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Streptococcus lutetiensis, an emerging pathogen causing bovine mastitis, has not been well characterized. We reported that S.
lutetiensis was pathogenic both in vivo and in vitro and caused inflammatory reactions in the mammary gland. However, roles
of autophagy and oxidative stress in the pathogenesis of S. lutetiensis-induced mastitis are unclear. In this study, an autophagy
model of S. lutetiensis-infected bovine mammary epithelial cells (bMECs) was used to assess oxidative stress and autophagy
flux. Expressions of Beclin1, light chain 3II, and Sequestosome 1/p62 were elevated in bMECs after S. lutetiensis infection. In
addition, autophagosome and lysosome formation confirmed autophagy occurred. Based on LysoTracker Red and acridine
orange, lysosome degradation was blocked, and lower expressions of lysosomal-associated membrane protein 2, cathepsins D,
and cathepsins L confirmed lysosomal damage. Concurrently, the nuclear factor erythroid 2-related factor 2 (Nrf2), kelch-like
ECH-associated protein 1 (Keap1), heme oxygenase 1 (HO1), and NAD (P)H: quinone oxidoreductase 1 (NQO1), and basilic
proteins associated with the Nrf2/Keap1 signaling pathway, were detected. Decreased keap1 and increased Nrf2, HO1, NQO1,
and reactive oxygen species (ROS) indicated increased oxidative stress. Treatment with N-Acetyl-L-cysteine (NAC), an ROS
inhibitor, decreased both oxidative stress and autophagy. Therefore, we concluded that S. lutetiensis caused intracellular
oxidative stress and autophagy in bMECs. In addition, crosstalk between autophagy and oxidative stress affected the
autophagic flux and blocked downstream autophagy. The Nrf2-keap1-p62 pathway participated in this process, with ROS
acting upstream of these effects, interfering with normal cell functions.

1. Introduction

Mastitis is highly prevalent in dairy cows [1], causing huge
losses. Bacterial infections, often Streptococci spp., are the
most common cause of mastitis [2]. S. lutetiensis, increas-
ingly isolated from milk (Chen et al., unpublished), caused
mammary gland edema and hyperemia, and we reported
that bovine-derived S. lutetiensis was often resistant to mul-
tiple antibiotics [3].

Autophagy is a catabolic pathway in eukaryotic cells to
remove intracellular organelles under extreme environ-
ments, to degrade damaged organelles, and control intracel-
lular bacterial infections [4]. There are three types:
macroautophagy (also called autophagy), microautophagy,
and chaperone-mediated autophagy [5]. Autophagy typi-
cally involves formation of autophagosomes, fusion between

autophagosomes and lysosomes, and lysosomal degradation
[6]. The term “autophagic flux” includes autophagosome
synthesis, delivery of autophagic substrates into the lyso-
some, and their subsequent degradation inside the lysosome
[7]. Groups A and B Streptococci induced autophagy [8, 9];
however, the ability of group D Streptococci to induce
autophagy has apparently not been reported.

An autophagosome is a double-membrane vesicle
involved in macroautophagy [10]. Lysosomes are
monolayer-coated vesicles containing various acidic hydro-
lases [11] that degrade pathogens in autolysosomes. Beclin
1 and Atgs initiate autophagy and can form complexes of sev-
eral proteins that regulate autophagosome maturation and
transportation [12–14]. As an essential regulator, beclin 1
ubiquitination-regulated autophagy is important in inflam-
mation [15]. In addition, lysosomal-associated membrane
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protein 2 (LAMP2) is a major component of the lysosomal
membrane [16], promoting membrane integrity and fusion
of autophagy vesicles and lysosomes [17]. Cathepsins D
(CTSD) and cathepsins L (CTSL) are the most abundant
lysosomal proteases [18]. Lysosomes need an acidic environ-
ment, with hydrolysis promoted by pH < 5:2 [11].

Reactive oxygen species (ROS) are highly reactive
oxygen-containing substances. Although ROS concentra-
tions are well regulated under physiologic conditions, if con-
trol mechanisms are disrupted, ROS concentrations can
increase and may cause damage or disease. ROS is an early
inducer of autophagy during nutrient deficiency [19] and
can promote degradation of ubiquitinated materials [20].

