
REVIEW
published: 17 September 2015

doi: 10.3389/fmicb.2015.00956

Edited by:
Beiyan Nan,

Texas A&M University, USA

Reviewed by:
Wyndham W. Lathem,

Northwestern University Feinberg
School of Medicine, USA

Yanping Han,
Beijing Institute of Microbiology

and Epidemiology, China

*Correspondence:
Viveka Vadyvaloo,

Paul G. Allen School for Global Animal
Health, Washington State University,

240 SE Ott Road, Pullman,
WA 99163, USA

viveka@vetmed.wsu.edu

Specialty section:
This article was submitted to

Food Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 08 July 2015
Accepted: 28 August 2015

Published: 17 September 2015

Citation:
Martínez-Chavarría LC

and Vadyvaloo V (2015) Yersinia
pestis and Yersinia

pseudotuberculosis infection:
a regulatory RNA perspective.

Front. Microbiol. 6:956.
doi: 10.3389/fmicb.2015.00956

Yersinia pestis and Yersinia
pseudotuberculosis infection: a
regulatory RNA perspective
Luary C. Martínez-Chavarría1 and Viveka Vadyvaloo2*

1 Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México,
México, Mexico, 2 Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA

Yersinia pestis, responsible for causing fulminant plague, has evolved clonally from the
enteric pathogen, Y. pseudotuberculosis, which in contrast, causes a relatively benign
enteric illness. An ∼97% nucleotide identity over 75% of their shared protein coding
genes is maintained between these two pathogens, leaving much conjecture regarding
the molecular determinants responsible for producing these vastly different disease
etiologies, host preferences and transmission routes. One idea is that coordinated
production of distinct factors required for host adaptation and virulence in response to
specific environmental cues could contribute to the distinct pathogenicity distinguishing
these two species. Small non-coding RNAs that direct posttranscriptional regulation
have recently been identified as key molecules that may provide such timeous
expression of appropriate disease enabling factors. Here the burgeoning field of small
non-coding regulatory RNAs in Yersinia pathogenesis is reviewed from the viewpoint of
adaptive colonization, virulence and divergent evolution of these pathogens.
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Introduction

Yersinia pestis and Yersinia pseudotuberculosis: so Similar Yet so
Different
The Gram-negative genus Yersinia comprises 17 different species, but only three have been
shown to be virulent to humans and animals: Yersinia enterocolitica, Y. pseudotuberculosis and
Y. pestis. Although both Y. pseudotuberculosis and Y. enterocolitica are enteric pathogens, they
are much less closely related at a DNA level than Y. pestis is with Y. pseudotuberculosis. In fact,
Y. pseudotuberculosis diverged from Y. enterocolitica between 41 and 186 million years ago, while
Y. pestis diverged from Y. pseudotuberculosis within the last 1500–20 000 years, which implies that
these two species are more closely genetically related (Achtman et al., 1999).

Interestingly, however,Y. pestis andY. pseudotuberculosis produce very different clinical diseases
in their hosts and they use both a radically different mechanism of transmission as well as arsenal
of virulence factors. While the latter is an enteropathogen which causes self-limiting food-borne
enteric diseases that rarely lead to death, the former is a zoonotic pathogen that causes plague, a
vector-borne disease transmitted by fleas and one of the most deadly diseases.

Yersinia pseudotuberculosis can be hosted in various animal reservoirs, e.g.: dogs, cats, cattle,
horses, rabbits, deer, turkey, ducks, and many others, as well as in soil, plants insects and amoeba in
the environment. Y. pseudotuberculosis infection generally occurs after ingestion of contaminated
food or water, after which it colonizes the gastrointestinal tract, first at the Peyer’s patches of
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the distal small intestine and then it disseminates to the liver
and spleen either directly or via the mesenteric lymph nodes.
Infections of Y. pseudotuberculosis in humans usually lead
to gastroenteritis, characterized by a self-limiting mesenteric
lymphadenitis and diarrhea. Generally antibiotics are not
even required; however, in people with underlying chronic
liver ailments or that are immunocompromised, infection
has been associated with septic complications and they can
develop severe and potentially fatal systemic infections. Enteric
Yersinia can spend significant portions of their lives outside
the mammalian host in soil and water environments and
within free-living amoeba (Lambrecht et al., 2013; Santos-
Montanez et al., 2015) with varied sources of nutrients, and
therefore they retain metabolic capabilities that have been lost in
Y. pestis.

On the other hand, plague is acquired mainly by the bite
of an infected flea, but also by contact with infected tissues
or inhalation of respiratory droplets or aerosols. Fleas acquire
Y. pestis from the blood of a highly bacteremic host and the
bacteria multiply within the flea proventriculus and midgut
forming a thick coherent biofilm that occludes, and eventually
blocks, the foregut proventriculus and esophagus (Hinnebusch
et al., 1996; Vadyvaloo et al., 2010). Transmission of Y. pestis
from the fleas occurs mainly through the proventricular blockage
regurgitation mechanism after a period of extrinsic incubation
during which the bacteria have to adapt to the flea gut
environment. This blockage impedes fresh bloodmeal ingestion
and facilitates reflux from the midgut to the flea feeding
mouthparts, thus causing the flea to starve. The “blocked” fleas
will often regurgitate a mixture of blood and Y. pestis-bearing
blockage material back into the flea bite site (Jarrett et al., 2004).
After flea bite, Y. pestis transiently colonizes the dermis of the
host, interacts mainly with macrophages which are permissive
to its survival and replication (Pujol and Bliska, 2003; Shannon
et al., 2015), and then rapidly migrates to the regional lymph
node. The bacteria multiply to high numbers in the lymph
node causing necrosis and inflammation that characterize bubo
formation (Sebbane et al., 2005). From the bubo, hematogenous
spread of the bacteria occurs to deeper organs like the spleen and
liver causing septicemia. It is via this route that Y. pestis can also
reach the lungs, to cause secondary pneumonic plague. Person-
to-person spread of primary pneumonic plague can then ensue
by direct inhalation of infectious droplets or aerosols through
coughing.

Primary pneumonic plague is the deadliest form of plague
because of its rapid progression to death in 3–4 days (Lathem
et al., 2005; Bubeck et al., 2007; Price et al., 2012). Once the
bacteria enter the lung tissues via the respiratory route they
multiply at an accelerated rate within the first 24–36 h. This
time period of the infection is characterized by absence of
histopathological changes in lung tissue architecture, and anti-
inflammatory molecules, thus marking an anti-inflammatory
phase (Lathem et al., 2005; Bubeck et al., 2007; Price et al.,
2012). Beyond the 36 h, the bacteria continue to multiply to
up to 1010 cfus, within 3 days, at which time the bacteria
disseminate from the lungs to peripheral tissues like the
spleen and continue to multiply there. This latter stage of

infection is characterized by raised levels of cytokines and
chemokines and leads to a purulent multifocal severe exudative
bronchopneumonia (Lathem et al., 2005) and death. Plague
infection can be fatal without antibiotic treatment early during
infection.

Surprisingly Y. pseudotuberculosis and Y. pestis differ radically
in their pathogenesis despite sharing >97% identity in 75%
of their chromosomal genes (Chain et al., 2004). This fact
has arisen much interest in elucidating what factors are
responsible for such virulence differences (Achtman et al., 2004;
Pouillot et al., 2008). There is, however, one critical plasmid-
encoded virulence factor that is conserved between Y. pestis
and Y. pseudotuberculosis, and this is the Yop-Ysc Type three
secretion system (T3SS; Cornelis et al., 1998). Most ysc genes
encode proteins that form an injectisome structure that is
required to deliver Yop effector proteins into the cytosol of
host cells, e.g., immune cells. Carefully orchestrated synthesis
of the T3SS Yop effector proteins is required during infection
to mediate virulence. This enables the bacteria to subvert host
immune function.

At the DNA level the differences between these two strains is
being revealed by whole-genome sequencing based phylogenetic
studies, which shows that genomes of Y. pestis isolates are
constantly changing, acquiring and losing genetic elements and
undergoing genomic rearrangements when compared with its
ancestor Y. pseudotuberculosis (Achtman et al., 1999; Morelli
et al., 2010). Some of these gene content changes between
Y. pestis and Y. pseudotuberculosis have been able to explain
the differences in host colonization and virulence of these
pathogens (Chouikha and Hinnebusch, 2014; Sun et al.,
2014; Zimbler et al., 2015). Regulatory changes and constant
development of new regulatory networks are, however, also well-
established ways of evolution of virulence characteristics among
pathogens.

Transcriptional regulation is perhaps the most well studied
form of controlling gene expression and several global
transcriptional regulators play major roles in regulating
virulence/pathogenesis in the yersiniae, including Crp (Zhan
et al., 2008; Heroven et al., 2012b; Lathem et al., 2014),
RovA (Cathelyn et al., 2006; Heroven and Dersch, 2006)
and RovM (Heroven and Dersch, 2006). Few comparative
studies to understand evolution of the regulons of these
transcriptional factors have been undertaken in Y. pestis and
Y. pseudotuberculosis. Beyond transcriptional regulation, post-
transcriptional regulation which provides a powerful way for the
bacteria to rapidly fine tune gene expression to the needs of the
cell, at a more localized level, has recently been appreciated in
Yersinia species.

