Two parame terizations (CE and 
AA) of the pattern-based method d PB, L = 4, W = 
16, rank jointly first with ranksums of 1011.5: they 
reconstruct 11 out of 100 trees in correctly. This is 
followed jointly by d PBMC, with CE, L = 4, W = 16, 
and d S and d F, both with CE, k = 5. Their ranksums 
are 1066.5, and reconstruct 16 in correct trees. The 
number of incorrectly reconstructed trees for align-
ment-based approaches are as follows (ranksum in 
parentheses): d CLUSTALW: 71 (1671.5), d MUSCLE: 28 
(1198.5), d PROBCONS: 25 (1165.5), and d DIALIGN:21 
(1121.5). Three out of four alignment-based 
approaches are among the seven worst-ranking 
meth ods. Interestingly d DIALIGN, the best-performing 
of these approaches, uses a local alignment 
strategy; it occupies rank eleven jointly with two 
other methods. Con versely, what we just described 
means that eg d LZ, working on AA sequences, one 
of the worst-performing alignment-free methods 
as tested here, has a higher phy logenetic accuracy 
than three out of four combinations of MSA 
program and ML estimate, and even d W is 
significantly better than d CLUSTALW on these data. 
Overall, the results show that alignment-free 
methods may perform better than alignment-based 

approaches, especially on non-collinear sequence 
data, as alignment-free methods do not make 
assumptions of collinearity.

4.2 Empirical data
We use the data from version 2 of the original BAli-
BASE sets (Thompson et al 1999). They consist of 
141 manually curated benchmark alignments that 
are or ganized in five reference sets. Their purpose 
is to support tests of alignment tools under a variety 
of conditions: Set 1 is made up of roughly equi-
distant sequences that are divided into nine subsets 
according to their sequence conservation and align-
ment length. Set 2 contains sequence families that 
are aligned with a highly divergent orphan sequence. 
Set 3 aligns subgroups with less than 25 percent 
iden tity between them. Set 4 consists of sequences 
with N- or C-terminal extensions, ie the sequences 
are not trimmed at alignment boundaries. Set 5 is 
complementary to set 4: some sequences contain 
internal insertions. Two alignments contain only 
three sequences each and are not considered for 
evaluation of phylogenetic accu racy, as there is only 
one corresponding unrooted tree topology. The 

Table 1. Shown are the number of incorrectly reconstructed trees (out of 100) for each synthetic reference set 
and method. The order is based on ranksums ΣR; for each word-based method (and alphabet A), we include 
the best-performing word length k (method d W can only take on a value of 1). The expectation of a tree recon-
struction method based on random choice is about 67.

            Synthetic reference set 
#  ΣR  Method  A  k  1 2 3 4 5 6 7

  1 5640.0 d ML AA – 2 2 7 12 13 18 17
  2 6058.0 d PB CE – 3 2 10 9 19 29 43
  3 6390.5 d PBMC CE – 3 3 10 10 23 42 59
  4 6523.5 d PB AA – 4 2 7 18 38 45 50
  5 6951.0  d S CE 5 8 6 19 27 45 47 57
  6 6960.5 d P AA  4 8 1 14 24 44 50 69
  7 6970.0 d E AA  4 5 2 17 24 46 48 69
  8 6989.0 d ACS AA – 9 3 17 24 49 52 59
  9 6998.5 d P CE 5 7 4 18 30 47 49 59
10 7036.5 d S AA 4 8 8 20 31 43 46 62
11 7036.5 d F AA 4 9 2 14 24 48 50 71
12 7055.5 d E CE 5 6 7 21 26 51 48 61
13 7065.0 d ACS CE – 10 7 21 30 43 55 55
14 7074.5 d F CE 5 6 6 21 31 47 49 62
15 7359.5 d LZ CE – 6 5 28 39 49 66 59
16 7378.5 d LZ AA – 3 8 21 34 53 64 71
17 7597.0 d C AA 3 12 14 31 47 49 58 66
18 7635.0 d C CE 5 15 14 32 45 54 63 58
19 8281.0 d W AA (1) 43 34 35 55 50 71 61
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remaining 139 alignments consist of between 4 and 
28 sequences each. 

