
Quality Matters: Extension of Clusters of Residues with Good
Hydrophobic Contacts Stabilize (Hyper)Thermophilic Proteins
Prakash Chandra Rathi,† Hans Wolfgang Höffken,‡ and Holger Gohlke*,†
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ABSTRACT: Identifying determinant(s) of protein ther-
mostability is key for rational and data-driven protein
engineering. By analyzing more than 130 pairs of
mesophilic/(hyper)thermophilic proteins, we identified
the quality (residue-wise energy) of hydrophobic inter-
actions as a key factor for protein thermostability. This
distinguishes our study from previous ones that inves-
tigated predominantly structural determinants. Consider-
ing this key factor, we successfully discriminated between
pairs of mesophilic/(hyper)thermophilic proteins (dis-
crimination accuracy: ∼80%) and searched for structural
weak spots in E. coli dihydrofolate reductase (classification
accuracy: 70%).

Thermostable enzymes are sought after in industrial
biotechnology because they allow carrying out biocatalysis

at elevated temperatures, leading to an increase in reaction rates
and, thus, making industrial processes economically more
favorable.1,2 Proteins from thermophilic and hyperthermophilic
organisms tend to be more thermostable than their counter-
parts from mesophilic organisms.1,3 This makes identifying and
using enzymes from (hyper)thermophilic organisms an obvious
approach in industrial biotechnology.4,5 Screening large
metagenomic libraries in search of a protein with desired
properties is cumbersome, however.6 Engineering proteins to
improve thermostability is a promising alternative.7 Directed
evolution,8 rational design,9 and data-driven approaches10 have
been successfully applied for this.
The latter two approaches require knowledge of the

mechanisms of how a protein can be made more thermostable.
Comparisons of pairs of meso- and (hyper)thermophilic
proteins have revealed several such mechanisms,11,12 including
improved hydrogen bonding,13 ion pair and salt bridge
networks,12 better hydrophobic packing,14 shortening of
loops,15 higher secondary structure content,16 and increased
rigidity of a protein.17−21 As this list indicates, the focus of these
analyses has been on structural factors, which may be the

reason why different determinants of thermostability have been
revealed.
In the present study, we systematically analyze a large data

set of 132 pairs of mesophilic/thermophilic and 149 pairs of
mesophilic/hyperthermophilic homologous protomers with the
aim to identify the dominant determinant(s) of protein
thermostability. To do so, we compared residue-wise
interaction energy components and developed a hierarchical
3-D clustering of residues in a protein structure based on the
energy components for discriminating mesophilic and (hyper)-
thermophilic proteins. The clustering reveals that (hyper)-
thermophilic proteins have larger clusters of residues of good
hydrophobic contacts than their mesophilic counterparts.
Compared to previous studies,12,14,22,23 our results thus
emphasize the quality (energy) of hydrophobic interactions as
a discriminating factor rather than the sheer size of a cluster of
hydrophobic residues. Thereby, our approach also allows
suggesting residues where mutations should be incorporated
for improving thermostability, as we demonstrate below.
The data set used here is an updated version of the one

described in a previous study by Taylor et al.21 in that it does
not have duplicate (hyper)thermophilic protomers. The
protomers in this data set are characterized by a high
crystallographic quality (crystallographic resolution ≤ 2.2 Å
and R-factor ≤ 0.23) and a high sequence diversity (sequence
identity < 30% between structures of two different pairs).
Furthermore, structures of a pair in the data set (I) show root-
mean-square deviations less than 4 Å, (II) lead to structural
alignments that include greater than or equal to 80% of each
structure, and (III) have identical or closely related EC
numbers or functional annotations (see Tables S1 and S2,
Supporting Information (SI), for PDB IDs and chain IDs of
protomer pairs in the data set). Finally, the data set we used is
highly diverse in that the structures come from a variety of
structural classes and vary in size (67−732 residues) (Figure S1,
SI).
Rather than analyzing thermostability in terms of structural

