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ABSTRACT The rapid evolution of insecticide resistance remains one of the biggest challenges in the
control of medically and economically important pests. Insects have evolved a diverse range of mechanisms
to reduce the efficacy of the commonly used classes of insecticides, and finding the genetic basis of
resistance is a major aid to management. In a previously unstudied population, we performed an F2 re-
sistance mapping cross for the common bed bug, Cimex lectularius, for which insecticide resistance is
increasingly widespread. Using 334 SNP markers obtained through RAD-sequencing, we constructed the
first linkage map for the species, consisting of 14 putative linkage groups (LG), with a length of 407 cM and an
average marker spacing of 1.3 cM. The linkage map was used to reassemble the recently published reference
genome, facilitating refinement and validation of the current genome assembly. We detected amajor QTL on LG12
associated with insecticide resistance, occurring in close proximity (1.2 Mb) to a carboxylesterase encoding candi-
date gene for pyrethroid resistance. This provides another example of this candidate gene playing a major role in
determining survival in a bed bug population following pesticide resistance evolution. The recent availability of
the bed bug genome, complete with a full list of potential candidate genes related to insecticide resistance, in
addition to the linkage map generated here, provides an excellent resource for future research on the devel-
opment and spread of insecticide resistance in this resurging pest species.
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The common bed bug,Cimex lectularius L. (Heteroptera, Cimicidae), is
re-emerging as a significant economic and public health pest, precipi-
tated by a recent global resurgence in populations (Boase 2001; Doggett

and Russell 2008; Potter et al. 2008; Richards et al. 2009). Much of
its recent success has been attributed to widespread resistance
to insecticides (Romero et al. 2007; Romero and Anderson
2016), making pest control increasingly challenging and costly
(Koganemaru and Miller 2013). Developing a more detailed un-
derstanding of the genetic and molecular basis of insecticide re-
sistance is therefore of clear importance.

Previously, two point mutations, V419L and L925I, have been
identified in the a-subunit gene of the voltage sensitive sodium
channel (VSSC) that are functionally associated with resistance to
the pyrethroid deltamethrin (Yoon et al. 2008). Pyrethroids are one
of the most widely used insecticides, but, as over 80% of sampled
populations in the United States (Zhu et al. 2010), and .95% of
sampled populations in Europe (Booth et al. 2015), contained the
V419L and/or L925I mutation(s), it is likely that target-site-based
pyrethroid resistance has become widespread. In addition, several
candidate loci associated with metabolic and penetrative resistance
have been identified in studies comparing resistant and nonresis-
tant populations, with increased expression of genes coding for
detoxifying metabolic enzymes (including P450s, glutathione-S-
transferases, and carboxylesterases), ATP-binding cassette (ABC)
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transporters and cuticular protein genes associated with pyrethroid
resistance (Adelman et al. 2011; Mamidala et al. 2011, 2012; Zhu
et al. 2012; Koganemaru et al. 2013).

The recent availability of the bed bug genome (Benoit et al. 2016;
Rosenfeld et al. 2016) gives an ideal opportunity to further investigate
the genetic basis of resistance. For example, 58 genes and one pseudo-
gene coding for P450 enzymes have been identified in the C. lectularius
genome (Benoit et al. 2016), with four of these genes previously impli-
cated in pyrethroid resistance (Zhu et al. 2012). The further identifica-
tion of genes coding for other metabolic enzymes, cuticular protein
genes, and ABC transporters, allows the assessment of their contribu-
tion to resistance.

Although these genetic association and genome annotation stud-
ies have pointed to a promising group of candidate genes for
pyrethroid resistance, their correlative top-down approach lacks
the ability to demonstrate a direct association between any of these
genes and the resistance trait. In addition, most of these studies used
only one susceptible strain. Here, we perform an F2 mapping
cross between a pyrethroid resistant and a susceptible bed bug pop-
ulation using RAD-sequencing. Our reduced-representation se-
quencing approach offers two advantages. First, we are able to
reassemble .65% of the bed bug reference genome into 14 Linkage
Group (LG)—a valuable resource for the community in future ge-
nome-based applications. Second, we are able to identify a new QTL
associated with pyrethroid resistance that strongly implicates a
functional role for a carboxylesterase encoding gene in this resis-
tance trait.