The antioxidant transcription factor, Nrf2 (nuclear fac-
tor erythroid 2-related factor 2), is activated by p62 in a
“noncanonical” pathway [21]. Nrf2 is an important tran-
scription factor regulating cellular redox homeostasis. Under
physiologic conditions, Nrf2 concentration is low, whereas
under oxidative stress, it is activated and translocated from
the cytoplasm into the nucleus [22]; this can trigger down-
stream target genes responsible for detoxification and elimi-
nation of harmful substances [23]. The protein expression
level of Kelch-like ECH-associated protein 1 (keap1) is a
negative regulator of Nrf2 [24]. There are indications of
interrelations between Nrf2 and p62 and that Nrf2 has a role
in dysregulation of autophagy [25].

We reported that S. lutetiensis adhered to, invaded, and
destroyed bovine mammary epithelial cells (bMECs) and
damaged murine mammary tissue [3]. However, roles of
autophagy and oxidative stress in S. lutetiensis-induced mas-
titis are unclear. In this study, we used an autophagy model
of S. lutetiensis-infected bMECs to assess oxidative stress and
autophagy flux.

2. Materials and Methods

2.1. Reagents and Antibodies. Acridine orange (AO) was
from Solarbio. N-Acetyl-L-cysteine (NAC) was from
Sigma. Bicinchoninic acid (BCA) protein assay kit and
enhanced chemiluminescence kit were from Cwbio. RIPA
buffer and LysoTracker Deep Red were from Beyotime
Biotechnology. For these compounds, catalog information
is listed in Table 1. Western blotting and immunofluores-
cence staining used the following primary antibodies: anti-
CTSL/major excreted protein and anti-CTSD from ABclo-
nal Technology; anti-light chain 3 (LC3) B from Beyotime
(Shanghai, China); anti-Sequestosome 1/p62 (SQSTM1/
p62), anti-glyceraldehyde 3-phosphate dehydrogenase
(GAPDH), anti-lysosome-associated membrane protein 2
(LAMP2), anti-β-actin, anti-α-tubulin, and anti-Beclin 1,
from Protein tech; and Peroxidase-Conjugated AffiniPure
Goat Anti-mouse IgG and goat anti-rabbit IgG from
Cwbio. Catalog and dilution information of these reagents
are listed in Table 2.

2.2. Bacterial Strain and Cell Culture. S. lutetiensis strain was
cultured in Brain Heart Infusion (BHI) broth at 37°C for
12 h. After reaching OD600 = 0:8‐1:2, bacteria were washed
three times with Dulbecco’s modified Eagle medium

(DMEM) without serum. The bovine mammary epithelial
cell line (MAC-T) was digested with trypsin for 2min at
37°C and centrifuged at 100 × g for 5min. The bMECs were
cultured overnight at 37°C in 5% CO2 without antibiotics in
DMEM, supplemented with 10% (v/v) heat-inactivated fetal
bovine serum (FBS) until cell density reached 80%.

2.3. CCK-8 Assay. MAC-T cells (~4,000 cells/well) were
inoculated into 96-well plates. After being infected with S.
lutetiensis (MOI = 100), a CCK-8 kit was used to evaluate
cell viability, in accordance with label protocols. After infec-
tion, 10μl of CCK-8 solution was added in each well and
incubated at 37°C for 2 h; finally, the absorbance was read
at 490nm (680 Multipurpose Microplate Reader, Bio-Rad
Laboratories).