or geometric properties, we focused on energetic factors with
the aim to identify (the) most significant determinant(s) of
protein thermostability. Initially, we calculated for all protomers
in the data set several residue-wise components to the
interaction energy, i.e., electrostatic, van der Waals (vdW),
hydrophobic, and hydrogen bond parts (supplemental
experimental procedures, SI). We chose these interaction
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energy components because these were identified as determi-
nants for protein thermostability in previous studies using a
small number of proteins.13,14,24,25 All energy terms except the
hydrogen bond energy were calculated using the Prime module
version 3.0 of the Schrödinger software (Schrödinger, LLC,
New York, NY, 2011).26,27 The hydrogen bond energy
(including charge-assisted hydrogen bonds) EHB was calculated
using a geometry-based energy function developed for protein
design28 as implemented in the FIRST software,29 and then
energies of all hydrogen bonds of a residue were summed.
In order to identify (the) dominant determinant(s) of

protein thermostability, we initially compared distributions of
residue-wise energy components at a global level, i.e., between
all mesophilic and (hyper)thermophilic protomers. For this,
probability density functions (PDFs) of these distributions
were obtained from kernel density estimation,30 which is a

nonparametric way to estimate a PDF from a distribution based
on a finite data sample. The PDFs of residue-wise electrostatic
energies, vdW energies, hydrogen bond energies, and hydro-
phobic interaction energies differ between mesophilic and
(hyper)thermophilic protomers with (hyper)thermophilic
protomers showing higher probability densities at more
negative (i.e., more favorable) energies (Figure 1); exceptions
are the electrostatic (in the case of mesophilic/thermophilic
pairs) and vdW energies (in the case of mesophilic/hyper-
thermophilic pairs) where the differences in the median
energies of mesophilic and (hyper)thermophilic protomers
(Δ̃E) are close to zero. A favorable difference in residue-wise
electrostatic energies in the case of mesophilic/hyperthermo-
philic protomers but not in the case of mesophilic/thermophilic
protomers is in line with results that ion pair interactions
become preferentially stabilizing at higher temperatures because

Figure 1. PDFs obtained by kernel density estimation of residue-wise energy components: electrostatic energy (a and b), van der Waals energy (c
and d), hydrogen bond energy (e and f), and hydrophobic interaction energy (g and h) for pairs of mesophilic/thermophilic (a, c, e, g), as well as
mesophilic/hyperthermophilic (b, d, f, h) protomers. A normal kernel function with an optimal smoothing parameter45 at each data point was used
for calculating the PDFs. The residue-wise energy values were trimmed to exclude values <1 percentile and >99 percentile. The statistical significance
of the difference of two PDFs was calculated by a bootstrap hypothesis test of equality generating 10000 bootstrap samples as implemented in the
“sm” package46 of the R program (http://www.r-project.org). Δ̃E indicates the difference between median residue-wise energies for
(hyper)thermophilic and mesophilic protomers calculated from the kernel estimates.
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of a reduced desolvation penalty.31 The observed differences
are statistically significant (p < 0.05 for the hypothesis of
equality; Figure 1a−e, g, h) except for hydrogen bond energies
in the case of mesophilic/hyperthermophilic protomers (Figure
1f). The statistical significance of the differences between two
PDFs was calculated by a bootstrap hypothesis test of equality
generating 10000 bootstrap samples. Here, during each
bootstrap run, two new PDFs are generated by randomly
choosing values from the combined set of values of the two
data series. P-values are then calculated as the fraction of
bootstrap samples that showed an equal or higher difference in
the two new PDFs than the difference between the two original
PDFs.
According to the p-values, the most significant difference

between PDFs of mesophilic/thermophilic (Figure 1g) and
mesophilic/hyperthermophilic (Figure 1h) protomers is found
in the case of residue-wise hydrophobic energies (p < 0.0001
for both cases). This is also reflected in the magnitudes of the
respective Δ̃E values. On average, a residue in a thermophilic
(hyperthermophilic) protomer has a hydrophobic energy that is
more favorable by 0.82 (1.27) kcal mol−1 than that of a residue
in a mesophilic protomer. The shoulder in the PDFs for
hydrophobic interaction energies at around −24 kcal mol−1 is a
result of the larger hydrophobic interaction energies of large
hydrophobic and/or aromatic amino acids (Ile, Leu, Met, Phe,
Trp, Tyr, and Val). These amino acids are not enriched in
(hyper)thermophilic proteins (for our data set, we do not see a
significant increase in the number of these amino acids in
(hyper)thermophilic proteins compared to the mesophilic
homologues; data not shown). Rather, the hydrophobic
interaction energies of these residues are more favorable in
the case of (hyper)thermophilic proteins. Overall, this
demonstrates an energetically better hydrophobic packing in
thermophilic proteins than in mesophilic proteins and an even
better packing in hyperthermophilic proteins, which reflects
that hydrophobic interactions become stronger with increasing
temperature.32,33 Note that, in contrast to previous stud-
ies12,14,22,23 where the size of a cluster of hydrophobic residues
was considered, our finding emphasizes the quality (energy) of
residue-wise hydrophobic interactions as a discriminating
factor.
Next, we investigated (differences in) the spatial distribution