MATERIALS AND METHODS

Experimental cross design and phenotyping
An F2 mapping cross was established through mating a pyrethroid
resistant female from a field population, originating from London
(UK), with a pyrethroid susceptible male from a laboratory stock
population, originating from a culture from the London School of
Hygiene and Tropical Medicine [more information on these pop-
ulations, called Field UK and Lab Stock, is available in Fountain
et al. (2015)]. The field population was checked for the resistance
phenotype prior to crossing to ensure resistance had not been lost.
Our experimental design for QTL analysis with a single family as-
sumes that the grandparents used to initiate the cross were homo-
zygous for QTL involved in insecticide resistance, and for loci linked
to these genomic regions. Because the lines were not highly inbred,
this may not have been the case for all loci. However, since natural
populations tend to have low heterozygosity (Fountain et al. 2014)
and the lines had been maintained in the laboratory for multiple
generations, it is likely that they were homozygous at resistance loci,
and for the great majority of markers. One male and one female
from the F1 offspring were selected at random and mated; 90 F2
offspring, along with the F1 parents, were subsequently phenotyped
for pyrethroid resistance.

Pyrethroid resistance was tested using 40 mg/m2 of alpha-
cypermethrin (Sigma number: 45806-100MG). The insecticide
was dissolved in acetone and pipetted onto Whatman 90 mm Grade
1 cellulose filter paper (Sigma number: Z240079). Once the filter
paper was dry, it was placed in a 90 mm diameter sterile polystyrene
Petri dish. Individuals were added in groups (# 10 individuals per
trial) and knock-down/mortality was scored at 24 and 48 hr. Phe-
notyping was performed at 26 6 1� and 70 6 5% relative humid-
ity, with the knockdown/mortality score at 48 hr after exposure
used as the resistance phenotype. Individuals were scored as

susceptible (knocked down, unable to right themselves if turned
over), partially resistant (able to right themselves, but walk with
some difficulty), or resistant (walk normally, motor control appar-
ently unaffected).

DNA isolation and sequencing
Full body extractions (minus the head) were performed usingDNAeasy
Blood & Tissue Kit (Qiagen). RAD library preparation was performed
as in Baird et al. (2008), using Sbf1. Following library preparation,
sequencing was performed on a single Illumina HiSeq lane (100 bp
PE) at the Natural Environment Research Council Biomolecular Anal-
ysis Facility at the University of Edinburgh, UK.

Quality filtering and reference mapping
Following sequencing, library quality was checked using FASTQC
(Babraham Informatics; http://www.bioinformatics.babraham.ac.uk/
projects/fastqc). All downstream handling of sequencing data, with
the exception of mapping to the reference genome, was conducted
using the Stacks (v 1.35) pipeline (Catchen et al. 2011, 2013). Based
on the average quality scores per read generated by FASTQC, the
Stacks process_radtags module was used to remove any read where
Phred quality scores fell to , 5 (i.e., 3% error rate) in a 5 bp
window. The module was additionally used to remove reads with
traces of adapter sequence, remove any reads with an uncalled base,
and demultiplex the pooled libraries. Following this initial process-
ing, the clone_filter module was used on the paired-end sequence
data for each individual in order to remove PCR duplicates—a
major source of potential bias for RAD-sequencing approaches
(Andrews et al. 2014).

Paired-endsequencereadsfiltered forduplicateswere thenaligned to
one of the recently published C. lectularius genomes (Clec_1.0; NCBI
accession number: PRJNA167477; Benoit et al. 2016) using GSNAP
2014-12-29 (Wu and Nacu 2010). We allowed a maximum of 10 align-
ments per read, no terminal alignments, and only the optimal hit to
be reported. A maximum of four single nucleotide mismatches was
allowed for each alignment.