For each reference alignment, we estimate 
phylogenetic reference distances using PROTDIST, 
and reconstruct both neighbor-joining (NJ) and 
Fitch-Margoliash (FM: Fitch and Margoliash 1967) 
reference trees. The topological difference be tween 
a test tree and its corresponding reference tree is 
measured by the Robinson-Foulds (RF) and the 
Quartet (Q) distance (Estabrook et al 1985; imple-
mented in QDIST: Mailund and Pedersen 2004). 
As these are empirical data, we cannot know the 
true tree along which the sequences evolved; 
however, we find that by using a large number of 
trees, and four combinations of tree reconstruction 
method and tree topology metric (RF-NJ, RF-FM, 
Q-NJ, Q-FM), we are able to rank methods 
robustly. Statistical significance is assessed as in 
Section 4.1.

4.2.1 Phylogenetic distances 
Here, we inspect the behaviour of pairwise phylo-
genetic distances. The BAliBASE alignments 
yield 8667 reference distances, of which < 2.5% 
have ≥ 5.0 substitu tions per site (36 distances are 
≥ 10.0). In what follows, we consider reference 
dis tances < 5.0, ie < 500 PAMs. Note that 
“distances of 250–300 PAM units are com monly 
considered as the maximum for reasonable 
distance estimation” (Sonnham mer and Hollich 
2005). Figure 2 contains scatterplots where the 
X-axis refers to the aforementioned reference 
distances. The Y-axis shows the corresponding 
phy logenetic distances obtained using selected 
alignment-free methods with original AA 
sequences (and, if the methods are word-based, 
values for k as in Table 1). Ad ditionally, we show 
distances obtained from CE sequences where the 
distribution differs noticably. 

Figure 2: Pairwise phylogenetic reference distances (X-axis) plotted against corresponding calculated distances (Y-axis). Methods and 
parameters are as follows: a) d  PB with L = 4, W = 16, CE, b) d    PB with L = 4, W = 16, AA, c) d  PBMC with L = 4,W = 16, CE, d) d  E with k = 4, 
AA, e) d S with k = 4, AA, f ) d F with k = 4, AA (cont’d).
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Ideally, a method calculates distances that are 
linear to the reference distances, as this allows for 
a simple (linear) transformation of its results to 
obtain the actual values (which are of intrinsic 
interest). We find that no method is linear over the 
whole range considered. Therefore, we apply linear 
regression and report results where the linear range 
is substantial. This is somewhat subjective; 
however, we note that it serves as a descriptive tool 
to understand the accuracy of the methods. 

Figure 2a for d  PB with CE sequences, L = 4, 
W = 16, shows a linear relation ship between refer-
ence and estimated distances for up to 2.0–2.5 
substitutions per site. Linear regression for all 
points below 2.0 yields y = 0.0794 + 1.2698x with 
a correlation coefficient (CC) of 0.8015. Higher 
distances are increasingly underes timated as satu-
ration comes into effect and limits most distances 
(> 99%) to values < 3.5.

When patterns are discovered using the 
original BAliBASE sequences (Fig. 2b) as 
opposed to using CE, the resulting distances are 
approximated by a line with a lesser slope (y 
= 0.0668 + 0.7790x, CC = 0.7970); saturation 
limits most dis tances (> 99%) to values < 2.5. 
For the variant d PBMC with CE sequences, L = 4, 
W = 16 (Fig. 2c), the linear relationship extends 
at least up to 2.0–2.5 substi tions per site and the 
slope is roughly half that of the equally param-
eterized d PB (y = 0.2108 + 0.6201x, CC = 0.8641). 
Again, most distances (> 99%) are limited to 
values < 3.5, however this curve shows less 
saturation and more scatter.

The (squared) Euclidean distance d E does not 
yield values that can be inter preted in units of 
substitutions per site. Instead, they relate to 
mismatch counts (Blaisdell 1989) and are therefore 
sequence length-dependent. Correspondingly, the 

Figure 2: (cont’d) g) d  P with k = 4, AA, h) d  C with k = 3, AA, i) d  C with k = 5, CE, j) d  W, k) d  LZ with AA, l) d  ACS with A  A.
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distances do not show a single discernable linear 
relationship (Fig. 2d for k = 4, with AA sequences). 
Most of the data (> 99%) have an Euclidean 
distance of < 1200; data for k = 5, with CE 
sequences are very similar and omitted here. 

Similarly, d  S has no single discernable linear 
relationship, with most data (> 99%) taking on 
numerical values of < 200 (k = 4, AA, Fig. 2e). 
However, parameters k = 5, CE yield distances with 
most values (> 99%) being < 4000, although the 
scatterplots look almost identical. 