of residue-wise vdW, hydrogen bond, and hydrophobic
interaction energies (i.e., where Δ̃E < 0 for both thermophilic
and hyperthermophilic protomers compared to mesophilic
protomers) in pairs of mesophilic/(hyper)thermophilic proto-
mers. Following the idea of Protein Energy Networks
introduced by Vijayabhaskar et al.,34 our hypothesis is that a
larger cluster of residues with lower energies than a given cutoff
EC exists in (hyper)thermophilic proteins than in their
mesophilic homologues. However, in contrast to the study of
Vijayabhaskar et al.,34 we analyze residue-wise energy
components rather than the total inter-residue interaction
energy. This will allow us to identify, coupled to spatial
resolution, which energy components are most determining for
protein thermostability. To test our hypothesis, we performed a
hierarchical clustering of residues with respect to vdW,
hydrogen bond, and hydrophobic interaction energy compo-
nents, respectively, such that all neighboring residues with an
energy component lower than EC for the respective clustering
level are grouped in the same cluster (Figure 2). Thus, clusters
grow in size as EC increases (i.e., the energy component
becomes less favorable). For each EC, the fraction of residues

that is part of the largest cluster (FLC) was calculated. With
increasing EC, FLC increases from 0, when no residue is part of
the largest cluster, to 1, when all residues belong to the largest
cluster. If our hypothesis were true, the EC vs FLC curve of a
(hyper)thermophilic protein should be shifted downward
(toward lower EC values) from the one of a mesophilic
homologue; this is shown in Figure 2 for the case of
phosphotyrosyl phosphatase (PDB IDs: 1XWW and 2CWD)
considering the hydrophobic interaction energy (see caption of
Figure 2 for more details). When analyzed across our data set,
this finding holds for 83% of the pairs of mesophilic/
thermophilic protomers and 76% of the pairs of mesophilic/
hyperthermophilic protomers (Figure 3). These discrimination
accuracies are significantly (p < 0.001) different from the one of
a random discrimination (50%). This demonstrates that for the
majority of (hyper)thermophilic proteins it is the size of
clusters of residues with good hydrophobic contacts that is the
dominant factor responsible for a high thermostability. Still, for
approximately 20% of the pairs, this factor does not lead to a
successful discrimination. Identifying other mechanisms of
thermostabilization is not unequivocal, however. If residue-wise
vdW energies are used for the clustering, a correct
discrimination was obtained for 52% of mesophilic/thermo-
philic and 78% of mesophilic/hyperthermophilic pairs; the
corresponding discrimination accuracies were 53% and 63% in
the case of the hydrogen bond energy (Figure 3). Thus, only in
the case of vdW energies applied to pairs of mesophilic/
hyperthermophilic protomers, a discrimination accuracy similar
to the one obtained with hydrophobic interaction energies was