Stacks catalog construction and SNP calling
Aligned read data were processed using the reference-mapping
branch of the Stacks pipeline (ref_map.pl), specifying an F2 cross,
and identifying both parents and offspring using the –p and –s flags,
respectively. We allowed a minimum of three reads to form a stack
in the pstacks module (i.e., minimum read depth for an allele, not a
locus), and a single mismatch among loci during catalog construc-
tion. Stacks construction was conducted with these values following
sensitivity testing with both de novo and reference mapping pipe-
lines, revealing them to be the optimal parameters. SNPs were called
using the Stacks default SNP calling method, i.e., maximum like-
lihood estimation based on a multinomial probability distribu-
tion derived from the nucleotide frequency at each read position
(Catchen et al. 2013). Following initial catalog construction, we used
the rxstacks module to reanalyze and correct the de novo assembly.
We filtered confounded loci (i.e., loci within individuals matching
multiple catalog loci, indicative of repetitive regions), pruned excess
haplotypes (i.e., removed potential erroneous haplotypes based on
frequency), and recalled SNPs using Stacks’ bounded error model
with e = 0.1. Following catalog correction, the genotypes module
was used to export SNP data from the main catalog. We used the
module to perform automatic corrections to the data, and we only
exported markers where at least eight F2 progeny had genotype calls.
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To clarify, this cutoff did not represent our final threshold for miss-
ing data, but was chosen to maximize the output loci for down-
stream filtering. Output genotype calls were filtered to include
only loci that were heterozygous in the F1 parents (i.e., AB/AB,
where A and B are alleles from the female and male grandparents,
respectively), then converted to R/qtl format using a custom R script
(R Development Core Team 2015).

Genetic map construction and QTL mapping
To perform QTL analysis, we used the R/qtl package (Broman et al.
2003). Our first step was to perform additional data screening following
the best-practice guidelines outlined on the R/qtl website (http://www.
rqtl.org/tutorials/geneticmaps.pdf). We removed all individuals with
genotypes for fewer than 50% of markers, and all markers with geno-
types for fewer than 50% of individuals. We additionally screened for
uninformative markers with duplicate information, and any markers
showing extreme segregation distortion (i.e., being nearly monomor-
phic). We then estimated a genetic map using the est.rf function. Fol-
lowing previously published information on C. lectularius karyotype
(Sadílek et al. 2013), showing an average of 14 autosome pairs and one
X chromosome, we varied the maximum recombination fraction and
the minimum LOD score (i.e., “logarithm of the odds score”—a log10
transformation of the likelihood ratio between a model with linkage
and a null model) threshold in order to create approximately the same
number of LG as autosomes. We then checked our initial genetic
map following the R/qtl guidelines (http://www.rqtl.org/tutorials/
geneticmaps.pdf), and removed any problematic markers before reor-
deringmarkers based on likelihood analysis of permutedmarker orders
using the ripple function. The R script used to produce our genetic map
is available at Dryad (http://dx.doi.org/10.5061/dryad.d4r50).

Following map construction, we performed standard interval
mapping with a single QTL model for pesticide resistance using
R/qtl. In order to account for genotyping error in our QTL analysis,
we applied a maximum likelihood-based estimate of error rate. QTL
genotype probabilities were then calculated using a Kosambi map-
ping function, and an error probability based on our maximum-
likelihood estimation.We then used the scanone function to estimate
QTL LOD scores using both the EM algorithm and Haley-Knott
regression. To test the significance of our QTL, and to estimate
confidence limits on QTL positions, we reanalyzed our dataset with
scanone using 1000 permutations.