2.4. Infection of bMECs with S. lutetiensis. Autophagy caused
by intracellular S. lutetiensis in bMECs was explored. Our
intracellular infection model was modified from a previous
study [24]. In the present study, bMECs seeded at 2 ×
105 cells/well in six-well plates were infected with fresh S.
lutetiensis grown with BHI broth, at multiplicity of infec-
tion (MOI) of 100. Cells were incubated for 2 h at 37°C
in 5% CO2 to allow bacterial uptake and invasion, then
washed three times with phosphate-buffered saline (PBS)
and DMEM/10% FBS with 100μg/ml gentamycin (bacte-
rial inhibiting buffer) added into each well to kill extracel-
lular bacteria. After changing the medium to DMEM/10%
FBS with 100μg/ml gentamicin, cells were incubated for
the indicated intervals at 37°C in 5% CO2. If not stated
otherwise, inhibitors were added to incubation buffer
(Figure 1(a)). To confirm the role of oxidative stress,
NAC was used to pretreat cells for 3 h, followed by expo-
sure to S. lutetiensis (MOI = 100) for 2 h and, finally, incu-
bation in medium with 100μg/ml gentamycin. The bMECs
were incubated in 1× NAC from the start of NAC pre-
treatment to cell harvest (Figure 1(a)).

2.5. Western Blotting. For Western blot analysis, after being
infected with S. lutetiensis for defined intervals, MAC-T cells
were collected and lysed with 200μl RIPA buffer (with 1%
phenylmethylsulfonyl fluoride) for 10min on an ice-plate,
then centrifuged at 12,000 × g for 15min and protein con-
centrations quantified with a BCA protein quantity reagent
kit. Equal volumes of lysates were separated by sodium
dodecyl sulphate-polyacrylamide gel electrophoresis and
transferred to a polyvinylidene difluoride membrane by
Wet blotting. Blots were blocked in Tris-buffered saline
(TBS) containing 5% skim milk powder. Membranes were
incubated with primary antibodies (Beclin 1, LC3 II/I, p62,
CTSD are referred to GAPDH, and LAMP2, CTSL, Nrf2,
Keap1, HO-1, and NQO-1 are referred to α-tubulin) at 4°C
overnight, washed with TBS buffer with Tween 20, then
incubated with secondary antibodies for 1 h at RT. Blotting
signals were detected with an enhanced chemiluminescence
Western blot detection system, images collected, and relative
band density analyzed with Image J software (NIH,
Bethesda, MD, USA).
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2.6. Enzyme-Linked Immunosorbent Assay (ELISA). The
superoxide dismutase (SOD) (Catalog: ml036559, mlbio,
Shanghai, China), malondialdehyde (MDA) (Catalog:
ml402351, mlbio), and glutathione (GSH) (Catalog:
ml063357, mlbio) contents in the proteins of MAC-T cells were
measured with an ELISA kit (mlbio), in accordance with label
instructions.

2.7. Transient Transfection. Autophagy flux was confirmed
by analyzing formation of fluorescent puncta of autophago-
somes and lysosomes in GFP-LC3- or mCherry-GFP-LC3-
transfected cells. In this study, MAC-T cells were transfected
with GFP-LC3 or mCherry-GFP-LC3 adenovirus, according
to label protocols. After treatment, cells were fixed with 4%
paraformaldehyde for 10min and dyed with Hoechst
33342 for 5min at RT. Confocal microscopy was used to
examine transfected cells, and representative cells were
photographed.

2.8. Transmission Electron Microscopy. To assess ultrastruc-
ture, cells were seeded on six-well plates infected with S. lute-
tiensis as described above, fixed in 4% paraformaldehyde in
PBS overnight at RT, postfixed in 2% osmium tetroxide,
dehydrated in a graded ethanol series (50, 70, 80, 90, and
100% for 15min each), and embedded in epoxy resin.

Finally, they were kept at 37°C for 12 h and 45°C for 24h
and, finally, cured at 60°C for 24 h. Ultrathin sections were
prepared, stained, and examined with a Zeiss TEM 910
(Zeiss, Oberkochen, Germany).

2.9. Acridine Orange (AO) and LysoTracker Red (LTR)
Staining. Cells were seeded on glass coverslips in six-well
plates infected with S. lutetiensis, as described above. Cells
were incubated in 5μg/ml AO or 100 nM LTR at 37°C for
30min and fluorescence signals detected with confocal
microscopy.