Figure 2. Discriminating mesophilic and (hyper)thermophilic proteins
based on clusters of residues with good residue-wise energy
components. Residues are clustered together if they are neighbors
and if their values of the residue-wise energy components are below a
cutoff EC (largest clusters for selected EC values are shown in the
structures on the top as blue sticks). Residues are considered
neighbors if the distance between the closest pair of atoms is less than
or equal to 4 Å. EC is increased in a stepwise manner, and the
clustering is repeated. As a result, a hierarchical clustering is obtained
where clusters become larger as EC increases. For each EC value, the
fraction of residues that is part of the largest cluster with respect to all
protein residues (FLC) is calculated. As a descriptor for the
discrimination, the area between the respective EC vs FLC curves for
the (hyper)thermophilic and mesophilic proteins (black stripes) is
then determined for the range of FLC ∈ [0.2, 0.6] (gray shading). If
this value is negative, clusters of equal relative size have better residue-
wise energy components in the case of the (hyper)thermophilic
protein than in the case of the mesophilic protein. Preliminary tests
showed that using other ranges of FLC values for determining the area
between the EC vs FLC curves does not result in significantly different
discrimination accuracies than the best discrimination accuracies
obtained with FLC ∈ [0.2, 0.6].
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found (see Tables S3 and S4, SI, for p-values related to the
significance of differences between all discrimination accuracies
including random discrimination). In contrast, residue-wise
hydrogen bond and vdW energies do not allow discriminating
between pairs of mesophilic/thermophilic protomers.
We repeated the hierarchical clustering based only on inter-

residue spatial distances; now all residues of the type
“hydrophobic” (Ala, Cys, Ile, Leu, Met, Phe, Trp, and Val)
were clustered together that are within a distance cutoff for
each clustering level. This resulted in discrimination accuracies
of 53% (62%) for pairs of mesophilic/thermophilic (meso-
philic/hyperthermophilic) protomers, with only the discrim-
ination accuracy for the mesophilic/hyperthermophilic proto-
mers being significantly different from the one of a random
discrimination (p = 0.0369) (see Table S5, SI, for
discrimination accuracies and their statistical significances).
This result is remarkable in that it demonstrates that it is the
quality (energy) of hydrophobic interactions that discriminates
mesophilic from (hyper)thermophilic proteins rather than the
sheer size of the largest cluster of hydrophobic residues. One of
the reasons is that with the criterion of hydrophobic interaction
energy, residues that would usually not be classified as
hydrophobic can also be considered part of the largest cluster:
We observe that the largest cluster at FLC = 0.5 also includes
Arg (average fraction with respect to the number of residues in
the cluster: 7.61%), Asn (0.54%), Asp (0.65%), Gln (2.06%),
Glu (3.78%), His (2.09%), Pro (5.71%), Ser (1.63%), Thr
(5.33%), and Tyr (6.31%) apart from residues of type
“hydrophobic”.
We further evaluated whether the state of a protein structure

influences the outcome of the discrimination between pairs of
mesophilic/(hyper)thermophilic proteins. So far, we had
analyzed single chains of a protein. Now, we investigated
protein pairs in terms of the biological assemblies such that
interactions at protein interfaces are also considered. For this,
only those pairs were used where both biological assemblies
had the same oligomeric state and no residues were missing in
the structures. This resulted in 67 mesophilic/thermophilic
pairs as well as 67 mesophilic/hyperthermophilic pairs of
biological assemblies. When performing the hierarchical

clustering of residues based on the residue-wise hydrophobic
energies, the discrimination accuracies are 87% (78%) for pairs
of mesophilic/thermophilic (mesophilic/hyperthermophilic)
biological assemblies. These results are not significantly
different from the ones found for protomers (p > 0.4 for a
hypothesis of equality using 10000 bootstrap samples) (see
Figure S2, SI, for the accuracy of discrimination between
mesophilic and (hyper)thermophilic biological assemblies).
This means that for most (hyper)thermophilic proteins better
hydrophobic packing within a protomer (rather than across the
interface of a biological assembly) is the dominant factor
responsible for a high thermostability.
In order to evaluate the robustness of our method with

respect to the data set composition, we divided the data set in
groups of protomer pairs based on sequence- or structure-
related properties (sequence length, sequence identity,
resolution, oligomeric state, presence of structural ions,
SCOP class, and CATH class); then, we reanalyzed the results
obtained from hierarchical clustering of residues based on the
residue-wise hydrophobic interaction energies. We did not
observe a pronounced influence of any of the properties on the
discrimination accuracy except for the sequence length (Figure
S1, SI). Longer protein chains result in higher discrimination
accuracy. Likely, this is because larger proteins have larger
hydrophobic clusters in which more residues with good
hydrophobic interactions can be found in the case of
(hyper)thermophilic proteins compared to mesophilic proteins.
Overall, these results demonstrate that discriminating meso-
philic and (hyper)thermophilic proteins based on clusters of
residues with good hydrophobic interactions is highly robust
with respect to the properties of the protein pairs considered.
Finally, we turned to investigating whether our finding that a

larger cluster of residues with good hydrophobic interaction
energies results in a more thermostable protein can be
exploited prospectively for data-driven protein engineering by
predicting structural weak spots, i.e., residues that when
mutated would improve protein thermostability. As in a real-
life scenario, we only used the structural information of the
mesophilic protein for this. To predict such residues, EC was set
such that half of the protein’s residues belong to the largest