Testing for sex-linkage
A limitation of our F2 mapping approach was that it did not allow for
mapping of putatively sex-linked loci. Furthermore, as F2 individ-
uals were phenotyped and processed for DNA extraction as 4th
instar nymphs, we were unable to determine their sex. In order to
account for potential sex-linkage in our RAD dataset, we identified
loci that were heterozygous in the female F1 parent, and homozy-
gous for the grandmother’s allele in the male F1 (i.e., AB/AA). Our
rationale for this was that, assuming no error, a cross using AA ·
BB grandparents should result in only homozygous genotypes for
loci that occur on the sex chromosome in the heterogametic sex. To
rule out error, we focused only on loci with an AA genotype in the
female grandparent and with.50% of individuals genotyped. Using
this set of putatively sex-linked loci, we then performed a Chi-
squared test of independence to test for an association with the
resistance phenotype. False Discovery Rate (FDR) correction was
used to account for multiple testing; since many loci are not in-
dependent (i.e., multiple loci map to the same scaffold), we used

the number of scaffolds, and the minimum P-value for each scaffold,
to perform this correction.

Identifying candidate genes in functional regions
RAD-seq loci are typically short (i.e.,�100 bp), and, since they sample
only a relatively small proportion of the genome, are unlikely to occur
within resistance genes themselves. Similarly, short consensus RAD loci
are unlikely to be of much use in identifying candidate genes using a
functional analysis such as BLAST. To identify candidate genes asso-
ciated with QTL regions, we first used the calculated 95% Bayesian
credible intervals around the QTL. Using the markers flanking the
interval, we then located the corresponding physical position in the
reference genome, and identified all candidate genes within this inter-
val.We also searched for genes associated with pyrethroid resistance on
the same scaffold as our identified QTL. Genes were identified from
recently published annotations (Benoit et al. 2016), and extracted using
custom R scripts.

Genome reassembly
In order to combine our genetic map with the recently published C.
lectularius reference genome, we used Chromonomer (Amores et al.
2014). Chromonomer first removes markers that are inconsistent with
local assembly order on the genetic map, and then anchors genome
scaffolds to LG based on marker mapping position before finally reas-
sembling the genome accordingly. Chromonomer was run using the
default settings as described in the online manual (http://catchenlab.
life.illinois.edu/chromonomer/manual/).

Data availability
Raw RAD-sequencing reads are archived at EMBL-ENA (PRJEB15267).
All bash scripts for alignment, filtering, trimming and Stacks catalog
construction are archived on Dryad (http://dx.doi.org/10.5061/dryad.
d4r50). All R scripts for R/qtl analysis are also archived on Dryad. The
reassembled genome is archived inNCBIGenBank (GCA_000648675.2),
and is hosted at https://i5k.nal.usda.gov/Cimex_lectularius.

RESULTS

RAD sequence mapping and Stacks
catalog construction
Following filtering for quality and PCR duplicates, an average of
240,898 6 150,591 (mean 6 SD) reads was retained for each indi-
vidual (see Table S1). A high proportion of these reads (78.0% 6 5.61)
mapped to the reference genome (see Table S1). Initial RAD locus
catalog construction resulted in 12,992 unique RAD loci, which was
reduced to 12,962 tags following rxstacks correction. Of these corrected
RAD loci, 1171 occurred in.8 of the F2 progeny; 430 of these loci were
heterozygous in both F1 parents, and were subsequently included for
genetic map construction.

Genetic map construction
Prior tomapconstruction,wefiltered individualswithahighproportion
ofmissingmarkers,markersmissing in a high proportion of individuals
(both.50%), duplicate markers (i.e., likely originating from either side
of the same RAD locus), and markers with a highly distorted segrega-
tion ratio. This resulted in a reduced dataset of 75 individuals and
357 high quality markers.

Initial recombination fraction estimates were strongly correlated
with high LOD scores (Figure S1). To account for this, we merged
markers into 31 LG; i.e., �2 LG per chromosome (assuming
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n = 15), representing correct, and potentially misidentified, alleles. LG
were combined based on high LOD scores, but low recombination
fractions among markers (Figure S2). Following additional filtering,
allele correction, and removal of loci with apparent genotyping
errors and/or extreme segregation distortion, we re-estimated LG
to ensure high LOD, and low recombination fractions, among
markers on the same chromosome (Figure S3). Our final map, based
on 71 individuals after filtering, was 407 cM long, with an average
spacing of 1.3 cM between each of the 334 markers and consisted of
14 LG (Figure 1A, Figure S3, and Table 1). Scaffold positions of
all mapped markers are given in Table S2. Given the genome size
of 650.5 Mb, this implies an average recombination rate of
0.6 cM/Mb.