We find a linear relationship between reference 
and d  F distances for up to about 0.75 substitutions 
per site (Fig. 2f ). Linear regression for all points 
below this cutoff yields y = 0.2304 + 1.7823x, CC 
= 0.8558. We find 25.5% of all pairwise distances 
are − log(ε), ie would be undefined without adding 
ε as no k-mer is common to a sequence pair. This 
problem occurs especially for short, divergent 
sequences in set 1 of BAliBASE. For k = 5, with 
CE sequences, this number drops down considerably 
to 15.1%, and the plot exhibits more scatter. 

A similar problem occurs for d P (Fig. 2g), which 
is also based on com mon k-mers. Here 30.8% of 
all pairwise distances yield the value 1.0; this 
higher percentage is possibly caused by numerical 
instabilities when multiplying small probabilities. 
As before, parameterization with k = 5, CE reduces 
the percentage considerably, to 21.0%, and 
increases scatter.

The scatterplots for the composition distance 
d  C differ between parameteriza tion k = 3, AA and 
k = 5, CE (Fig. 2h,i). The former version exhibits 
some what linear behaviour, with no value ≥ 0.55, 
whereas the latter version shows no such linear 
behaviour and is limited to about 0.75. More 
importantly, in this latter version 13.1% of its 
distances are exactly 0.5 (within the usual precision 
limits imposed by implementations of floating 
point numbers), and 30.2% are ∈[0.4999, 0.5001]. 
For the former version, just 6 distances amount to 
0.5, and 60 are ∈[0.4999, 0.5001]. 

We find no discernable relationship between 
reference distances > 0.5 and dis tances produced 
by the W-metric (Fig. 2j). This likely explains why 
it turns out to be the worst of all tested methods 
here. The distances are mostly (> 99%) limited to 
values < 0.3. 

The two distributions of values for parameter-
izations of the Lempel-Ziv dis tance d  LZ with both 
AA (Fig. 2k) and CE sequences are very similar, 
with CE showing more scatter. 

The method d  ACS shows a linear relationship 
between reference and calculated distances for up 
to about 0.75–1.0 substitutions per site (Fig. 2l). 
Linear re gression for all points below 0.75 yields 
y = 0.2551 + 1.0643x (CC = 0.8063). We find most 
distances > 99% are limited to values < 1.65. For 
CE sequences, most distances > 99% are limited 
to values < 1.1. 

Comparing the various distributions, we find 
that all three versions of our pattern-based approach 
yield pairwise distances that exhibit a linear rela-
tionship to phylogenetic reference distances for up 
to about 2.0–2.5 substitutions per site. This consti-
tutes a considerable increase from a maximum of 
0.75–1.0 substitutions per site for methods d  ACS 
and d  F . The linear relationship is a desirable prop-
erty, and likely explains the higher phylogenetic 
accuracy of the pattern-based approach. 

4.2.2 Phylogenetic accuracy 
Statistical significance Table 2 lists selected align-
ment-free methods and four approaches based on 
the ML distance estimate from automated align-
ments. To obtain combined ranksums for statistical 
analysis, we average the normalized topological 
differences over all four combinations of tree 
reconstruction method and tree distance measure 
(RF-NJ, RF-FM, Q-NJ, Q-FM) based on 139 
sequence sets. The combined ranksums range from 
975.5 to 2338.0. This is a slightly wider range than 
for each individual combination, for which the 
extreme values are ∈[987.5, 1058.5] and ∈[2280.0, 
2312.0]. The first and last six methods are ranked 
identically between the combined analysis and 
combination RF-NJ. The average normalized topo-
logical differences for this combination are shown 
in Table 2 for all five BAliBASE reference sets. 