Figure 3. Discrimination accuracy between mesophilic and (hyper)thermophilic protomers based on clusters of residues with good residue-wise
energy components. Lines connecting two bars indicate if the difference in discrimination accuracies for the two respective energy components is
statistically significant. Marks at the bottom of a column indicate if the discrimination accuracy is significantly different from a random discrimination
(50%). The statistical significance of the difference in discrimination accuracies is computed in both cases by a bootstrap hypothesis test of equality
generating 10000 bootstrap samples. The significance levels are marked by ***: p < 0.001; **: p < 0.01; and ns: p > 0.05.
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cluster (i.e., FLC = 0.5). We chose FLC = 0.5 because we visually
observed that the cluster at this point represents the
“hydrophobic core”, and residues forming this should not be
mutated. Residues in the immediate neighborhood of this
cluster have a high (unfavorable) hydrophobic interaction
energy, and mutating them should likely lead to a larger cluster
of residues with good hydrophobic interaction energies. Hence,
we consider these spatially close residues weak spot candidates.
In order to prune the number of candidates, we ranked them by
their hydrophobic interaction energies such that the weakest
spot (highest energy) has the highest rank. After ranking, the
top 25% with respect to the total number of residues of the
protein are finally considered weak spots. In doing so, we use
the ranking to enrich sites where a mutation should more likely
improve thermostability. In addition to the site of mutagenesis,
the actual outcome of a mutation on a protein’s thermostability
also depends on the types of residues exchanged. Thus, one
cannot expect the weak spot rank alone to quantitatively
correlate with the effect of a mutation on thermostability.
We evaluated this weak spot prediction first using Escherichia

coli dihydrofolate reductase (DHFR) from our data set as an
example. Several mutants of E. coli DHFR have been
experimentally evaluated for their thermostability; the Pro-
therm database (http://www.abren.net/protherm/)35 lists
eight (14) residues that stabilize (destabilize) the protein
upon single-point mutation(s) (Table 1; see Table S6, SI, for
individual mutants and their difference in thermostability from
the wild-type). Three out of the eight thermostabilizing
residues were correctly predicted as weak spots by our
approach (Table 1; Figure 4). In turn, 12 out of the 14
destabilizing residues were correctly predicted as nonweak
spots (Table 1; Figure 4). This yields a classification accuracy of

almost 70%, with our approach being more accurate in
identifying nonweak spots (specificity: 85%) than weak spots
(sensitivity: 38%). Of the five weak spots missed, two (D27N,
L28R) resulted in a more thermostable protein upon mutation
to equally polar or even more polar residues. Thus, expecting to
identify these residues as weak spots appears to be beyond the
scope of our approach. In fact, these residues were assigned low
weak spot ranks (87, 71), indicating that improving hydro-
phobic interactions at these spots might not lead to a more
thermostable protein. Regarding two further weak spots missed

Table 1. Experimental Validation of Predicted Weak Spots on E. coli DHFR

residuea mutation(s) weak spot rankb referencec

Stabilizing mutations
G15 A 35 36
W22 L −d 36
D27 N 87 37
L28 R 71 37
L54 V −d 36
P66 A 15 38
V88 I, A −d 39
G95 A 32 40
Destabilizing mutations
P21 L −d 36
L24 V −d 36
W30 M, Y, A, R, N, S, H, E −d 41
F31 V, A −d 36,37
T35 A −d 36
P39 C −d 42
V40 I, L, A, R, M, F, N, S, H −d 41
G43 A 34 36
W74 F −d 43
T113 V −d 37
D122 A 29 36
E139 K, Q 64 44
S148 A, E, K, N, P, R, T, V −d 41
I155 A, L, A, D, E, K, L, Q, R, S, T, V, W, Y −d 36,41

aResidue IDs in bold indicate a true positive or a true negative weak spot prediction. bWeak spot rank based on the hydrophobic interaction
energies; high ranks (low numbers) indicate weaker spots in comparison to residues with a low ranks. cStudies reporting thermostability evaluations
of mutants. dResidue is not identified as a weak spot at any rank.