QTL analysis
Maximum-likelihood estimation indicated genotyping error rate was
0.0025, suggesting such errorwas not an issue in our filteredmapping
dataset (Figure S4). Per-locus estimates of error rates suggested few
consistent errors across loci, therefore, QTL analysis was first con-
ducted without manual genotype correction. QTL scans for pesti-
cide resistance using both the Hayley-Knott and EM algorithms
revealed a clear signal of a single QTL toward the end of LG 12,

centered on RAD locus r449_NW_014465016 (LOD = 6.84,
P = , 0.0005 based on 10,000 permutations; see Figure 1B). No
genotyping errors were present on this LG, and repeating this anal-
ysis with manual corrections produced identical results. Examining
phenotype counts at this locus clearly showed that AA homozygotes
showed complete pesticide susceptibility, whereas 90% of BB ho-
mozygotes were resistant, and 10% partially resistant (Table 2).
Heterozygotes at this locus were mainly susceptible (66%), although
some showed partial resistance (24%), and a minority showed full
resistance (10%, see Table 2). The LG12 QTL explained 64.2% of the
variation in phenotype, indicating pesticide resistance is not com-
pletely explained by this bi-allelic QTL.

Sex-linkage
Identifying loci that were AB/AA in the F1 cross, and with an AA
genotype in the grandmother, resulted in 106 putatively sex-linked
loci that were not included in our genetic map construction. Chi-
squared tests for independence identified four out of the 106 puta-
tively sex-linked loci occurring on different scaffolds that showed an
association with the resistance phenotype (P , 0.005; Table S3),
but none of these associations remained significant following FDR
correction.

Figure 1 Linkage map and QTL analysis. (A) Linkage
map showing positions of SNP markers for C. lectularius
F2 cross over 14 inferred LG (putative chromosomes). (B)
LOD scores for markers across the genome reveals a
strong and significant peak on LG 12.
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Candidate gene identification
Our pyrethroid resistance QTL maps to Scaffold 2 (start
position = 15,333,169) of the reference genome. The LOD peak sur-
rounding this QTL on LG12 of our linkage map spanned a total 95%
Bayesian credible interval of 11.1 cM (i.e., from 10.8 to 21.9 cM).
This corresponds to the last �6.8 Mb of scaffold 2, and the last
�4 Mb of scaffold 18 in the reference genome (N.B. our linkage
map suggests a reverse orientation for some scaffolds, including
scaffold 18). Searching for coding sequences within these scaffold
intervals, we identified 211 unique gene names (Table S4). The most
likely candidate for pyrethroid resistance was an ubiquitin carboxyl-
terminal hydrolase 15-like gene occurring 1.2 Mb downstream
from our QTL peak. However, we also identified two other putative
candidates occurring further downstream (i.e.,.3 Mb) on scaffold 2:
a VSSC protein para gene and a glutathione S-transferase (see Table 3).
Additionally, we identified a cytochrome P450 6B5-like gene on Scaf-
fold 18 (Table 3). Finally, three of the four putatively sex-linked RAD-
loci that showed an association with resistance, mapped to scaffolds
containing three further candidate gene classes: a glutathione-S trans-
ferase (Scaffold 6), a cuticular protein gene cluster (Scaffold 24), and
P450 genes (Scaffold 31).