Small Non-Coding RNAs (sRNAs): a
Mechanism of Post-Transcriptional Regulation
A major manner in which post-transcriptional regulation
can be accomplished is through sRNA regulation. These are
small molecules of RNA that are not translated into proteins
(Gottesman and Storz, 2011). In general these molecules carry
out their regulatory function by base-pairing to a limited
complementary sequence (6–8 contiguous base-pairs) in the
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mRNAs of their cognate target gene. This interaction leads
to modification of mRNA translation or stability or both,
thereby influencing the target gene expression and protein
activity (Narberhaus and Vogel, 2009; Waters and Storz, 2009).
Small RNAs are commonly known to repress gene expression
as the base-pairing sequester mRNA ribosome binding sites,
resulting in translational repression and accelerated transcript
degradation. However, it is emerging that they can act as
translational activators and mRNA stabilizers, for which the
underlying mechanisms differ considerably from repression.
Translational activation occurs through interactions of sRNAs
with the 5′ untranslated region (UTR), the coding sequence, or
the 3′-UTR of the target mRNAs (Papenfort and Vanderpool,
2015).

Post-transcriptional regulation mediated through sRNA
molecules can currently be characterized into three categories
(Waters and Storz, 2009; Oliva et al., 2015): (1) Trans-
encoded sRNAs: small RNAs that are distally located from,
and interact through limited complementarity with their target
mRNAs. These sRNAs usually bind to the Shine-Dalgarno
(SD) sequence thereby occluding the ribosome-binding site
(RBS), or bind to the coding region of the mRNA. Both
base-pairing interactions result in inhibition of translation,
and can be coupled with enhanced RNAse activity that
facilitates increased rate of mRNA cleavage and degradation.
The loose base-pairing interaction between the trans-encoded
sRNA and target mRNA is often stabilized by an RNA chaperone
protein, Hfq. (2) Cis-acting sRNAs are a second type of
sRNA that is transcribed from the antisense strand of its
target mRNA. Being usually encoded in the 5′-UTR region of
the mRNA, it mediates its interaction by forming a duplex
that contorts into a secondary structure which interferes with
ribosome binding or mRNA stability. Besides the sRNA-mRNA
interaction, sRNAs can directly interact with regulatory proteins
to interfere with their function. This is best exemplified by
the interaction of the CsrB and CsrC sRNAs with the global
regulator protein CsrA which is a mechanism described for
Y. pseudotuberculosis (Oliva et al., 2015). This will be discussed
in greater detail below. (3) An alternate mechanism of post-
transcriptional regulation that results in activation or repression
of translation, can be achieved by conformational alterations
of complex RNA structures that occurs via binding of small
metabolites/cofactors (called riboswitches; Oliva et al., 2015)
or thermo-modulation (called thermosensors; Krajewski and
Narberhaus, 2014).

With regards to post-transcriptional regulation in the Yersinia
species, there are several studies that have identified the arsenal
of sRNAs expressed by Y. pseudotuberculosis and Y. pestis under
different growth conditions. This has revealed both similarities
and unexpected differences, not only limited to the presence
or absence of sRNAs genes, but also related to the spatial
and temporal expression patterns, and dependence on RNA
binding proteins. In this review our aim is to take stock of
our current understanding of the role of sRNA-mediated post-
transcriptional regulation in these pathogens, and how this may
have influenced the unique disease manifestations that define
each species.

sRNA Identification: What We Know in
Yersinia

sRNA Identification
Interest in finding small RNAs (sRNAs) in bacteria has
significantly increased in recent years due to their important
regulatory functions. Identification of sRNAs has been
undertaken in diverse pathogenic bacterial species, e.g.,
Salmonella (Sittka et al., 2008), Vibrio cholerae (Liu et al.,
2009), Group A Streptococcus (Perez et al., 2009), Helicobacter
pylori (Sharma et al., 2010), Clostridium difficile (Soutourina
et al., 2013), Acinetobacter baumannii (Sharma et al., 2014),
and Porphyromonas gingivalis (Phillips et al., 2014) amongst
numerous others. The identification and characterization of
these molecules in the pathogenesis of Yersinia, has also in the
past decade been gaining importance.

Initially sRNAs were discovered only by computational
analysis using gene homology with closely related bacterial
species; but without experimental data, erroneous determination
of gene start sites or incorrect annotations can be made.
For example, Livny et al. (2006) predicted 1478 sRNAs
encoded in Y. pestis using sRNAPredict2 which searched for
intergenic regions (IGs) with a conserved sequence and adjacent
Rho-independent terminator that had to be present in 3–7
related bacterial species. Recent development of high-throughput
methods and more sophisticated computational algorithms has
allowed rapid identification of sRNA candidates in different
species. However, given their varying sizes (50–500 nucleotides
[nt]) and their potential genomic locations in the 5′- or 3′-UTRs
as well as in IGs, identification and validation of true sRNAs
remains challenging.

Several studies have identified multiple sRNAs expressed
by Y. pestis and Y. pseudotuberculosis under various in vitro
conditions (Koo et al., 2011; Qu et al., 2012; Beauregard et al.,
2013; Yan et al., 2013; Schiano et al., 2014; Nuss et al., 2015);
one study included identification of sRNAs expressed in vivo,
in infected mouse lung and spleen organ tissue in the virulence
-restricted Y. pestis biovar (bv.) microtus strain (Yan et al.,
2013). The acronym Ysr (representing Yersinia small RNAs)
was initially coined by the Lathem group to name identified
Yersinia specific sRNAs (Koo et al., 2011). Two subsequent
studies assigned different names to their sRNAs (Qu et al., 2012;
Yan et al., 2013), but more recently the norm has been to
assign a continuous number to each newly identified Yersinia
sRNA and prefix this with ‘Ysr.’ Moving forward the ‘Ysr’ name
should be maintained to achieve standardization of Yersinia
sRNA nomenclature.

Y. pseudotuberculosis IP32953 and Y. pestis CO92
sRNAs
Two pioneering studies by the Lathem group used a
deep sequencing approach that enabled a comprehensive
identification, validation, and partial functional characterization
of a global set of sRNAs in Y. pseudotuberculosis and Y. pestis
(Koo et al., 2011; Schiano et al., 2014). The first study, used
the Y. pseudotuberculosis IP32953 strain, and identified 150
previously unannotated Ysrs. One hundred and eighteen of these
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were specific to Y. pseudotuberculosis and Y. pestis and 32 were
orthologs to E. coli and Salmonella Typhimurium sRNAs (Koo
and Lathem, 2012). The second study was performed using the
Y. pestis CO92 strain and this supported and extended their
previous study, as they found 144 sRNAs previously identified
in Y. pseudotuberculosis and 63 new potential sRNAs, 10 of
which were further validated by Northern blot analysis (Schiano
et al., 2014). Both studies were performed essentially identically
which permitted direct comparisons of the data sets. Both
Y. pseudotuberculosis and Y. pestis were grown at 26 and 37◦C
to mimic the environment/flea and mammalian host infection
temperatures, respectively, and analyzed at early log, mid log,
late log and stationary phases of growth in the rich medium,
brain heart infusion (BHI). The total number of potential sRNAs
that they identified between Y. pestis and Y. pseudotuberculosis
was 216 (Koo et al., 2011; Schiano et al., 2014). Although the
majority of these sRNAs are conserved between both strains, the
timing of sRNA expression and functional dependence on the
post-transcriptional chaperone protein Hfq was shown to differ.

In general, in Y. pseudotuberculosis most Ysrs start to
accumulate at later time points at both temperatures. An
exception is Ysr45/GcvB which is expressed highly at the start
of growth after which its expression declines over time. This was
also the most abundantly expressed Ysr at 26◦C, while at 37◦C,
Ysr7/MicA and Ysr149/OmrA/B were the most highly expressed
Ysrs (Koo et al., 2011).

The sRNAs examined when Y. pestis grows at 26◦C, show
mostly steady state levels over time and little dependence on
Hfq, which may explain why Hfq is not essential for Y. pestis
survival in fleas (Rempe et al., 2012). At 37◦C, however, these
Ysrs are expressed differently than in Y. pseudotuberculosis, as
most show stable levels or accumulation over time that peak at
late-log phase but are almost undetectable when Y. pestis reaches
stationary phase. Additionally, all the sRNAs tested in Y. pestis
require Hfq for their stability/expression which may explain the
severe growth defect displayed by a hfq mutant of Y. pestis at
37◦C relative to that in Y. pseudotuberculosis (Bai et al., 2010;
Koo et al., 2011; Schiano et al., 2014). This suggests that subtle
evolutionary differences in post-transcriptional gene regulation
exist between the two pathogenic Yersinia species, which may
influence differential temporal regulation of targets that finally
contribute to the production of divergent clinical diseases.

A group of known sRNAs (MicA/Ysr7, FnrS/Ysr11,
RprA/Ysr40, GcvB/Ysr45, RybB/Ysr48, MicM/Ysr145,
RyhB/Ysr146.1 and Ysr146.2, GlmY/Ysr147, GlmZ/Ysr148,
and OmrA/B/Ysr149) were amongst those identified in Yersinia
that were previously annotated and functionally characterized
in E. coli and Salmonella, confirming the conservation of these
sRNAs in enteric bacteria. On the other hand, a significant
number of the newly discovered sRNAs contained mismatches
or were absent, from the genomes of Y. enterocolitica, E. coli,
and Salmonella Typhimurium. Many of the Ysrs encoded in
both Y. pseudotuberculosis and Y. pestis contained subtle single
or multiple variances in sequence. However expression of six
unique sRNAs (Ysr29, Ysr53, Ysr70, Ysr84, Ysr94, and Ysr118)
was noted for Y. pseudotuberculosis IP32953 (Koo et al., 2011),
and five (Ysr142, Ysr143, Ysr144, Ysr163, and Ysr185) for

Y. pestis CO92 (Schiano et al., 2014); these sRNAs may reflect
specific and unique regulatory adaptations to host environments,
and disease states caused by each of the mentioned Yersinia
species (Supplementary Table S1).