Figure 4. Predicted weak spots mapped onto the structure of E. coli
DHFR. Residues are colored by a rainbow color ramp according to
their hydrophobic interaction energies. The largest cluster with
FLC = 0.5 observed at a cutoff of the hydrophobic interaction energy
EC = −9.5 kcal mol−1 is enclosed by a transparent surface. Cα atoms of
weak spot residues are represented as spheres. Weak spots that have
been validated in the literature are marked by a large sphere.
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(W22L, L54V), mutations to smaller hydrophobic residues
there led to a more thermostable protein. Because our method
is particularly suited for identifying weak spots that when
mutated to residues with improved hydrophobic interactions
should lead to improved thermostability, missing these two
weak spots thus is not unexpected either. E. coli DHFR in our
data set is a rare example for which comprehensive sets of
single mutants leading to stabilization or destabilization have
been recorded in the Protherm database. For further validation
of our weak spot prediction, we thus resorted to two systems
for which only stabilizing or only destabilizing mutants have
been reported. For Bacillus subtilis adenylate kinase, two
thermostabilizing multiple mutants have been reported in the
Protherm database, incorporating in total 26 mutations. We
correctly predicted nine out of 19 mutations (excluding
mutations involving the exchange of one hydrophobic residue
with another) as weak spots (sensitivity: 47%; see Table S7, SI,
for details). As a counter example, we considered the E. coli
maltose binding protein (MBP) for which all but one (Gly to
Cys mutation at position 19) of the 16 destabilizing single-
point mutations reported in the Protherm database were
correctly predicted as nonweak spots (specificity: 93.75%; see
Table S7, SI, for details). Note that this result is not trivial as
one might be tempted to think considering that all but one
(Tyr to Asp mutation at position 283) of the correct
predictions involve mutations of larger hydrophobic residues
to smaller ones. Rather, even without considering the actual
outcome of a mutation on a protein’s thermostability, our
method suggests that for improving thermostability these
nonweak spot residues should not be mutated because they are
already part of the “hydrophobic core” with good hydrophobic
interaction energies. Finally, considering the results for all three
systems shows that our method is more accurate in identifying
nonweak spots than weak spots. In our view, these results are
encouraging given, first, the fact that we could reliably exclude
the majority of nonweak spots and, second, the ease of
computation with which this classification is obtained. The
former would already result in a much reduced experimental
effort when performing site saturation mutagenesis for
identifying thermostable mutants; the latter suggests that our
approach can be used as a prefilter for further rational design
approaches where more rigorous (and costly) prediction
methods are applied. In particular, as our approach focuses
on identifying weak spots where improving hydrophobic
interactions should lead to improved thermostability, we
recommend combining it with other approaches for weak
spot prediction that focus on different mechanisms of
thermostabilization.
In summary, in the present study, we aimed at identifying

dominant determinant(s) of protein thermostability. On the
basis of one of the largest data sets investigated in this context
and thorough statistical evaluation, our results substantiate the
importance of the quality (energy) of hydrophobic interactions
for protein thermostability. Considering residue-wise hydro-
phobic interaction energies at a global level, an energetically
better hydrophobic packing in thermophilic proteins than in
mesophilic proteins is detected, and an even better packing in
hyperthermophilic proteins. Accordingly, by identifying clusters
of residues with good hydrophobic interaction energies alone,
we were able to successfully discriminate between pairs of
mesophilic/(hyper)thermophilic proteins with an accuracy of
∼80%. These results are robust with respect to the properties of
protein pairs considered. Considering the size of clusters of

hydrophobic residues instead resulted in at most a weak
discriminatory power. Finally, we successfully applied the
criterion of clusters of residues with good hydrophobic
interaction energies to search for structural weak spots, which
will allow guiding data-driven protein engineering. These
results and the computational efficiency position our approach
as a valuable complement to existing approaches for analyzing
proteins with respect to thermostability and identifying
structural weak spots.
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