Genome reassembly
Chromonomer pruned 130 markers from our genetic map that were
inconsistent with local assembly order, using 208 well-behavedmarkers
to perform genome reassembly. Of the 1402 scaffolds in the previously
published reference genome, 69 were anchored to our linkage map,
whereas five aligned tomore than one position and were split, resulting
in a total of 74 anchored scaffolds (mean size: 7.5 Mb, range: 0.06–
33 Mb). Chromonomer was thus able to reassemble 67% of the ge-
nome into 14 autosomal LG spanning 433 Mb. The newly reassembled
genome (GCA_000648675.2) is available at https://i5k.nal.usda.gov/
Cimex_lectularius.

DISCUSSION
We constructed the first linkage map for the common bed bug,
C. lectularius, by performing an F2 insecticide resistance mapping
cross using 334 high quality SNP markers identified with RAD-
sequencing. Our final linkage map consisted of 14 putative LG,
and was 407 cM in length, with an average marker spacing of

1.3 cM. We successfully demonstrated the ability of the linkage
map to order scaffolds from the newly available bed bug genome
by anchoring 74 scaffolds to linkage map positions. Therefore, we
were able to reassemble 67% of the draft genome into our putative
LG, facilitating refinement and validation of the current genome
assembly. In addition to constructing a genetic map, we detected a
biallelic QTL on LG 12 that explains 64% of variation in pyrethroid
resistance, in very close proximity (1.2 Mb) to a carboxylesterase
encoding candidate gene for pyrethroid resistance (Zhu et al. 2013;
Benoit et al. 2016), and ,10 cM (but still within the 95% Bayesian
credible interval) from the VSSC, another candidate strongly asso-
ciated with insecticide survival in other studies (Yoon et al. 2008,
Zhu et al. 2010).

Our construction of a genetic map for C. lectularius should be
considered a first attempt to assemble the recently published refer-
ence genome into clusters of markers related by linkage. We stress
that our map estimates only LG and genetic distance. Its relation-
ship to the actual physical map of the C. lectularius genome remains
uncertain, because a considerable proportion of the genome re-
mains unassembled into any LG (�33%). Importantly, this also
includes the sex chromosome, which we were unable to map due
to our cross design, although we did identify putatively sex-linked
scaffolds (Table S3).

Bed bugs, like other Cimicidae, have received attention for their
unusual cytogenetic characteristics (e.g., Darlington 1939; Slack 1939;
Ueshima 1967; Grozeva et al. 2010, 2011). For example, one study
showed that populations appeared to be geographically variable for
their karyotype across Europe, with 2n chromosome number varying
from 29 to 47, which was further complicated by fragmentation of sex
chromosomes in some populations (Sadílek et al. 2013). Since the
grandparents from our cross were not karyotyped, the expected num-
ber of chromosomes in our F2 generation is unknown, andmay even be
variable among individuals. Excluding sex chromosomes, and assum-
ing 2n = 28 autosomes, we would expect to identify at least 14 LG in
our analysis. Therefore it seems likely that the majority of our LG
correspond to physical autosomes. Due to our cross design, we were
unable to ascertain the sex of F2 individuals, preventing us from in-
cluding sex as a mappable trait, or from clearly identifying sex-linked
loci. Furthermore, by only including loci heterozygous in both F1 par-
ents (i.e., using an AB · AB cross), we were also unable to identify LG
putatively associated with sex. However, using an independent analysis
outside of our linkage map construction, we were able to identify a
proportion of potentially sex-linked loci, and, by extension, genome
scaffolds that may anchor to the sex chromosome. Additional crosses
are necessary to identify genomic regions specifically involved in sex-
determination. Nonetheless, further work, such as FISH-based map-
ping, is now possible, and necessary, to physically map our inferred
LG to C. lectularius chromosomes.

Using QTL mapping, we identified a clear signal of a single biallelic
QTL related to pyrethroid resistance on LG12, with all AA genotypes
completely susceptible, all BB genotypes showing resistance, or at least
partial resistance, and 66% of heterozygotes being susceptible. These
proportions suggest our QTL is partly recessive.

n Table 1 Genetic map summary

LG
No.