2.10. Measurement of Reactive Oxygen Species (ROS) Levels.
Intracellular ROS generation was monitored using a fluores-
cence probe dichloro-dihydro-fluorescein diacetate (DCFH-
DA). After treatment, cells were collected, washed three
times with PBS, and incubated in darkness with 100μM
DCFH-DA for 30min at 37°C. Cells were harvested, resus-
pended in PBS, and filtered through a 70μm filter. Flow
cytometry was used to measure ROS concentrations, based
on fluorescence intensity (FL-1, 530 nm) of 10,000 cells.
Meanwhile, the samples were detected with a fluorometric
reader Spectra Max i3x (MD, America) at 488 nm excitation
wavelength and 525nm emission wavelength.

Table 1: Reagent details.

Reagent Catalog no. Source City

Acridine orange A8120 Solarbio Beijing, China

N-acetyl-L-cysteine A7250 Sigma St. Louis, MO, USA

Bicinchoninic acid (BCA) protein assay kit CW0014S Cwbio Beijing, China

Enhanced chemiluminescence kit CW0049S Cwbio Beijing, China

Ad-GFP-LC3B C3006 Beyotime Shanghai, China

Ad-mCherry-GFP-LC3B C3011 Beyotime Shanghai, China

LysoTracker Red C1046 Beyotime Shanghai, China

CCK-8 CK04 Dojindo Kumamoto, Japan

Table 2: Antibody details.

Antibody Catalog no. Source City Dilution ratio

Anti-CTSD A13292 ABclonal Technology Wuhan, China 1 : 1000

Anti-CTSL A12066 ABclonal Technology Wuhan, China 1 : 1000

Anti-LC3B AL221 Beyotime Shanghai, China 1 : 1000

Anti-SQSTM1/p62 18420-1-AP Proteintech Wuhan, China 1 : 1000

Anti-GAPDH 60004-1-Ig Proteintech Wuhan, China 1 : 1000

Anti-LAMP2 AF1036 Beyotime Shanghai, China 1 : 1000

Anti-β-actin AA128 Beyotime Shanghai, China 1 : 2000

Anti-α-tubulin 66031-1-Ig Proteintech Wuhan, China 1 : 2000

Anti-Beclin 1 11306-1-AP Proteintech Wuhan, China 1 : 2000

Anti-Nrf2 16396-1-AP Proteintech Wuhan, China 1 : 1000

Anti-keap1 10503-2-AP Proteintech Wuhan, China 1 : 1000

Anti-NQO1 11451-1-AP Proteintech Wuhan, China 1 : 1000

Anti-HO1 10701-1-AP Proteintech Wuhan, China 1 : 1000

Goat anti-mouse IgG CW0102S Cwbio Beijing, China 1 : 3000

Goat anti-rabbit IgG CW0103S Cwbio Beijing, China 1 : 3000
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2.11. Immunofluorescence Staining. Cells were seeded on
sterile coverslips placed in 6-well plates. After cells were
infected with S. lutetiensis for 2 h, they were fixed in 4%
paraformaldehyde for 10min and then permeabilized with
0.2% Triton X-114 in PBS for 15min. After being washed
with PBS, cells were blocked with 3% BSA for 1 h at RT.
Slides were incubated with anti-α-tubulin antibody (1 : 200
diluted in PBS) overnight at 4°C and then incubated with