The Friedman test statistic FR = 579.2 (N = 139, 
k = 22) is highly significant (p-value < 10 −10) at 
or beyond the α = 0.05 level. Significant differences 
are found between the following pairs (numbers 
refer to column ‘#’ of Table 2): meth ods 1–3 vs 
methods 22–6, method 4 vs methods 22–9, method 
5 vs methods 22–12, methods 6 vs methods 22–20, 
methods 7–18 vs methods 22 and 21, and method 
19 vs method 22. This implies that all alignment-
based approaches yield significantly better results 
than any of the alignment-free methods not based 
on patterns, except for d   DIALIGN vs d   ACS with CE. 
Additionally, three out of four alignment-based 
ap proaches (ranksums: 975.5–1008.0) are 
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significantly better-performing than two pattern-
based variants although not than d PB with CE,
L = 4, W = 16 (ranksum: 1239.0). This version 
significantly outperforms all but four alignment-
free meth ods not based on patterns. Again, both 
parameterizations of the composition dis tance and 
the W-metric trail behind, with ranksums of 1968.5, 
2171.0 and 2338.0, respectively. Similarly to our 
previous analysis, most alignment-free methods 
are statistically indistinguishable. Ranksums for 
methods 8–18 range from 1583.0 to 1755.0, a 
difference of 172.0. On this data set, d PBMC is only 
marginally better (ranksum: 1570.0). A possible 
explanation is apparent from Table 1. There, d PBMC 
performs poorly on reference set 7 (large phyloge-
netic distances) in comparison to both parameter-
izations of d PB. We find 1986 out of 8667 pairwise 
phylogenetic reference distances (ie 22.9%) in 
BAliBASE have ≥ 3.0 substitutions per site.

5. Conclusions 
We present here for the first time a comprehensive 
evaluation of alignment-free methods with
respect to their accuracy in reconstructing the 

phylogenetic relation ship among a set of sequences. 
We show that the performance of most methods 
is statistically indistinguishable from another. The 
pattern-based approach as intro duced by us here 
proved to be significantly better than most previ-
ously established methods. At the same time, we 
provide a point of reference for alignment-free 
methods by measuring the maximum-likelihood 
(ML) distance estimate based on reference and 
automated alignments. In our tests, we found the 
best-performing version of our pattern-based 
approach d PB to be statistically indistinguishable 
from this estimation, while most alignment-free 
methods rank significantly worse on or dinary, 
non-shuffled sequences. However, on non-
collinear sequences we show that most alignment-
free methods reconstruct trees more accurately 
than approaches based on automated alignments. 
In fact, these alignments should not be used as 
they largely align non-homologous residues. The 
inspection of CLUSTALW alignments reveals arti-
facts of this method: it forces most residues to 
align with other (non-homologous) residues, and 
places too few gaps.

Table 2. Shown are average topological differences for each BAliBASE reference set and method; these aver-
age values are based on neighbor-joining trees and the normalized Robinson-Foulds measure. The order is 
based on combined ranksums ΣR (see text for details); parameters for word-based methods are as in Table 1.

            BAliBASE reference set 
#  ΣR  Method  A  k  1 2 3 4 5

  1  975.5 d MUSCLE AA – 0.240 0.370 0.274 0.442 0.244
  2 1005.0 d CLUSTALW AA – 0.210 0.389 0.337 0.423 0.249
  3 1008.0 d PROBCONs AA – 0.204 0.396 0.336 0.474 0.164
  4 1190.5 d DIALIGN AA – 0.310 0.428 0.399 0.646 0.270
  5 1239.0 d PB CE – 0.306 0.510 0.357 0.478 0.330 
  6 1453.0 d PB AA – 0.404 0.563 0.398 0.524 0.428 
  7 1570.0 d PBMC CE – 0.440 0.557 0.428 0.609 0.460 
  8 1583.0 d ACS CE – 0.394 0.583 0.433 0.591 0.366 
  9 1603.0 d P CE 5 0.408 0.570 0.442 0.568 0.412
10 1625.5 d LZ AA – 0.431 0.569 0.389 0.642 0.511 
11 1632.5 d E CE 5 0.408 0.593 0.464 0.570 0.410
12 1646.0 d F CE 5 0.396 0.575 0.467 0.569 0.400
13 1703.0 d ACS AA – 0.483 0.579 0.401 0.660 0.451 
14 1705.0 d E AA 4 0.508 0.578 0.418 0.622 0.489
15 1706.5 d LZ CE – 0.421 0.622 0.440 0.628 0.437
16 1707.5 d P AA 4 0.496 0.589 0.419 0.637 0.469
17 1751.5 d F AA 4 0.515 0.580 0.431 0.666 0.475
18 1755.0 d S CE 5 0.446 0.636 0.491 0.603 0.375
19 1830.0 d S AA 4 0.513 0.624 0.450 0.607 0.528
20 1968.5 d C AA 3 0.481 0.681 0.525 0.570 0.588
21 2171.0 d C CE 5 0.535 0.776 0.642 0.796 0.611
22 2338.0 d W AA (1) 0.585 0.885 0.795 0.897 0.720
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In all three experiments we found that d PB ranks 
higher than the equally parameterized variant 
d PBMC, although not significantly. The latter variant 
intuitively seems to do more justice to the concept 
of homology; however, we cannot provide a satis-
fying explanation for its worse perfomance. All 
three versions of our pattern-based approach result 
in distances that show a linear relationship to 
phylogenetic reference distances over a substan-
tially longer range than any other alignment-free 
method considered here.