Markers
Length
(cM) Length (Mb)

Mean
Spacing (cM)

Max
Spacing (cM)

1 38 28.23 39.95 0.76 4.28
2 37 45.18 48.13 1.26 10.32
3 34 35.58 34.27 1.08 9.66
4 33 35.49 54.64 1.11 5.39
5 30 27.26 49.12 0.94 4.52
6 27 43.01 32.09 1.65 7.01
7 25 39.19 44.27 1.63 4.81
8 21 24.88 30.64 1.24 8.17
9 19 24.15 22.31 1.34 5.74

10 19 16.96 13.04 0.94 4.52
11 18 35.41 38.21 2.08 10.13
12 15 21.93 16.06 1.57 4.57
13 14 25.53 6.51 1.96 6.45
14 4 3.78 4.48 1.26 2.26
All 334 406.58 433.71 1.27 10.32

Summary of marker number, spacing, map distance, and physical size (from
reassembled genome) for C. lectularius LG.

n Table 2 Genotype-phenotype counts and percentages at the
focal marker (r2020_s2) on chromosome 12

Genotype Partial Resistance Resistance Susceptible

AA 0 0 22 (100.0%)
AB 7 (24.1%) 3 (10.3%) 19 (65.5%)
BB 2 (10%) 18 (90.0%) 0
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Given the large LOD peak confidence intervals, it is unclear
whether the QTL identified here represents the actions of a single
gene, or a complex of multiple coadapted genes for pyrethroid
resistance. Importantly, the resistanceQTL occurs in close proximity
to several previously identified candidate genes for pyrethroid re-
sistance. This suggests that, despite our relatively high-density
approach using reduced-representation sequencing, we did not have
adequate resolution to identify the exact candidate gene involved in
insecticide resistance. Additional higher resolution QTL mapping,
using a combination of high and low coverage whole-genome
resequencing of larger families may allow more fine scale identifi-
cation of the exact resistance QTL in this context (Glazer et al. 2015).
Despite this, our RAD-seq QTL analysis has identified a region
containing several important known candidate genes for pyrethroid
resistance.

The first and closest of these candidates, a ubiquitin carboxyl-
terminal hydrolase 15-like gene occurs just 1.5 Mb from our
inferred QTL. Carboxylesterases are a gene family coding for ester-
ase enzymes that hydrolyze ester bonds present in a wide variety of
insecticides, including pyrethroids (Montella et al. 2012). More ef-
ficient metabolic breakdown, resulting in a decrease in insecticide
concentration following exposure has previously been implicated as
a means of pyrethroid resistance in bed bugs (Zhu et al. 2013).
Metabolic breakdown genes are likely to contribute to insecticide
resistance via at least one of three mechanisms: (1) gene duplication,
(2) increased gene expression, or (3) mutation in the enzyme-coding
sequence (Montella et al. 2012). Gene annotation reveals at least
30 carboxylesterase genes in the C. lectularius genome, with clus-
tering on some scaffolds (Benoit et al. 2016). Furthermore, an ex-
pression analysis of geographically widespread bed bug populations
indicated overexpression of a carboxylesterase gene in resistant
samples (Zhu et al. 2013). However, the cluster of carboxylesterase
genes found on genome scaffold 18 does not map to LG 12. In
addition, the carboxylesterase candidate gene close to the LOD peak
of our QTL differs from the overexpressed gene reported previously.
The LG12 QTL may therefore represent a gene that is not overex-
pressed, e.g., a transcription factor involved in expression regulation
of multiple carboxylesterase genes. Additionally, our QTL explains
�64% of the variation in resistance phenotypes, meaning that other
genes may be involved. Further investigation is required to examine
whether coding mutations in the ubiquitin carboxyl-terminal hy-
drolase 15-like gene on genome scaffold 2 may result in more effi-
cient metabolic breakdown of pyrethroid insecticides.

In addition to the ubiquitin carboxyl-terminal hydrolase 15-like
gene, the QTL is located upstream of two other major pyrethroid
resistance candidates, the VSSC and the metabolic detoxifying enzyme
coding glutathione S-transferase gene. Knockdown (kdr) resistance to
pyrethroids is increasingly widespread in bed bugs (e.g., Zhu et al.