peroxidase-conjugated AffiniPure (diluted 1 : 100 in PBS)
second antibody for 1 h at 37°C, before nuclei and intracellu-
lar bacteria were stained with DAPI. Between steps, cells
were thrice-washed with PBS. Ultimately, all slides were
mounted with antifade mounting medium and examined
on a Nikon A1HD25 confocal microscope with a 100x oil
immersion objective. Imaging used laser wavelengths of
488 and 561nm.
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Figure 1: Our infection model of MAC-T cells was successful. (a) Schematic representation of our experimental design. (a1) MAC-T cells
were incubated with S. lutetiensis for 120min at 37°C; thereafter, extracellular bacteria were killed with gentamycin. Recording of the
experimental process started with time point 0 h postinfection (hpi). (a2) MAC-T cells were incubated with 1× NAC for 180min at 37°C,
then incubated with S. lutetiensis for 120min at 37°C. Afterwards, all extracellular bacteria were killed with gentamycin. Recording of the
experimental process started with time point 0 h postinfection (hpi). (b) Representative confocal images of invading S. lutetiensis and
localization of tubulin with DAPI. Magnification of the outlined area, showing details; “→” points to S. lutetiensis. Scale bars: 10 μm. (c)
Effects of S. lutetiensis invasion time on cell activity. Values are mean ± SD, n = 3, ∗p < 0:05. (d) Transmission electron microscopy.
Infected for 2 h with S. lutetiensis; “→” points to S. lutetiensis inside a double-layer membrane. Scale bars: 20μm.
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2.12. Statistical Analyses. All statistical analyses were per-
formed with Statistical Product and Service Solutions 19.0
software (SPSS Inc., Chicago, IL, USA). One-way ANOVA
was used to determine effects of group and time, andDuncan’s
multiple range test was used to locate significant differences.
For all statistical analyses, p < 0:05 was considered significant.
Results are expressed asmean ± standard deviation (SD). Data
were displayed with GraphPad Prism V8.0 (Data Analysis and
Graphing Software, San Diego, CA, USA).

3. Results

3.1. Successful Cell Infection Model. S. lutetiensis was
observed in MAC-T cells of the treated group but was absent
in the control group (Figure 1(b)). Based on the CCK-8
assay, continuous infection with S. lutetiensis at MOI = 100
for 2 h did not decrease cell activity (Figure 1(c)). However,
in ultrastructure images, S. lutetiensis was present in MAC-T
cells, and there was an autophagic vesicle membrane struc-
ture around the bacteria (Figure 1(d)).

3.2. Intracellular S. lutetiensis-Induced Autophagy. Infection
with S. lutetiensis substantially increased expression of
Beclin 1 (Figure 2(a)). Furthermore, in bMECs treated with
S. lutetiensis, conversion of LC3I to LC3II increased signifi-
cantly (Figure 2(b)), starting from the 1st hour postinfection
(hpi) and remaining elevated for the following 3h, when a
green fluorescent protein (GFP)-LC3 labeled autophago-
some was detected by confocal imagine (Figure 2(d)). Auto-
phagosomes (fluorescent spots) increased with interval after
infection. The protein expression level of SQSTM1/p62
tended to decrease at 0.5 hpi, and then increased from 1 to
3hpi (Figure 2(c)).

3.3. Autophagy Flux Disorder. To determine whether the
autophagy flux was blocked after infection with S. lutetiensis,
mCherry-GFP-LC3, which can label lysosomes, was trans-
fected into MAC-T cells (Figure 3). Yellow fluorescence
(green fluorescence merged with red fluorescence) became
increasingly prominent during the postinfection period, with
red mottled fluorescence peaking at 3 hpi (Figure 3(a)), and
yellow fluorescence spots quantified (Figure 3(b)).

3.4. S. lutetiensis Reduced Lysosomal pH. Infection with S.
lutetiensis increased LTR staining, consistent with lysosomal
acidification (Figures 4(a) and 4(b)). Red spots increased
over time and accumulated around the nucleus, from 0 to
3 h, with a modest decline at 4 h. After staining with AO,
the color changed over time. They changed from 1h, peak-
ing at 3 h, and a slight decrease at 4 h.

3.5. Degradation of Impaired Lysosomes. During the final
stages of autophagy, autophagosomes fuse with lysosomes
and are subsequently degraded. Thus, LAMP2 protein,
detected via Western blotting, decreased over time
(Figure 4(c)). Lysosome-related proteins CTSD and CTSL
were also detected (Figures 4(d) and 4(e)). All three kinds
of lysosome-associated proteins decreased over 3 hpi, indi-
cating lysosomal degradation was impaired after S. lutetien-
sis infection of MAC-T.