Y. pestis KIM6+ sRNAs
Another study using a deep sequencing approach in Y. pestis was
reported by Beauregard et al. (2013), where they identified 31
sRNAs of which only 17 matched previously identified putative
sRNAs. They mapped the 5′ ends of 18 and the 3′ ends of 28
sRNAs, finding that some of them overlap an annotated protein-
coding gene. All of these were conserved between Y. pestis
and Y. pseudotuberculosis and all but two are conserved in
Y. enterocolitica. Only 14 were conserved in E. coli but several
were only partially conserved, suggesting that even when sRNAs
are conserved, their functions could have diverged. Some sRNAs
are conserved only in the region required for base-pairing
with targets identified in E. coli which suggests that these
Ysrs share some mRNA targets besides their species-specific
targets. Similar to the findings of Koo et al. (2011), a wide
variety of sRNA expression patterns differed between Y. pestis
and Y. pseudotuberculosis depending upon temperature and the
presence of Hfq. Comparative Northern blot analysis of all 31
sRNAs in both Y. pestis and Y. pseudotuberculosis showed that
most of them were constitutively expressed in both species
regardless of temperature or the presence of Hfq (Supplementary
Table S1).

Y. pestis biovar Microtus strain 201 sRNAs
Two other sRNA identification analyses were undertaken in the
enzootic Y. pestis strain 201, which is avirulent in humans, but
highly virulent to mice and belongs to the newly established, bv.
microtus (Zhou et al., 2004; Qu et al., 2012; Yan et al., 2013). The
first study used a supposed improved cDNA cloning approach
to find novel sRNAs expressed in Y. pestis in chemically defined
TMH medium in exponential and stationary growth phases,
and under stressful conditions that Y. pestis might encounter
during infection, e.g., iron starvation, Ca2+ deprivation and
low Mg2+. For stressful conditions early exponential grown
cultures at 26◦C were transferred to 37◦C. They identified a
total of 43 sRNAs. Six of these were previously annotated, 25
were encoded on the antisense strand of annotated genes or
non-coding RNAs, 12 were located in IGs, and 8 were not
reported previously (Qu et al., 2012). However, sRNAs were
not categorized under their condition of expression because
even though bacteria were grown in five separate treatment
conditions, the RNA isolated from each condition was pooled in
equimolar ratios for the subsequent cDNA library construction.
However, four sRNAs were individually detected in the five
growth conditions by Northern blot analysis: Yp-sR1, Yp-sR2,
Yp-sR16 and Yp-sR38 (Qu et al., 2012). Comparisons with the
Rfam database (http://rfam.sanger.ac.uk), revealed identification
of six homologs of known sRNAs of other enteric bacteria,
including 6S RNA, SsrA, 4.5S RNA, CyaR, CopA and STnc490.
Of these, 6S RNA, which is highly abundant in E. coli (Hindley,
1967), was found under all five tested conditions but reached
maximal abundance at stationary phase. Four sRNAs that were

Frontiers in Microbiology | www.frontiersin.org 4 September 2015 | Volume 6 | Article 956

http://rfam.sanger.ac.uk
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Martínez-Chavarría and Vadyvaloo Regulatory RNAs in Yersinia infections

discovered, are absent in Y. pseudotuberculosis and unique to the
Y. pestis genome, of which the Yp-sR33 is specific to Y. pestis
bv. microtus and the CO92 genomes. Unfortunately none of
these were analyzed by Northern blot or RT-qPCR to further
confirm their presence (Qu et al., 2012). However, Northern blot
analysis verified the presence and size of six unique sRNAs not
previously identified (Supplementary Table S1). Additionally, RT-
qPCR analysis of expression of a collective set of 24 sRNAs shows
they are highly abundant upon entry into stationary growth
phase.

In the chromosome of the Y. pestis 201 strain, 36 identical
copies and 63 highly homologous sequences of a sRNA called Yp-
sR27 was found. These highly repetitive sequences possess all the
features of typical transposons, except that they do not encode a
transposase and are thus termed non-inserting sequences. Non-
inserting sequences are present in the ancestors of Y. pestis,
Y. pseudotuberculosis, and E. coli, indicating that they might
have evolved conservatively among bacteria. The process of the
replication of these sequences remains unknown.

The second study undertaken investigated sRNA
transcriptome profiles of the Y. pestis bv. microtus strain,
grown in TMH (using the same five conditions tested above),
BHI and from infected mouse lungs and spleens (Yan et al.,
2013). One hundred and four sRNAs were identified, 26 already
annotated and 78 representing a novel set of sRNA candidates
in Y. pestis, 62 of which were intergenic and 16 located on the
antisense of annotated ORFs. Sixty two sRNAs were identified
in all four conditions tested. Four known sRNAs were found to
be conserved in E. coli and Salmonella species too. However,
93 out of 104 were conserved in Y. pseudotuberculosis and
Y. pestis and only 7 sRNAs were specific to Y. pestis. Five of the
Y. pestis specific sRNAs were located on the Y. pestis pMT1 and
pPCP1 plasmids indicating that acquisition of sRNA may have
an important function during the evolution of Y. pestis from
Y. pseudotuberculosis.

Recently, several of these sRNAs (e.g., sR028, sR041, sR050,
sR066, and sR070) that were adjacently located to open-reading
frames were re-annotated as 5′-UTRs (Nuss et al., 2015) in a
study employing comparative RNA-seq-based high nucleotide
resolution transcriptomic profiling. Because sR066 was detected
as a short transcript by Northern blotting (Yan et al., 2013), it
is presumed that these putative sRNAs are processed forms of a
premature 5′-UTR transcript.

Y. pseudotuberculosis YPIII sRNAs
A most recent study, identified sRNAs in Y. pseudotuberculosis
YPIII and its derivative crp mutant. This study employed a
more rigorous and comprehensive methodology than previous
studies, and determined at single nucleotide resolution the global
gene expression of these bacteria grown in LB to exponential
and stationary phases at 25 and 37◦C (Nuss et al., 2015).
A total of 78 putative trans-encoded sRNAs, of which 42
were new annotations, and 80 putative antisense RNAs were
identified, making this the largest account of antisense sRNAs
in the Yersinia. Nineteen antisense sRNAs were located on
the virulence plasmid supporting the prevailing idea that finely
controlled synchronous expression of the T3SS delivery and

effector system is required during infection. A comprehensive
set of 36 of these sRNAs that comprised 12 known and
conserved sRNAs in the Enterobacteriaceae, two non-validated
sRNAs (Ysr100 and Ysr103), a previously validated sRNA
(Ysr164), 11 new sRNAs and 10 antisense sRNAs were confirmed
by Northern blot. Most trans-encoded sRNAs were largely
temperature and growth phase responsive in keeping with studies
described above and reflect the transition of the bacteria between
heterothermic environments during transmission. This study has
to date advanced identification of post-transcriptional regulation
involving sRNAs in Yersinia and allowed clear categorization of
sRNAs into trans-encoded or antisense sRNAs, or as 5′-UTR
regulatory elements.

Factors Influencing sRNA Identification
Taking the five studies together, we determine the number of
sRNAs identified in Y. pestis and Y. pseudotuberculosis thus far
to be ∼354, of which about 105 have been alternately validated
by Northern or RT-qPCR (Supplementary Table S1). Of all these
identified Ysrs, 13 have been tested in mice, but only three (Ysr29,
Ysr35, and tmRNA/ssrA) have been shown to be attenuated
(Supplementary Table S1).

While there exists some overlap in the sRNA sets discovered
in each of these studies, there are a large number of potential
sRNAs that are unique to each study as exemplified in a
comparison of Y. pestis sRNAs identified in the four studies
above (Figure 1, Supplementary Table S2). The variable sRNA
expression profiles in the studies are likely a consequence of
several experimental factors: (1) specific experimental culture
conditions, e.g., medium composition, temperature, phase of
growth, in vivo vs. in vitro, (2) species and strains, e.g., Y. pestis
vs. Y. pseudotuberculosis or Y. pestis CO92 vs. Y. pestis KIM6+
(3) methodologies used, e.g., deep sequencing vs. cDNA cloning,
(4) bioinformatics analysis and pipelines applied to data, e.g.,
expression cut-off thresholds. However other intrinsic factors
could also impact variable expression of sRNAs. Take for instance
a scenario in which Y. pestis and Y. pseudotuberculosis encode
the same sRNA but that this sRNAs controls different mRNAs
targets in the two species, which in turn are additionally
differentially regulated by distinct global regulators or growth
conditions. In this case, the expression of the sRNA will vary
according to the availability of its targets, as in the absence
of the mRNA target the sRNA is subject to destabilization
and rapid degradation. Indeed, it has been demonstrated that
conserved sRNAs between Y. pseudotuberculosis and Y. pestis
can differ in stability and/or expression (Koo et al., 2011;
Beauregard et al., 2013). Furthermore, many of the sRNAs
that are encoded and expressed by both species contain single
nucleotide variations, mismatches, insertions or deletions which
could alter the RNA secondary structure and result in distinct
interactions with target mRNAs between the species. Some
other sRNAs are duplicated, like RyhB (Ysr146.1 and Ysr146.2)
in Y. pseudotuberculosis, which is regulated by the iron level.
It would be interesting to analyze if those duplicated sRNAs
have different roles in response to different environmental
conditions during the infection and accordingly, if they control
the expression of different sets of genes. An added complication
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FIGURE 1 | Common (black font) and exclusively expressed (red font) sRNA repertoires are found in Yersinia pestis strains of genetically distinct
backgrounds in four separate studies using different growth conditions. Common sRNAs are represented by all their annotated names (these are separated
by a slash) from different Yersinia and E. coli studies. Exclusively expressed consecutive sRNAs are not separately named, instead an encompassing dash indicates
that they compose the list. Those non-consecutive exclusively expressed sRNAs are named singly and separated by commas from other sRNAs. Each study
identifying a sRNA repertoire is represented in the Venn diagram by a different color and denoted according to the first author and year of publication of the study.

can occur during infection if only a fraction of the cell
population expresses a particular sRNA. For example, it has been
shown that only a small fraction of either Y. pseudotuberculosis
or Y. pestis bacterial populations express the sRNAs Ysr35
or Ysp8, at low copy numbers of 0 to 10 transcripts per
cell. Such low quantities can be difficult to detect, limiting
identification of such sRNAs (Shepherd et al., 2013). Certainly
these differences in sRNA expression between the two pathogens
are responsible for some of the divergent clinical disease
outcomes.