2010), with kdr mutations at the target site of pyrethroids, the VSSC,
identified as major mechanism for resistance (Yoon et al. 2008). How-
ever, there is increasing evidence for a more complex basis for this trait,
with penetrative (Mamidala et al. 2012; Zhu et al. 2013) and metabolic
mechanisms (Zhu et al. 2012), as well as behavioral avoidance (Romero
et al. 2009), associated with pyrethroid resistance. This is not a unique
feature of bed bugs, with evidence of interactions between multiple
insecticide resistance mechanisms found in a number of medi-
cally and economically important pests, e.g., German cockroach
(Anspaugh et al. 1994), cotton bollworm (Martin et al. 2002), houseflies
(Georghiou 1969, Sawicki, 1970, Shono et al. 2002), and mosquitoes
(Perera et al. 2008; Awolola et al. 2009; Hardstone et al. 2009). These
and our results, therefore, support the view that understanding the
interaction between resistance loci will be an important part of devel-
oping new resistance management strategies (Hardstone et al. 2009).
For example, epistatic interactions between resistance loci (e.g.,
Bohannan et al. 1999) may reduce their costs (Gordon et al. 2015),
facilitating the maintenance and spread of resistant alleles. Interest-
ingly, the QTL identified in the present study occurs in close proximity
to genes coding for detoxifyingmetabolic enzymes, as well as the VSSC.
Future work should focus on identifying the causal mutation(s) un-
derlying this QTL, and how they interact with previously identified
resistance loci in bed bugs.

In addition to multiple resistance mechanisms, bed bug meta-
population structure (Fountain et al. 2014) may further promote
the spread of resistance alleles. For example, if an insecticide-
resistant individual enters a (usually inbred; Fountain et al. 2014;
Booth et al. 2015) bed bug population, both heterosis (Fountain
et al. 2015), and the introduction of resistance alleles (Saccheri and
Brakefield 2002; Song et al. 2011), may lead to the rapid recovery of
a population and spread of resistance. Rapid selection to environ-
mental disturbance can be prevalent in metapopulations (Reznick
and Ghalambor 2001; Bell and Gonzalez 2011), and this may also
have contributed to the rapid spread of resistance mutations in bed
bug populations both in the United States (Zhu et al. 2010) and
Europe (Booth et al. 2015).

To conclude, our mapping cross identified a QTL in close
proximity to a number of candidate genes related to pyrethroid
resistance, and thereby provides strong evidence that these candidate
genes play a major role in determining survival following pesticide
treatment. Functional assays and higher resolution QTL approaches
should now investigate the exact mechanism by which these genes
convey resistance. The recent availability of the bed bug genome
(Benoit et al. 2016; Rosenfeld et al. 2016), complete with a full list of
potential candidate genes related to insecticide resistance, in addi-
tion to the linkage map generated here, will provide an excellent
resource for future research on the development and spread of in-
secticide resistance in the bed bug.

n Table 3 Putative pyrethroid resistance candidate genes

Gene name NCBI Gene ID Scaffold Start (bp) End (bp)

Ubiquitin carboxyl-terminal hydrolase 15-like 106668434 Scaffold 2 16,617,167 16,638,289
Sodium channel protein para 106667833 Scaffold 2 18,435,119 18,463,718
Glutathione S-transferase 106666926 Scaffold 2 21,129,642 21,130,758
Cytochrome P450 6B1-like 106663981 Scaffold 18 3,480,876 3,508,711
Cytochrome P450 6B1-like 106663982 Scaffold 18 3,456,406 3,461,345
Cytochrome P450 6B5-like 106663983 Scaffold 18 3,404,836 3,440,903
Probable cytochrome P450 6a14 106663984 Scaffold 18 3,476,053 3,495,873

Gene name, original reference genome scaffold, and position for putative pyrethroid resistance genes identified in LG12 resistance QTL 95% Bayesian probability
interval.
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