3.6. S. lutetiensis Activated the Nrf2-Keap 1 Pathway in
MAC-T Cells. Infection with S. lutetiensis decreased GSH
and SOD (Figures 5(a) and 5(b)), but increased MDA
(Figure 5(c)), essential indicators of oxidative stress. Regard-
ing protein levels of Nrf2, keap1, NQO1, and HO1, S. lute-
tiensis increased Nrf2 protein level, whereas the Keap1
protein level was significantly below baseline (Figures 5(d)
and 5(e)). HO-1 and NQO-1 are detoxifying enzymes with
important roles in Nrf2-regulated phase II; protein levels of
both were elevated over time in S. lutetiensis-infected cells
(Figures 5(f) and 5(g)). Between 1 and 2h after infection,
HO-1 had a transitory decrease, whereas NQO-1 had a slight
decrease at 4 h. Therefore, the Nrf2-keap1 pathway was
active when S. lutetiensis invaded MAC-T cells and induced
oxidative stress.

3.7. ROS Contributed to S. lutetiensis-Induced Autophagy in
bMECs. Oxidative stress is involved in S. lutetiensis-induced
autophagy in MAC-T cells. To detect a link between ROS
production and oxidative stress, ROS concentrations were
assessed. Both flow cytometry analysis (Figures 6(a)–6(c))
and fluorometric reader detection (Figure 6(d)) indicated
that S. lutetiensis increased oxidative stress and triggered
excessive ROS in MAC-T cells, with increased generation
of ROS infection. NAC, an inhibitor of ROS, was applied
to determine whether oxidative stress was implicated in
inhibition of autophagosome-lysosome fusion. Treatment
with NAC significantly decreased ROS in cells infected
with S. lutetiensis (Figures 7(a)–7(c)). In addition, treat-
ment for 2 h with S. lutetiensis (MOI = 100) induced a
time-dependent increase in ROS production, although the
effect was abolished at 4h (Figure 6(b)). In addition, NAC
abolished ROS production (Figures 7(a)–7(c)) and conse-
quently oxidative stress (Figures 7(d)–7(f)), with reductions
in extent of changes in GSH, SOD, and MDA. Furthermore,
Nrf2, HO-1, and NQO-1 were decreased significantly
compared to the treated group, whereas Keap1 protein was
recovered (Figures 7(g)–7(j)). We next assessed whether
ROS was involved in S. lutetiensis-induced autophagy. S. lute-
tiensis increased Beclin 1 protein level in bMECs, as well as the
LC3 II/I ratio and p62 degradation, whereas NAC prevented
these effects (Figures 8(a)–8(c)). The lysosomal protein
LAMP2 was decreased after infection, but after NAC, was
increased compared to the control group (Figure 8(d)). How-
ever, neither CTSD nor CTSL expression was significantly dif-
ferent between the treatment group and NAC-supplemented
group (Figures 8(e) and 8(f)). In addition, LTR fluorescence
was used to examine autophagosome-lysosome fusion
(Figure 8(g)). These results demonstrated that increased ROS
production was an upstream event contributing to S. lutetien-
sis activation of autophagy.

4. Discussion

S. lutetiensis invades cells to evade immune defenses and
survives within those cells [3]. Herein, the ability to induce
autophagy was achieved following optimization of S. lute-
tiensis dose in MAC-T cells, without compromising cell via-
bility. This model provided clear evidence that S. lutetiensis
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induced autophagy in MAC-T cells by increasing oxidative
stress and that there was a close relationship between oxida-
tive stress and autophagy. Furthermore, these findings pro-
vided insights into potential mechanisms underlying S.
lutetiensis-induced autophagy (Figure 9).

In this study, S. lutetiensis was regarded as a repelling
substance; the classical vesicles of autophagosome compart-
ments were observed and engulfed by an autophagosome,
typical characteristics indicating the host activated its
defense mechanism, including initiation of autophagy [26].
Moreover, Beclin 1, which is essential for both autophagy
and lysosomal enzyme transport [27], was increased after
infection with S. lutetiensis. Furthermore, LC3 II, an autoph-

agy marker with levels related to the intensity of autophagy
[28], uses GFP-LC3 for confirming autophagy accumulation
[29]. Therefore, expression of LC3 II was assessed by GFP-
LC3 detected with confocal microscopy after MAC-T cells
were infected with S. lutetiensis, with a time-independent
tendency for green spots. Collectively, all of these outcomes
indicated that S. lutetiensis induced autophagy.