Although, alternate validation of sRNA expression using
techniques such as Northern blotting to avoid false positive
identification of sRNAs is important, one is cautioned that
such analysis can be tenuous especially for sRNAs expressed at
low abundance. Additionally sRNAs may be expressed under
conditions not examined thus far, such as upon host-cell contact,
inside the cells, during animal infection or even inside the flea in
case of Y. pestis.

Overall, studies by the Lathem group (Koo et al., 2011;
Schiano et al., 2014) proved highly informative because their
identification of sRNAs was accompanied by further verification
of their expression by Northern analysis, investigation of sRNA

Hfq-dependency, identification of cognate mRNAs targets and
functional analysis of newly identified sRNAs that revealed their
roles in virulence. On the other hand the Nuss et al. (2015)
study has used improved techniques to identify and categorize
sRNAs, as well, they managed to pinpoint Crp as another
major sRNA regulator and verify its direct targeting of several
sRNAs.

Functional Characterization of sRNAs in
Yersinia

Currently >350 Ysrs have been identified but the functional
roles that most of these molecules play are yet to be discovered.
The functional roles for known Yersinia sRNAs conserved in
E. coli and other related pathogens, that have been subject to
thorough investigation of their function, mechanism of action,
mRNA targets and conditions of expression are usually inferred.
However, the physiological and virulence-inducing processes
have become the focus of functional studies on Ysrs, and such
roles have been established for a small number of these Ysrs thus
far. In this section we will discuss some of these findings.
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Virulence
SsrA/sR022: a Vaccine Candidate for Pneumonic
Plague?
Small stable RNA A (SsrA RNA), also known as tmRNA or 10S,
and small protein B (SmpB) are components of a unique bacterial
translational control system (Karzai et al., 2000). This system
is important for maintaining cellular homeostasis and bacterial
survival in adverse conditions, and as such may be advantageous
for efficient response to adverse infection conditions. The
SsrA-SmpB system helps maintain the bacterial translational
machinery in a fully operational state by dealing with ribosomes
that are stalled on defective mRNAs that lack stop codons (Karzai
et al., 2000; Dulebohn et al., 2007; Keiler, 2008). SsrA RNA
functions both as a tRNA and mRNA.Whereas SmpB is essential
for recognition and delivery of SsrA to target stalled ribosomes,
as it binds specifically to the tRNA-like domain of SsrA and thus
stabilizes SsrA tertiary structure (Karzai et al., 2000; Barends
et al., 2001).

The role of SsrA was first evaluated in Y. pseudotuberculosis
but among deep sequence analyses that searched for new
Yersinia sRNAs, it was identified in the Y. pestis bv. microtus
strain and referred to as sR022 or Yp-sR31 (Yan et al.,
2013). In Y. pseudotuberculosis, expression of VirF, a key TTSS
transcriptional activator, and secretion of Yops (YopB, YopD,
YopM, LcrH, and LcrV), are reduced in the smpB-ssrA mutant.
Furthermore this mutant exhibits delayed host cell cytotoxicity
and is more sensitive to oxidative and nitrosative stresses, low pH,
and sublethal concentrations of translation-specific antibiotics,
and is non-motile (Okan et al., 2006, 2010). Consequently,
the smpB-ssrA mutant strain is avirulent to mice via the
orogastric route, as well as defective in survival and replication in
macrophages (Okan et al., 2006). It also showed partial protection
when challenged with a lethal dose of Y. pestis.

In Y. pestis, a smpB-ssrA mutant is severely attenuated in a
mouse model of infection via both the intranasal and intravenous
routes. This mutant exhibits a slower growth rate at 37◦C (Okan
et al., 2010). In agreement, the transcriptional level of SsrA
is higher at 37◦C than that at 26◦C in Y. pestis bv. microtus
(Qu et al., 2012), which may help Y. pestis adapt to natural
temperature alterations during its transmission from fleas to
mammals. Most significantly, it has been demonstrated that
intranasal vaccination of mice with the ssrA mutant induced
a strong IgG antibody response, and vaccinated animals were
well protected against pulmonary Y. pestis infection (Okan et al.,
2010). Taken together, these characteristics present this strain
as a favorable candidate for a live attenuated cell-based vaccine
against pneumonic plague.

Ysr141
Ysr141 is present in both Y. pseudotuberculosis and Y. pestis
as identified by sequencing analysis. Its genomic location is
mapped to the T3SS-carrying plasmid, pCD1 and it is encoded
on the opposite strand within the IG between yopH and the gene
YPCD1.68c (Koo et al., 2011; Schiano et al., 2014).

Ysr141 is an unstable sRNA which stimulates production
of T3SS-associated effector proteins (YopE, YscF, YopK, and
LcrF) and regulates yopJ, posttranscriptionally, by base-pairing

to the 5′-UTR of yopJ (Schiano et al., 2014). It has been
suggested that Ysr141 may be a mechanism to regulate the
T3SS, conserved among the pathogenic Yersinia species and it
may link environmental cues to the modulation of the T3SS
in such species. An investigation into the environmental and
temporal cues that trigger expression of Ysr141 and its activation
of the T3SS could potentially provide further insight into the
differing clinical disease manifestations in Y. pseudotuberculosis
and Y. pestis.

Ysr35
This sRNAwas identified from deep sequence analysis (Koo et al.,
2011; Schiano et al., 2014). It has been suggested that this sRNA
could be required for Yersinia adaptation to the host because a
Ysr35 mutant showed significantly compromised survival in a
mouse model in both Y. pseudotuberculosis and Y. pestis (Koo
et al., 2011). The expression of Ysr35 has been evaluated by
measurement of gene expression in Y. pseudotuberculosis using
single-molecule fluorescence hybridization (smFISH) and its
expression was demonstrated to increase upon a temperature
upshift from 25 to 37◦C, further supporting its importance in
pathogenesis (Shepherd et al., 2013).

CsrB and CsrC
These two sRNAs were first described in Y. pseudotuberculosis
where they were found to be essential for the initial phase of
the infection in Yersinia species (Heroven et al., 2008, 2012a).
CsrC has also been identified by deep sequencing analysis in
Y. pseudotuberculosis (called Ysr188, Koo et al., 2011), in Y. pestis
strain 201 (called sR026, Yan et al., 2013), and in Y. pestis KIM6+
(called Ysr185, Beauregard et al., 2013), whereas CsrB has been
only identified in Y. pestis by Beauregard et al. (2013) and Yan
et al. (2013) and called Ysr179 and sR003, respectively. These
sRNAs has been widely studied in many bacteria as they are part
of the Csr system, along with the RNA binding protein CsrA, as
such they will be described in the next section below.

Metabolism
RyhB/Ysr48: a Key Regulator of Bacterial Iron
Metabolism
The RyhB/Ysr48 sRNA, conserved in E. coli and in other
Enterobacteriaceae, is involved in the post-transcriptional
regulation of numerous genes during iron depletion (Masse and
Gottesman, 2002; Masse et al., 2003, 2005; Murphy and Payne,
2007; Alice et al., 2008). It is also involved in bacterial growth,
biofilm formation, chemotaxis, acid resistance and intracellular
growth (Mey et al., 2005; Bollinger and Kallio, 2007; Murphy and
Payne, 2007; Boughammoura et al., 2008; Guillemet and Moreau,
2008).

Yersinia pestis encodes two RyhB homologs, RyhB1 and
RyhB2, that are located some distance from each other on the
chromosome. RyhB1 and RyhB2 share a sequence with E. coli
and Salmonella Typhi that ranges from 61 to 72% (Deng et al.,
2012). These sRNAs were identified in deep sequencing studies
of Y. pseudotuberculosis (Ysr146.1 and Ysr146.2, Koo et al.,
2011), virulence-restricted Y. pestis bv. microtus (sR009/sR024,
Qu et al., 2012) and Y. pestis C092 (Ysr146.1/Ysr146.2, Schiano
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et al., 2014), whereas only RyhB2 was detected in Y. pestis KIM
(Ysr146.2/187, Beauregard et al., 2013). Both sRNAs are induced
by iron deficiency and are negatively regulated by the ferric
uptake regulator, Fur (Deng et al., 2012).

The stabilization of RyhB1 and RyhB2 is differentially
dependent on Hfq, with RyhB1 stabilization being mediated by
Hfq, and that of RyhB2 not (Deng et al., 2012). Both sRNAs
are strongly expressed in lungs of mice infected intranasally with
Y. pestis which indicates that signals such as iron depletion may
be present in the infected lungs (Deng et al., 2012). However it
was shown that a ryhb1-ryhB2 double mutant has no discernable
defect in survival and dissemination in the host after intranasal
inoculation, which suggests that other iron uptake systems have
compensatory effects in this environment.