We also utilized a different alphabet for amino 
acid (AA) sequences based on chemical equiva-
lences (CE). We found that d PB with CE yields 
results as good as d PB with AA, and often yields 
considerably increased phylogenetic accuracy. 
We also tested the other alignment-free methods 
on sequences encoded in this alpha bet. For any 
given parameterization, CE always improves 
performance on set 7 (large phylogenetic 
distances: cf Table 1, and also Fig. 1 e,f) by 4 to 
12 (out of 100) fewer incorrectly reconstructed 
trees. This probably explains why methods 
parameterized with CE vs AA perform better on 
BAliBASE than on the synthetic dataset. Note 
that we did not try to optimize the alphabet; 
certainly, there are many different choices (see 
eg Edgar 2004a). Also, our findings seem to 
contradict results of that study. Edgar (2004a) 
found that k-mers based on various compressed 
alphabets did not improve the correlation 
coefficient between d F and percent identity as 
compared to using the original alphabet. In our 
own experiments we found the correlation 
coefficient between estimated and reference 
distance to be a bad estimator of phylogenetic 
accuracy (data not shown).

Finally, based on the data in Table 1, we note 
that there is ample room for further improvement 
of alignment-free methods: compare the results 
for d ML with d PB, especially on reference sets 5 to 
7, ie large phylogenetic distances. Quite likely this 
will be possible only if new alignment-free 
methods incorporate models of sequence 
change. 
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Appendix 

Setting parameters 
Table 3 exemplifies that the accuracy of tree recon-
struction for the pattern-based approach depends 
largely on the ratio of values for parameters L and 
W for a given alphabet: the number of incorrectly 
reconstructed trees decreases as the ratio gets 
smaller. (We note that L = 2, W = 3 are the smallest 
usable values to discover patterns that contain 
wildcard characters; such patterns are required for 
calculating distances.) It is also apparent that
L = 4 benefits from alphabet CE (as compared to 
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Figure 3: Average Robinson-Foulds distance (Y-axis) for two methods (a,c,e: d S; b,d,f: d F ) on three reference sets (top to bottom: small, 
medium and large phyloge netic distances). Each subfigure shows the behaviour as a function of word length k (X-axis) under two alphabets 
(AA: original amino acids, CE: chemical equivalence classes). Points are joined for ease of visual inspection only. The expectation of a tree 
reconstruction method based on random choice is 3

2 , or about 0.67.

Table 3: Shown are the number of incorrectly recon-
structed trees (out of 100) for synthetic reference set 4 
(medium phylogenetic distances). Method d PB was run 
using both alphabets A and various values for L and 
W : a) L = 4, W ∈ [8, 12, 16]; b) L = 3, W ∈ [6, 9, 12]; 
c) L = 2, W ∈ [4, 6, 8]. 

   ratio L/W
A L 0.50 0.33 0.25

CE  4 14 13  9
CE 3 15 12 12 
CE  2 16 11  9 
AA 4 36 26 18
AA 3 27 16 15
AA 2 25 13 13
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AA) much more strongly than does L = 2. This 
effect increases with increasing phylogenetic 
distance between sequences.

Influence of k and alphabet 
Figures 3 and 4 are similar to Figure 1 and show 
curves for word-based methods d  S, d F and d P. 
Note how the shape of the curves varies little 
between methods and is mostly dependent on 
phylogenetic distance. Figure 4 also visualises 
the extent to which d P is worse than other word-
based methods for word length k =1 and, to some 
degree, for k = 2.

Figure 4: Average Robinson-Foulds distance (Y-axis) for method d P 
on three ref erence sets (top to bottom: small, medium and large 
phylogenetic distances). Each subfigure shows the behaviour as a 
function of word length k (X-axis) under two alphabets (AA: original 
amino acids, CE: chemical equivalence classes). Points are joined 
for ease of visual inspection only. The expectation of a tree recon-
struction method based on random choice is 3

2 , or about 0.67.
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