SQSTM1/p62 acts as a relative protein to mediate degra-
dation of its recognition substrate [30, 31]. Excessive build-
up of SQSTM1/p62 sequestered keap1, an adaptor of the
E3-ubiquitin ligase complex for Nrf2 [32]. In the present
study, expression of SQSTM1/p62 protein began to rise from
the second time point (0.5 h after infection) during S.
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Figure 2: Intracellular S. lutetiensis-induced autophagy. (a–c) Protein level of Beclin1, LC3, and p62 in MAC-T cells with various
treatments, with quantitative analysis under Western blotting bands. Data are mean ± SD, n = 3, ∗ represents significance with the 0 h
group, ∗p < 0:05. (d) Formation of GFP-LC3 puncta was observed with confocal microscopy. Scale bars: 20μm.
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lutetiensis infection in bMECs. Meanwhile, expression of
Nrf2 increased, whereas keap1 decreased from 0 to 3hpi,
consistent with previous studies [24]. The mCherry-GFP-
LC3 is an adenovirus probe to detect the rate of autophagic
flux [33]. In this study, accumulation of yellow fluorescence

was observed by mCherry-GFP-LC3 after S. lutetiensis infec-
tion, indicating that the autophagic flux was blocked at
fusion of autophagosomes and lysosomes. In addition, S.
lutetiensis induced increases in the LC3 II/I ratio and p62
degradation, providing further support for autophagy
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Figure 3: Autophagy flux disorder. Cells were grown on coverslips and transfected with mCherry-GFP-LC3 at MOI = 20 for 24 h, then
infected with S. lutetiensis for various intervals to monitor the autophagic flux; (a) representative confocal images. Scale bars: 20 μm. (b)
Quantity of autophagolysosome (mean ± SD, n = 3, ∗ represents the significance between adjacent time points, ∗p < 0:05, ∗∗p < 0:01).
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induction. Moreover, LAMP2 labelling, as well as cell stain-
ing with AO and LTR, demonstrated that S. lutetiensis weak-
ened lysosomal activity.

Autophagy formation is the first step of autophagy flux.
In this step, autophagosomes can fuse with lysosomes or late
endosomes and then fuse with lysosomes [34]. Lysosomal
degradation is an essential factor for autophagy flux, and a

slightly acidic environment for lysosomes promotes proteo-
lytic enzyme degradation of organelles [35]. LTR is a reliable
probe to detect changes in intercellular pH, as it accumulates
in an acidic environment, with the intensity of red fluores-
cence corresponding to the pH [36, 37]. In addition, AO is
a specific probe that can be trapped in lysosomes [38]. In
the present study, the intensity of LTR peaked at 3 h after
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S. lutetiensis infection, with AO staining having a similar
outcome. These two approaches both provided evidence that
lysosomes accumulated due to a blockage of the downstream
autophagy flux, which differed from a report that group A
Streptococcus was efficiently killed within a lysosome-fused
autophagosome compartment [9].

Cathepsins are the major lysosomal proteases involved
in autophagic degradation, wherein CTSD and CTSL are
two abundant lysosomal proteases [39]. When activation of
cathepsin proteases requires acidification, the altered pH
decreased protein degradation [40]. CTSD is involved in
intracellular catabolism in lysosomal compartments [41]; by
activating CTSB, CTSL can hydrolyze proteins, hormones,

and phagocytic bacteria [42]. In this study, expression of
CTSD and CTSL decreased initially, but subsequently recov-
ered to a basal level, indicating that intracellular invasion of
S. lutetiensis had a negative effect on lysosomes, and cathep-
sins had self-healing ability.