GlmY and GlmZ: Cell Wall Synthesis
These sRNAs regulate synthesis of the enzyme glucosamine-
6-phosphate (GlcN6P) synthase, GlmS, in Enterobacteriaceae,
which catalyzes formation of GlcN6P, the initial building block
in the pathway that generates precursors of cell wall synthesis
(Urban et al., 2007; Reichenbach et al., 2008; Urban and Vogel,
2008). The GlmY and GlmZ sRNAs are the only known direct
targets of the GlrR/GlrK two component system, where GlrK is
the sensor kinase that phosphorylates GlrR, which is the response
regulator that directly binds to their promoters. GlrR induces
glmY expression through activation of the σ54-promoter, when
cells enter the stationary growth phase (Reichenbach et al., 2009).
It has been shown that overlapping σ54- and σ70-promoters
direct expression of glmY gene, while expression of glmZ is
achieved from a single constitutively active σ70-promoter (Gopel
et al., 2011).

Homologous sRNAs to GlmY and GlmZ have been identified
in both Y. pestis and Y. pseudotuberculosis (Koo et al., 2011;
Beauregard et al., 2013; Yan et al., 2013; Schiano et al., 2014).
Although their role in virulence has not been evaluated, in
Y. pseudotuberculosis, these sRNAs are transcribed from σ54-
dependent promoters and are induced by the two component
system GlrR/GlrK, through direct binding of GlrR to sites located
upstream of their promoters (Gopel et al., 2011). In addition, it
was shown that putative binding sites for the integration host
factor, IHF, are present in the glmY and glmZ promoter regions,
suggesting that IHF could be involved in their regulation, maybe
facilitating interaction of GlrR with the σ54-RNA polymerase
by binding-induced bending of critical promoter sequences,
consistent with the usual role of IHF (Swinger and Rice, 2004).

SraG
First reported in E. coli, SraG located between pnp (PNPase)
and rpsO (30S ribosomal protein S15), is expressed preferentially
at late-logarithmic phase, and activated by heat and cold
shock treatments (Argaman et al., 2001; Sridhar et al., 2009).
A comparative sequence analysis with E. coli revealed a
SraG homolog in Yersinia species (Sridhar et al., 2009). In
Y. pseudotuberculosis 16 proteins were identified as potential
regulatory targets of SraG (Lu et al., 2012). However, only
pnp and YPK_1205 showed significantly different mRNA levels
when a RT-PCR validation of these targets was performed.

It was shown that SraG negatively regulates the YPK_1206-
1205 operon post-transcriptionally by likely targeting the coding
region of YPK_1206. The YPK_1206-1205 operon is present only
in Y. pseudotuberculosis and Y. enterocolitica and they share 90%
similarity. Unfortunately the role of this operon has not been
elucidated but YPK_1206 is predicted to have roles in DNA
bending, therefore SraG could be acting as a regulatory element
in this process (Lu et al., 2012). As three of the 16 potential targets
correspond to proteins associated withmaltose metabolism, it has
been suggested that SraG might also be involved in regulation
of maltose metabolism. This is a classic example of a sRNA that
is not conserved in Y. pestis but may contribute to adaptation
of Y. pseudotuberculosis to its host, e.g., maltose is found in the
human gut when it is broken down from grains like wheat.

GcvB/Ysr45
Initially predicted using a bioinformatics search of the Y. pestis
genome. The gcvB gene is adjacent to, and divergent from gcvA
that shares considerable sequence homology (77%) with the
E. coli gcvB sequence (McArthur et al., 2006). Deep sequence
analysis of both Y. pestis and Y. pseudotuberculosis have also
identified GcvB (where it has been called Ysr45, Ysr45/180 or
sR013; Koo et al., 2011; Beauregard et al., 2013; Yan et al., 2013;
Schiano et al., 2014).

Yersinia pestis gcvB encodes two sRNAs that repress expression
of dppA that encodes a periplasmic-binding protein component
of the dipeptide transport system (McArthur et al., 2006).
Deletion of the gcvB gene in Y. pestis, results in altered growth
rate and colony morphology, and due to the pleiotropic nature
of these effects it has been suggested that this sRNA is a global
regulator of multiple downstream genes in addition to dppA,
similar to its function in E. coli (Urbanowski et al., 2000;
McArthur et al., 2006). These target genes remain to be identified.

In Y. pestis, transcription of gcvB is activated by the GcvA
protein and repressed by the GcvR protein. A comparison of
the gcvB regulatory regions in Yersinia species have shown that
the putative GcvA binding sites for activation of gcvB, are 100%
identical in all Y. pestis strains, and >92% identical in other
Yersinia species, which suggests that the regulatory mechanisms
of the GcvB RNAs are possibly similar in all Yersinia species.

SgrS
SgrS is an Hfq-dependent sRNA that has been widely studied
in E. coli, where it regulates the ptsG mRNA, which encodes
the major glucose transporter PtsG, by occluding the ptsG RBS
leading to degradation of ptsG (Kawamoto et al., 2006).

This sRNA also functions as an mRNA, as it encodes the
protein SgrT which is ectopically produced under glucose-
phosphate metabolic stress conditions when cells are unable to
appropriately metabolize phosphorylated sugars (Wadler and
Vanderpool, 2007). SgrS prevents new sugar transporters from
being produced under conditions where the accumulated sugar-
phosphates have become toxic; in so doing it maintains continued
cell growth under such conditions (Vanderpool and Gottesman,
2004; Wadler and Vanderpool, 2007).

In Yersinia this sRNA was found by bioinformatics analysis
aimed at finding homologs of E. coli SgrS. The Y. pestis SgrS
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homolog is, however, truncated at the 5′ end such that it is
devoid of the sgrT coding sequence and retains only typical
sRNA base-pairing function (Horler and Vanderpool, 2009). This
sRNA has been detected by deep sequencing in both Y. pestis and
Y. pseudotuberculosis, where it has been called Ysr150 or sR005
(Koo et al., 2011; Yan et al., 2013; Schiano et al., 2014).

The Y. pestis sgrS ortholog is able to base pair with the
E. coli K12 ptsG mRNA and inhibit its translation (Wadler and
Vanderpool, 2007), however, it fails to inhibit growth on minimal
glucose medium because the sgrT CDS is missing. It is still
able to promote recovery of an E. coli sgrS mutant strain from
glucose-phophate stress, which indicates it conserves the function
of regulating target gene expression; the base pairing function
of E. coli and Y. pestis SgrS homologs is critical for rescue from
glucose-phosphate stress (Wadler and Vanderpool, 2007).

YsrH
YsrH is a novel cis-encoded sRNA identified as Yp-sR16 by
Qu et al. (2012) in the avirulent Y. pestis bv. microtus strain.
This sRNA is conserved in all Yersinia species and located
on the opposite strand to fabH2, which encodes β-ketoacyl-
acyl carrier protein synthase III, an enzyme essential for fatty
acid biosynthesis in bacteria (Qu et al., 2012; Lu et al., 2014).
YsrH is expressed in the early-exponential growth phase and
this expression is maintained at the same level in later stages
of growth (Lu et al., 2014). It has been reported that YsrH
negatively regulates the fatty acid synthesis post-transcriptionally
by specifically targeting fabH2mRNA transcripts for degradation
and this mechanism also involves the PNPase and RNase
E-associated processing pathways (Lu et al., 2014).

Stress Response
Ysr29
Ysr29 was identified in reports by Koo and Schiano (Koo
et al., 2011; Schiano et al., 2014) but is specific to the
Y. pseudotuberculosis IP32953 strain. It is expressed much better
at 26◦C, where its expression depends on the chaperone Hfq.
Ysr29 seems to negatively regulate GST and positively regulate
RpsA, OmpA and GroEL at a posttranscriptional level because
the absence of the sRNA does not affect their transcript levels
but instead alters the levels of protein (Koo et al., 2011). GST
participates in protecting cells against the damage of oxidative
stress (Allocati et al., 2009), and Ysr29 repression of GST levels
may prevent an aberrant response to this stress. Interestingly,
reactive oxidative species produced by the flea upon infection, is
a known stress that Y. pestis has to defend itself against during
the early stages of infection (Zhou et al., 2012). Therefore, the
fact that Ysr29 is not conserved in Y. pestis could be as a result
of evolutionary selection, as loss of a negative regulator of GST,
would lead to expression of GST to cope with the oxidative stress
it finds in a new niche, e.g., the flea.

Y. pestis Transmission from Fleas
HmsB: the Biofilm Regulator
Biofilm is a population of bacterial cells embedded in a self-
produced exopolysaccharide (EPS) matrix. Biofilm formation
results in blockage of the flea proventriculus, which facilitates

Y. pestis transmission to new mammalian hosts (Jarrett et al.,
2004; Hinnebusch and Erickson, 2008).

The second messenger 3′,5′-cyclic diguanosine
monophosphate (c-di-GMP), is central to the biofilm formation
as it promotes EPS production (Simm et al., 2004). In Y. pestis
EPS biosynthesis is encoded by the hmsHFRS operon, whereas
HmsT and HmsD are the two sole diguanylate cyclases
responsible of biosynthesis of c-di-GMP, while HmsP is the
sole phosphodiesterase responsible for c-di-GMP degradation
(Kirillina et al., 2004; Bobrov et al., 2005, 2011; Sun et al., 2011).

HmsB is an Hfq-dependent sRNA (originally called sRNA035)
identified by RNA-seq study of Y. pestis bv. microtus (Yan
et al., 2013). This is the first sRNA to be reported as a biofilm
regulator. An hmsB deletion reduces biofilm formation both
in vitro and on nematodes, which is a result of the decreased
production of c-di-GMP (Fang et al., 2014). These effects are
linked to the fact that HmsB positively regulates hmsCDE, hmsT,
hmsHFRS and itself, thereby enhancing biofilm production while
it negatively regulates hmsP, encoding the biofilm-inhibiting
phosphodiesterase (Fang et al., 2014). However, the exact
molecular interaction of HmsB with hmsCDE, hmsT, hmsHFRS,
hmsP and other direct targets that could be involved in this
process, remain to be elucidated.

Globally Acting RNA Binding Proteins:
The Hfq and CsrA Paradigms in Yersinia

Post-transcriptional activation of transcripts can occur indirectly,
through mechanisms that do not require direct base pairing of
sRNAs with their targets. In these cases, globally acting RNA-
binding proteins Hfq and CsrA often play an important role.
These thoroughly studied RNA binding proteins and their roles
in sRNA function in the Yersinia genus will be discussed below.

Hfq: the sRNA Chaperone par Excellence
Hfq, a close relative of the Sm-like (Lsm) family of eukaryotic
proteins, is a well-known RNA chaperone widely recognized for
being required for the proper functioning of many trans-acting
sRNAs. It promotes stable sRNA:mRNA base-paring interactions
as in trans-acting sRNAs the contact on the target is typically
short and imperfect (Jousselin et al., 2009) and it also protects
the sRNA from degradation (Brennan and Link, 2007). Most
sRNAs characterized to date need binding of Hfq as a RNA
chaperone to stabilize the sRNA-target mRNA duplexes (Han
et al., 2013). Due to its global post-transcriptional regulatory
impact, hfq mutation typically results in pleiotropic phenotypes
affecting outer membrane biogenesis, quorum sensing, virulence
factor synthesis, protein secretion, virulence gene expression
and general stress response pathways (Chao and Vogel, 2010;
Papenfort and Vogel, 2010). Hfq binding sites have only been
mapped for a limited number of transcripts; but all appear to
contain a consensus AU-rich single stranded region following
an RNA stem loop (Schumacher et al., 2002; Gottesman and
Storz, 2011), that are able to interact with the poly-U tail of
certain Rho-independent terminator containing RNAs (Otaka
et al., 2011).
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Hfq was first identified in yersiniae in the Y. enterocolitica
species, as the protein Yrp which regulates production of the
heat stable enterotoxin, Y-ST (Nakao et al., 1995); a subsequent
global identification of Y. enterocolitica sRNAs has not to date
been reported. The Hfq regulatory protein in Yersinia was
first studied by Geng et al. (2009) using the enzootic Y. pestis
strain 201. They examined the role of this sRNA chaperone in
virulence and performed whole-genome transcriptomic profiling
of an hfq mutant. Their transcriptional analyses revealed
that hfq mutation results in dysregulation of ∼243 genes in
Y. pestis. Among the upregulated genes are those involved in
macromolecule metabolism, heat shock response and virulence
regulation, whereas genes belonging to classes of degradation
of small molecules, or energy metabolism and oxidative stress,
were downregulated. Numerous hypothetical genes were also
dysregulated in the hfqmutant.

In general, the Hfq mutant in both Y. pestis and
Y. pseudotuberculosis exhibit growth defects, at ∼26 and
37◦C, however, the growth defect in Y. pestis appears to be
more severe compared to that in Y. pseudotuberculosis at 37◦C
(Bai et al., 2010; Schiano et al., 2010). Northern blot analysis
of hfq shows that hfq transcript levels are substantially lower at
37◦C than at 28◦C in both Y. pestis and Y. pseudotuberculosis
(Beauregard et al., 2013). Nevertheless Hfq is required for the full
virulence of both Y. pestis and Y. pseudotuberculosis in mouse
models of infection (Bai et al., 2010; Schiano et al., 2010; Koo
et al., 2011). In the lower temperature flea host, an hfq mutant
of Y. pestis is also compromised in its ability to form a biofilm
blockage in the flea proventriculus and is outcompeted by the
wild type strain during coinfection in fleas (Rempe et al., 2012).
In Y. pseudotuberculosis, Hfq plays other important roles in
sensitivity to heat, oxidative stress resistance, tolerance to long-
term nutrient-limitation and antibacterial peptides, phagocytosis
resistance, survival and persistence within phagocytes (Schiano
et al., 2010). The effects on virulence are likely associated with
the role of Hfq in post-transcriptionally regulating multiple
components of the T3SS, the major virulence factors in both
Y. pseudotuberculosis and Y. pestis (Schiano et al., 2010, 2014).

From the various sRNA studies in Yersinia it can clearly be
gleaned that a complex relationship between temperature and
Hfq dependence is in place for sRNA regulation between the
Yersinia strains. So far, about 41 sRNAs have been shown to be
regulated by Hfq in both Y. pestis and Y. pseudotuberculosis. For
instance, the sRNA Ysr48/RyhB is Hfq-dependent in Y. pestis
at both 37 and 26◦C but requires Hfq in Y. pseudotuberculosis
only at 37◦C (Supplementary Table S1, Koo et al., 2011). The
Ysr48/RyhB mutant is slightly attenuated in Y. pseudotuberculosis
yet remains virulent in Y. pestis in a pneumonic plague infection
model. As Hfq is 100% identical between Y. pestis and Y
pseudotuberculosis, regulation by Hfq-dependent sRNAs rather
than Hfq itself is what likely contributes to the differences in
virulence in both species at 37◦C.

Some mechanistic aspects of Hfq regulation of the sRNA
HmsB, which controls biofilm formation, and RyhB which is
involved in the iron metabolism, have been described in Y. pestis.
In enzootic Y. pestis strain 201, the Hfq-regulated sRNA, HmsB,
which controls biofilm formation, is dramatically degenerated

in the absence of hfq (Fang et al., 2014). Yet, in the presence
of hfq enhanced expression of HmsB occurs, which leads to
increases in expression of the genes enhancing biofilm formation,
which are the hmsCDE (Bobrov et al., 2015), hmsT and hmsHFRS
genes (Hinnebusch et al., 1996); simultaneously, inhibition of
expression of hmsP which negatively regulates biofilm formation
occurs (Fang et al., 2014), resulting in increases in biofilm
formation. However, this effect on biofilm formation is the
opposite in the epidemic Y. pestis CO92 strain, where Hfq acts
as a repressor of biofilm formation through inhibiting expression
of hmsT, and hmsHFRS but stimulating that of hmsP (Bellows
et al., 2012). This difference in Hfq-dependent biofilm regulation
may be explained by the different conditions under which biofilm
formation was tested between the two studies. However, it does
not rule out that other strain-specific Hfq-regulated sRNAs
involved in biofilm control may play a role here. This idea would
be consistent with a role for sRNA regulation in the evolution
of the distinct pathologies between ancestral and newly evolved
strains because the mouse virulent Y. pestis strain 201 is less
recently evolved than the human virulent Y. pestis strains (Morelli
et al., 2010).

In Y. pestis, Hfq dependence of RyhB1 and RyhB2, the two
sRNA encoded by RhyB, is different, as RyhB1 stabilization
is mediated by Hfq, whereas RyhB2 does not require Hfq
for stability (Deng et al., 2012). In absence of Hfq, rapid
degradation of both sRNAs occurs. The ribonuclease PNPase
is the main enzyme that degrades Hfq-free RyhB (Deng et al.,
2014). This is different from the general mechanism of PnPase
activity which usually involves PnPase formation of multi-
enzyme ribonucleolytic complexes with RNase E and/or RNA
helicase, RhlB, to mediate degradation of the structured RNA
(Kaberdin et al., 2011; Silva et al., 2011). Further work is required
to explain the mechanism by which RyhB2 maintains stability
in absence of Hfq and if RyhB1 and RyhB2 have distinct targets
based on their requirement for Hfq.

In spite of the well accepted role of Hfq in Yersinia virulence,
not all Hfq-dependent sRNAs are important for virulence. For
instance, 50 and 10% of mice survived after intragastric infection
by the Hfq-dependent sRNAs, Ysr29 and Ysr48/RybB mutants,
respectively (Koo et al., 2011), whereas 50% of mice survived
after inoculation with the Hfq-independent Ysr35 sRNA mutant.
Further, in Y. pestis neither the Hfq-independent Ysr23 nor the
Hfq-dependent Ysr48 affect the ability of Y. pestis to cause disease
and death in a pneumonic plague infection model (Koo et al.,
2011). These data indicate that not all the sRNAs that depend on
Hfq, play a direct role in virulence. Even for those sRNAs whose
deletion resulted in a decrease of virulence, the attenuation was
not as dramatic as the loss of virulence displayed by mutants
lacking Hfq. Multiple Hfq-dependent sRNAs contribute to this
Hfq virulence phenotype and an approach in which multiple
sRNAs are deleted may be worthwhile in producing a phenotype
resembling an hfq mutant.

The fact that the overexpression of hfq causes substantial
decreases of some sRNAs even when the deletion of hfq has no
substantial effect on sRNA levels suggests that Hfq expression
levels itself need to be finely controlled to avoid aberrant effects.
Hfq-dependence for the same sRNA can vary between bacteria.
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For example, MicA and GcvB whose expression/stability is
known to rely on Hfq in E. coli and Salmonella, are Hfq-
independent in Y. pseudotuberculosis (Koo et al., 2011).