As an essential mechanism for eliminating damaged
organelles and exogenous foreign body, autophagy is regu-
lated by various cellular process such as nutrient deficiencies,
oxidative stress, and other influencing factors [43]. Autoph-
agy and oxidative stress in a S. lutetiensis-infected model
have apparently not been reported. Herein, we determined
that oxidative stress had an essential role in S. lutetiensis-
induced cyto-injury. As a transcription factor, Nrf2 regulates
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a cluster of oxidative stress-inducible genes in cells. There is
considerable evidence that the Nrf2-Keap1 antioxidant
system has an important cytoprotective defense mechanism
in alleviating oxidative insults [44, 45]. Meanwhile, Keap1
can indirectly assess activation of Nrf2, as the Nrf2-Keap1
pathway is a regulator for the endogenous antioxidant
response [46]. Therefore, Nrf2-Keap1 system integrity is
maintained by an autophagy pathway [47], and activation
of Nrf2 is prolonged if autophagy is disrupted [25]. In
response to oxidative stress, Nrf2 transcription factor could
induce expression of p62 [48, 49]. Our study implied that
transportation of oxidized proteins to autophagosomes for
degradation can decrease oxidative injury. In response to
oxidative stimuli, keap1 lost its ability to bind with Nrf2.
Therefore, we speculate that Nrf2 may enter the nucleus
and bind to the antioxidant response element (ARE), to
further regulate downstream genes HO-1 and NQO-1, as
they are key oxidative stress indicators regulated by Nrf2
[24]. Furthermore, HO-1 and NQO-1 proteins in MAC-T
cells were elevated after S. lutetiensis infection. Recent
research demonstrated that NAC could block ROS produc-
tion and further reversed LC3 II accumulation which trig-

gered by coenzyme Q0, and the same mechanism of NAC
also occurred in chrysin-induced autophagy [50, 51]. We
used NAC, an efficient ROS inhibitor [52, 53]. Modulation
of antioxidant enzymes (SOD, GSH, and MDA) indicated
inhibition of oxidative stress. Meanwhile, expression of
NQO-1 and HO-1 was restored to basal levels; therefore,
we inferred that Nrf2 may be a key cytokine in oxidative
stress and autophagy.

As arguably the most influential intracellular signaling
molecule, ROS regulates cell function and promotes
homeostasis [54]. There are indications that oxidative stress
can be a vital stimulus, via regulation of ROS, to stimulate
autophagy [21, 55]. Autophagy and oxidative stress have an
intricate relationship in many diseases [26]; hyperthermia
can enhance both autophagy and ROS generation, implying
potential associations between autophagy and oxidative
stress [56]. Moreover, several studies reported the relation-
ship between oxidative damage and autophagy [57],
although this has apparently not been reported in bMECs.
In this study, ROS were rapidly produced after exposure
to S. lutetiensis. Notably, after 2 h, S. lutetiensis induced
accumulation of LC3II and degradation of p62, suggesting
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Figure 9: Putative signal pathway of S. lutetiensis inducing autophagy in bovine mammary gland epithelia though oxidative stress.
Schematic diagram illustrating that S. lutetiensis can invade MAC-T cells and lead to autophagy by stimulating mitochondrial oxidative
stress. In this process, the ROS-Nrf2-keap1 pathway has an essential role. ROS is upstream of these effects. Black arrows and red bars
indicate stimulation and inhibition, respectively.
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that ROS generation preceded initiation of autophagy.
Furthermore, NAC effectively blocked autophagy activation
by S. lutetiensis. As a main component of oxidative stress,
ROS could be the link between autophagy and oxidative
stress in bMECs.

The current study, apparently the first investigation of
the role between autophagy and oxidative stress induced by
S. lutetiensis, identified crosstalk between autophagy and
oxidative stress. The limitation of this study was that an
in vitro bMEC infection model was used to evaluate autoph-
agy and oxidative stress. In future studies, we plan to investi-
gate whether similar interactions occur in vivo in mammary
tissue.

5. Conclusions

We characterized autophagy induced by oxidative stress in
bMECs infected with S. lutetiensis isolated from bovine mas-
titis. We concluded that S. lutetiensis induced autophagy of
bMECs by upregulating oxidative stress, although lysosomes
accumulated due to a blockage of the downstream autoph-
agy flux. In this process, there was crosstalk between autoph-
agy and oxidative stress; the latter affected autophagy by
intervening in the Nrf2-keap1-p62 pathway, with ROS act-
ing upstream of these effects.
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