The distinct expression patterns of conserved sRNAs between
Y. pestis and Y. pseudotuberculosis could be what influences their
different pathologies. However, alignments between the sRNAs
have shown that almost all of them share >95% identity and Hfq
is 100% identical between these strains. Thus the difference in
expression patterns may be due to the variance in abundance of
target mRNAs, as their absence or abundance would influence
base-pairing interactions which would determine stability and
degradation of the cognate sRNAs. This in turn, may affect the
amounts of available Hfq. At the same time, the abundance of the
target mRNAs is subject to first order transcriptional regulation
and different environmental conditions that also influence sRNA
expression.

Hfq contributes to the regulation of the global transcriptional
regulator Crp in a post-transcriptional manner in Y. pestis at
mammalian physiological temperatures (Lathem et al., 2014);
but not in Y. pseudotuberculosis (Nuss et al., 2015). Both crp
and hfq mutants of both Y. pestis (Bai et al., 2010; Qu et al.,
2013; Lathem et al., 2014) and Y. pseudotuberculosis (Schiano
et al., 2010; Heroven et al., 2012b) are attenuated during mouse
infection. In Y. pestis, attenuation of the hfq mutant is partially
attributable to Crp (Lathem et al., 2014). These findings imply
that disparate Hfq-dependent sRNA regulation, factors into the
different diseases between Y. pestis and Y. pseudotuberculosis.

CsrA Control is Mediated by sRNAs, CsrC and
CsrB
The global translational regulator CsrA has been discovered and
studied in many bacteria and some species encode multiple
paralogous regulators (Lapouge et al., 2008). This protein
typically binds to GGA-rich elements in RNAs. CsrA binding
to the SD sequence of bacterial mRNAs results in reduced
translation and subsequent mRNA decay. Although it acts
primarily as a repressor, in few cases CsrA also activates target
mRNA translation (Patterson-Fortin et al., 2013; Yakhnin et al.,
2013). CsrA is a major component of the Csr system along
with the sRNAs CsrB and CsrC (Babitzke and Romeo, 2007).
These sRNAs contain multiple binding sites for CsrA and can
therefore bind and titrate CsrA away from its repressed mRNA
targets – amounting to indirect activation of these mRNA targets.
As a consequence of sequestration, the usual target mRNAs
of the CsrA proteins are mostly upregulated (Liu et al., 1997;
Weilbacher et al., 2003; Babitzke and Romeo, 2007; Lapouge
et al., 2008; Duss et al., 2014). CsrB and CsrC are often found in
multiple copies and are present in many bacteria where they can
function redundantly.

The Csr system was identified during a search for
regulators that influence the expression of the global virulence
transcriptional factor RovA in Y. pseudotuberculosis, which
activates the primary cell entry factor invasion, InvA (Nagel
et al., 2001; Heroven et al., 2004; Tran et al., 2005). There are
no studies to date reporting the effect of the Csr system in
Y. pestis therefore our knowledge of CsrA is based on studies in
Y. pseudotuberculosis. It has been elucidated that CsrA induces

the expression of the LysR regulator RovM, which in turn
represses rovA, thus CsrA represses RovA synthesis indirectly
through control of RovM. CsrB and CsrC titrate and sequester
CsrA which leads to the activation of rovA (Heroven et al.,
2008). In agreement, overexpression of CsrB and CsrC induces
rovA (Heroven et al., 2008); however, neither a csrC or csrB
single mutant affects expression of rovA, suggesting that these
sRNAs are redundant in the manner in which they regulate
rovA. Their function in other pathogens is the same, where it has
been demonstrated that the loss of CsrB causes a compensatory
increase in CsrC levels and vice versa (Weilbacher et al., 2003;
Fortune et al., 2006).

The global influence of the Csr system in Yersinia is
reflected by many different physiological changes for which it is
responsible. A csrAmutant in Y. pseudotuberculosis has a growth
defect whereas CsrA overexpression alters cell morphology
(Heroven et al., 2008, 2012a); it inhibits glycogen synthesis
and about 20% of the CsrA-dependent genes are involved in
metabolism (Heroven et al., 2012a). On the other hand, CsrA
positively controls motility in Y. pseudotuberculosis. It induces
flagella biosynthesis by binding directly to the transcript of flhDC,
which encodes the master regulator of flagellum biosynthesis
(Heroven et al., 2008). Absence of CsrA also affects the expression
of genes involved in resistance to stress (Heroven et al., 2008).
Similar to what has been reported in other microorganisms,
intracellular levels of CsrA have to be tightly regulated, as both
the loss and the overexpression of CsrA negatively affect invasion
to cells (Heroven et al., 2008).

Orthologs of csrB and csrC genes as well as related Csr
(Rsm)-type RNA genes in other bacteria, are activated by the
two-component signal transduction system BarA/UvrY which
regulates the expression of genes associated with virulence,
secondary metabolism, motility, exoenzyme production, quorum
sensing or biofilm formation (Goodier and Ahmer, 2001;
Lapouge et al., 2008). In Y. pseudotuberculosis this scenario seems
to be similar only for csrB expression, which is positively induced
by UvrY (Heroven et al., 2008). However, only when CsrB is
present, UvrY seems to repress the expression of CsrC (Heroven
et al., 2008).

Recently it has been demonstrated that CsrC, but not CsrB,
is regulated by the global regulator PhoP. PhoP induces the
expression of CsrC from two different promoters by directly
binding to two distinct sites located within the csrC regulatory
region (Nuss et al., 2014).

Expression of CsrB and CsrC is medium dependent; csrC is
mostly detected during growth in nutrient rich media, where
csrB expression is very low, whereas only very low levels of CsrC
are observed in minimal medium (Nagel et al., 2001; Heroven
et al., 2008). Therefore the CsrA-mediated control of the RovM-
RovA-InvA virulence cascade is strongly affected by changes in
carbon source availability through alterations of the Csr RNAs,
in particular CsrC (Nagel et al., 2001; Heroven and Dersch, 2006;
Heroven et al., 2008). This links the virulence CsrABC-RovM-
RovA-InvA cascade with the cAMP receptor protein Crp, a
crucial global regulator that controls the transcription of multiple
genes and operons in bacteria by catabolic repression in response
to the glucose supply (Saier, 1998). Crp regulates the synthesis
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of both Csr RNAs in an opposite manner, as it activates CsrC and
represses CsrB transcription (Heroven et al., 2012b). More details
of role of Crp in Yersinia are given below.

Crp Commands a sRNA Repertoire

More recently it is becoming apparent that the global
transcriptional regulator cyclic AMP (cAMP) receptor
protein, Crp, has an important role in regulating sRNAs in
Y. pseudotuberculosis and Y. pestis (Lathem et al., 2014; Nuss
et al., 2015). Within the Enterobacteriaceae family, Crp is a
well-studied first order transcriptional regulator that regulates
numerous target genes and operons in response to carbon sugar
availability (Zhan et al., 2008). Transcriptional regulation by Crp
is exacted following activation of the Crp protein by cAMP and
once the cAMP-Crp complex binds to a symmetrical recognition
site (TGTGA-N6-TCACA) in the promoter region of target genes
and operons.

Importantly, mutants in the crp gene of Y. pseudotuberculosis
(Heroven et al., 2012b) and Y. pestis (Zhan et al., 2008; Lathem
et al., 2014) are attenuated in virulence. The discerning feature
of the attenuated phenotype exhibited by a crp mutant is the
inability of the bacteria to disseminate from early infection sites
to deeper tissues (Zhan et al., 2008; Heroven et al., 2012b).
Although the crp Y. pestis attenuation mainly results from
decreases in expression of genes encoding the major virulence
factors like Pla protease and the T3SS and associated Yop
effector proteins, alterations in stress adaptation and numerous
metabolic genes notably contribute to this phenotype (Zhan
et al., 2008, 2009). Similarly, in Y. pseudotuberculosis a large
proportion of genes involved in primary metabolism, stress and
virulence were dysregulated in a Y. pseudotuberculosis crpmutant
(Nuss et al., 2015). Alongside this, extensive metabolome and
fluxome changes to central carbon metabolism related to the
pyruvate-tricarboxylic acid cycle were noted in a crp mutant of
Y. pseudotuberculosis (Bucker et al., 2014). Collectively, this data
emphasized that Crp plays a role in linking nutritional status and
virulence.

Expression of Crp appears to be increased at stationary phase
in Y. pseudotuberculosis and this was demonstrated to be a
function of post-transcriptional control. In Y. pestis, Hfq is able
to post-transcriptionally control expression of Crp at mammalian
host temperature through interaction with a 79 nt long 5′-
UTR of Crp (Lathem et al., 2014), however, expression of Crp
in Y. pseudotuberculosis was maintained independent of Hfq
at both 37◦C and 26◦C (Nuss et al., 2015). In addition, the
5′-UTR of the crp mRNA in Y. pseudotuberculosis is reported
to have two transcriptional start sites that produce a 201
and 287 nt long 5′-UTR each, that are predicted to contain
riboswitch-like elements (discussed below). It remains to be
resolved whether these are legitimate riboswitches and how
they function. Additionally, at 37◦C the compromised growth
phenotype exhibited by a Y. pestis hfq mutant can be partially
restored by synthesis of Crp, emphasizing that Hfq and Crp
are functionally coordinated during Y. pestis infection of its
mammalian host (Lathem et al., 2014). Because loss of both Crp

or Hfq result in attenuation in virulence for both Y. pestis and
Y. pseudotuberculosis, it appears that subtle differences in their
regulatory targets may be important in fine tuning virulence
in keeping with host nutritional environment. However, the
disparate relationship between Crp and Hfq in Y. pestis and
Y. pseudotuberculosis is likely another aspect of the alterations
in their post-transcriptional regulatory cascades that drive their
distinct disease manifestations. Importantly the Y. pestis Crp
regulon incorporates the major virulence factor, Pla, and is
involved in its direct transcriptional regulation (Zhan et al., 2008;
Lathem et al., 2014).

Several direct targets of Crp have been experimentally verified
in both Y. pseudotuberculosis (Heroven et al., 2012b) and
Y. pestis (Zhan et al., 2008) including several sRNAs (Nuss
et al., 2015). As sRNAs have vital roles in the regulation of
carbon metabolism and nutritional stress adaptation, it makes
sense that their regulatory function would be closely aligned
with that of Crp. The recent study by Nuss et al. (2015) that
generated the first single nucleotide resolution transcriptome
profile of Y. pseudotuberculosis wild type and crp mutant
strains, uncovered a complex regulatory network composing
transcriptional regulators and 53 sRNAs dysregulated by Crp.
Northern blotting confirmed expression of 15 of these sRNAs.
Further, a newly identified trans-encoded sRNA (Ysr206), as
well as two antisense sRNAs (Ysr232 and Ysr114) exclusively
expressed in the crp mutant were validated as directly targeted
with Crp using gel shift assays. Thus key findings regarding Crp
regulation of sRNAs, are that Crp acts as a master regulator of
many sRNAs; it binds directly or mediates indirect control of
sRNAs through other transcriptional regulators, and that Crp
regulation of sRNAs occurs especially at stationary growth phase
during catabolite repression.

Earlier work by Yan et al. (2013) demonstrated that 10 out
of 104 sRNAs identified in the avirulent Y. pestis bv. microtus
strain, contained Crp-binding sites. Northern analysis verified
expression of seven of these sRNAs in the wild type versus the crp
mutant. The known Crp-regulated CyaR/RyeE sRNA (Johansen
et al., 2008; Papenfort et al., 2008) was amongst those identified.
Three novel sRNAs were demonstrated to be directly regulated
by Crp: sRNAs sR084 encoded in an IG on the pPCP1 plasmid,
as well as sR065, are positively regulated, whereas sR066 seem to
be negatively regulated by Crp. Deletionmutants of the CyaR and
sR084 sRNAs that are expressed in the lungs were not attenuated
as was demonstrated by subcutaneous infection in mice. While
expression of CyaR at 26◦C is Crp-dependent in Y. pestis, it is not
the case in Y. pseudotuberculosis (Nuss et al., 2015) which may
be important for adaptation of Y. pestis to the flea environment;
and likely represents another difference in sRNA regulation that
distinguishes the diseases cause by these two pathogens.

Given that for Crp, there appears to be some distinct
differences between Crp-regulated targets and its regulation by
Hfq between Y. pestis vs. Y. pseudotuberculosis, a comparative
single nucleotide resolution transcriptomic profile of Y. pestis
similar to that described for Y. pseudotuberculosis, is essential.
This could provide a more informed understanding of the
varied Crp-dependent sRNAs and their targets. Utilization of this
technique should be extended to the various sites of infection

Frontiers in Microbiology | www.frontiersin.org 12 September 2015 | Volume 6 | Article 956

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Martínez-Chavarría and Vadyvaloo Regulatory RNAs in Yersinia infections

(e.g., intestines, spleen, lungs, and lymph nodes) of bacteria
during systemic dissemination to identify the localized, nutrient-
specific disparate regulatory changes in gene expression of the
two pathogens that likely fine tunes their adaptation during
infection.

Post-Transcriptional Regulation
Mediated by mRNA Structural Elements

Long 5′-UTRS of some mRNAs can contain structured cis-acting
non-coding RNA regulatory elements like riboswitches and RNA
thermometers. These elements have a distinctive regulatory
mechanism in that they undergo structural rearrangement in
response to binding of a small ligand, e.g., metabolites or
cofactors, or thermal shifts, i.e., their function is intimately
coupled with signal integration.

RNA Thermosensors
Post-transcriptional regulation by RNA thermometers involves
the thermally induced unfolding of RNA secondary structures
that restricts accessibility to the RBS, and alters translation.
Thus far, only one RNA thermometer has been described for
the yersiniae. Yet, regulation by such elements seems highly
appropriate for Yersinia species that exhibit thermo-regulation
of gene transcription as the bacteria transitions between the
environmental/flea environment into the mammalian host.
The thermometer element was found located intercistronically
between the yscW that encodes a structural component of the
T3SS apparatus and the lcrF gene that encodes a transcriptional
activator of genes encoding effector proteins. The RNA
thermometer composes two hairpin mRNA secondary structures.
The lcrF proximal hairpin contains a sequence of four U’s, also
called fourU that sequesters the SD sequence, while the secondary
structure occludes the start codon. The mammalian host body
temperature is, however, sufficient to melt the unstable G-U
bonds that hold the SD/fourU sequences together. Once the
hairpin structure is destabilized, post-transcriptional controlled
initiation of lcrF translation ensues leading to differential
synthesis of YscW and LcrF proteins and expression of virulence
function. Due to the 100% conservation in nucleotide sequence
homology in this region, this RNA thermometer mechanism
of regulation is likely conserved in all pathogenic Yersinia
species. Currently the only clearly defined recognition motifs that
typify thermometer elements are the fourU and ROSE elements
(Krajewski and Narberhaus, 2014), limiting potential of whole
genome based in silico prediction of such elements.

RNA Riboswitches
Unlike RNA thermometer elements, riboswitches require
binding of a ligand, usually a metabolite or cofactor, to induce
conformational changes in the RNA secondary that directs
premature transcription termination or inhibit initiation
of translation. A search for riboswitch elements in Yersinia
species has been neglected until the recent achievement
of a high resolution whole genome transcriptomics of
Y. pseudotuberculosis (Nuss et al., 2015). In this study, 155

mRNAs composed 5′-UTR regions >200 nucleotides in length
which make them prime candidates to encode cis-acting
regulatory elements like riboswitches. A bioinformatic search
for riboswitch-like elements (RLEs) using the RibEx riboswitch
explorer (Abreu-Goodger and Merino, 2005) predicted four
known and an additional 17 RLEs involved in metabolic
and gene expression functions, within these long 5′-UTRs.
An example of this is that the mRNA of the btuB gene that
encodes a Ton-B dependent vitamin B12 receptor, composed
of a 315 nucleotide long 5′-UTR, contains a known cobalamin
riboswitch element. Unknown RLEs require experimental
verification, functional characterization and determination of
the metabolites/cofactor ligands that mediate their structural
switching.

To date a detailed riboregulatory mechanism of a 5′-
UTR Mg2+ responsive riboswitch, mgtA, which regulates the
expression of the downstream encoded Mg2+ transporter MgtA,
has been described only for Y. enterocolitica (Korth and Sigel,
2012). Here, in the 5′-UTR, two stem loops structures form at
high Mg2+ concentration to inhibit expression of MgtA. At low
Mg2+ concentration an alternate single stem loop antiterminator
structure forms that favors translation of the mgtA mRNA and
Mg2+ uptake. Similar studies are required for the Y. pestis
and Y. pseudotuberculosis to identify disparities in riboswitch
mechanisms that may facilitate their distinct host infection
phenotypes.

Conclusion

In the last decade, research on sRNA identification and functional
analysis has begun to reveal a previously hidden regulatory
layer in the already complex gene networks that control cellular
function and behavior. As discussed in this review, sRNAs have
been shown to act as regulators of Yersinia virulence and host
adaptation. The underlying emerging theme of the Yersinia
sRNA studies reviewed here is that sRNAs coordinate metabolic
adaptation to enhance the host–pathogen interaction.

Many fundamental questions about sRNA biology remain to
be answered, however, before sRNAs can be exploited to disrupt
the host–pathogen interaction. For most identified Yersinia
sRNAs, the exact cellular function and downstream mRNA
targets remain to be elucidated. Thus far we have learned
that different growth and treatment conditions uncover distinct
sRNAs repertoires reflective of that particular set of conditions.
So while in vitro growth studies representing infection relevant
conditions have potential to identify some important host-
specific sRNAs, the full complement of these molecules may
be overlooked without in vivo studies. Only a single study
identified Y. pestis sRNAs in the biologically relevant context of
the lung and spleen, but only one highly induced, and previously
annotated sRNA, SsrA, was shown to be important for mouse
infection (Yan et al., 2013) similar to a previous study (Okan
et al., 2010). Studies identifying, validating and functionally
charactering the roles of sRNAs in the various biologically
relevant host tissues may prove to be useful in determining the
host-specific and niche dependent regulatory mechanisms crucial

Frontiers in Microbiology | www.frontiersin.org 13 September 2015 | Volume 6 | Article 956

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Martínez-Chavarría and Vadyvaloo Regulatory RNAs in Yersinia infections

for virulence of Yersinia species. Importantly, comparative
analyses of sRNAs and post-transcriptional regulation between
Y. pestis and Y. pseudotuberculosis may provide insight into the
evolution of the distinct disease states of these two pathogens.

Because experimental efforts to determine cellular function
of sRNAs are time-consuming and labor-intensive, and
bioinformatics prediction of target mRNAs remains largely
unreliable being confounded by imperfect complementarity
between the sRNA and mRNA, researchers are faced with several
challenges in the field of sRNA biology. Undoubtedly, however,
the mechanisms of sRNA regulation suggests the possibility that
inhibition of key sRNA folding or targeted mRNA interactions
strategies can be developed as the basis of novel anti-infective
strategies, especially in the face of antibiotic resistance. The
several instances of obviously different post-transcriptional
regulatory control of infection and adaptation between Y. pestis
and Y. pseudotuberculosis discussed in this review, emphasize
their important and specific roles in fine tuning adaptation of
these pathogens to cause disease.
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