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Abstract

In network neuroscience, temporal network models have gained popularity. In these

models, network properties have been related to cognition and behavior. Here, we

demonstrate that calculating nodal properties that are dependent on temporal com-

munity structure (such as the participation coefficient [PC]) in time-varying contexts

can potentially lead to misleading results. Specifically, with regards to the participa-

tion coefficient, increases in integration can be inferred when the opposite is occur-

ring. Further, we present a temporal extension to the PC measure (temporal PC) that

circumnavigates this problem by jointly considering all community partitions assigned

to a node through time. The proposed method allows us to track a node's integration

through time while adjusting for the possible changes in the community structure of

the overall network.
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1 | INTRODUCTION

Quantifying the time-varying properties of a network often utilizes a

multilayer network approach of temporally ordered “snapshots” con-

sisting of connectivity matrices through time (i.e., temporal network

theory; Holme & Saramäki, 2012; Kivelä et al., 2014). This approach

answers questions about how nodes, edges, and communities in a

network fluctuate over time. In recent years, such temporal network

approaches have increased in neuroimaging yielding new insights

about the brain (Shine & Poldrack, 2018). Importantly, to generate

knowledge about an underlying empirical network, the temporal net-

work measures must be mapped back to, or interpreted in terms of,

the phenomenon they are modeling.

There are many metrics available for quantifying topological fea-

tures of nodes within temporal networks. Some measures are tempo-

ral extensions of static measures (e.g., TempoRank is a temporal

extension of PageRank [Rocha & Masuda, 2014]). Others apply static

measures to each temporal snapshot (e.g., Bola & Sabel, 2015 found

changes in rich club coefficients applied to multiple time points). In

this latter case, it is essential to ensure that the interpretability or clar-

ity of the measure is not changed or distorted when used

through time.

The participation coefficient (PC) is an example of a static net-

work measure used in time-varying contexts that is applied to multiple

temporal snapshots. Briefly, the PC quantifies the diversity of a node's

connections to other nodes across a community partition (Guimerà &

Nunes Amaral, 2005). The community partition groups different nodes

based on a grouping property (e.g., modularity, when tightly con-

nected nodes form modules [Newman & Girvan, 2004]). Importantly,

the PC for any given node is relative to the community partition used

to calculate it (Figure 1a); if the community partition changes, then

the PC may also change. In the two examples in Figure 1a, the shaded
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node has the same edges, but the communities are different, entailing

that the PC changes.

Community partitions can also be calculated through time. Tem-

poral communities can merge, split, disappear, and reappear through

time (Granell, Darst, Arenas, Fortunato, & Sergio, 2015). In the brain,

the community structure has been shown to change in response to

task and cognitive demands (e.g., Braun et al., 2015; Thompson,

Wright, Shine, & Russell, 2019; Vatansever, Menon, Manktelow,

Sahakian, & Stamatakis, 2015).

Considering the above, it is understandable that many previous

studies have applied the PC through time while using temporal com-

munities (e.g., Betzel, He, Rumschlag, & Sporns, 2015; Fukushima,

Betzel, He, & van den Heuvel, 2018; Fukushima & Sporns, 2018;

Pedersen, Omidvarnia, Jackson, Zalesky, & Walz, 2017; Rizkallah

et al., 2019; Shine et al., 2016; Shine, van den Brink, Hernaus,

Nieuwenhuis, & Poldrack, 2018; Tanimizu et al., 2017; Xie et al.,

2018). However, a problem with the interpretation of the PC emerges

when comparing two (or more) snapshots of a network with different

community partitions. When community boundaries are allowed to

fluctuate, the PC estimates through time are calculated relative to dif-

ferent community contexts. Here we argue that calculating PC per

time point with a temporal community structure does not necessarily

quantify its intended property of integration. As a result, the crucial

link between the quantified measure and its mapping to the empirical

phenomenon breaks down. Consequently, definitive conclusions can-

not be drawn about what is happening in the brain.

We demonstrate this problem on toy network examples and then

using resting-state fMRI data. Finally, we propose a new method—the

temporal PC (TPC)—that takes into account various community parti-

tions calculated over time.

2 | METHODS

2.1 | Data used and data accessibility

We used data from the Midnight Scan Club resting-state fMRI (Gor-

don et al. 2017) that is publicly available onopenneuro.org

(ds000224). The data is available after both preprocessing and den-

oising steps have been performed (see Gordon et al. 2017 for details

of these steps). The data consists of ten subjects that underwent ten

resting-state fMRI runs. One subject was excluded due to substantial

artefacts. We extracted time series from 200 functionally-defined par-

cels (Schaefer et al.2018).

F IGURE 1 Different ways to calculate the participation coefficient (PC) through time. The PC for the shaded node is below each network/
temporal snapshot. The border of each node and the colored backgrounds show the assigned community of each node. In this example, there are
two different possible edge weights. (a) Two examples of the PC, illustrating how the measure is calculated relative to the community partition.
(b) An example of PC calculated when applying a static community template across multiple temporal snapshots (PCS). (c) An example of PC
calculated when applying a temporal community partition to multiple temporal snapshots (PCT). PC values between time points cannot be directly
compared due to differences in community structure obtained for each time point. (d) An example showing that changes in community partitions
over snapshots may result from changes in edges that do not directly connect to the node of interest. The difference in community partition is
the result of changes in the nodes in the blue community. These changes affect the PC of the shaded node despite the fact that there was no
change in its connectivity
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2.2 | Time-varying connectivity estimation

We estimated time-varying connectivity using weighted Pearson cor-

relations for each time point. Weights were determined by using the

Euclidean distance between all other time points. Briefly, the method

creates a T × T matrix containing the distance between all nodes at

each time point. At t, the corresponding row of the distance matrix

becomes a weight vector for the connectivity estimates at t. The

weight vector (W) is then are first converted into a similarity matrix

(1-W) and then scaled between 0 and 1. This vector is then used as

the weights in the covariance matrix to create a weighted Pearson

estimate of each edge at each time point (see Thompson, Brantefors, &

Fransson, 2017 for more details). Comparatively, the sliding window

approach uses “temporally nearby” time points to support its connec-

tivity estimates when estimating the covariance, this method uses

“spatially nearby” time points to support its connectivity estimate (see

Thompson & Fransson, 2018 for illustrations). We selected this

method of functional connectivity estimation because it performs well

(second place) at tracking a fluctuating covariance through time in

simulations (Thompson, Richter, Plavén-sigray, & Fransson, 2018). The

method that was ranked first—the jackknife correlation—was not cho-

sen here because it calculates a time series of “differences in connec-

tivity” which has a different interpretation than most other methods

and deemed inappropriate for the method-independent conclusions

that we intend to make.

Prior to calculating the Louvain community detection and the PC,

all edges below 0 were set to 0. While there are ways to calculate the

PC and communities with negative edges, this is a common step that

many of the cited studies we are addressing do.

2.3 | Quantifying community structure

We calculated the temporal communities using the Louvain algorithm

(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) with a resolution

parameter of 1. Temporal consensus clustering was performed by

assigning communities at time t-1 with the same label as the commu-

nity at time t that had the smallest Jaccard distance (Lancichinetti &

Fortunato, 2012). We also calculated static functional connectivity

using Pearson correlations and a static community partition with the

same parameters as the temporal communities.

2.4 | Static PC

The PC is defined by Guimerà & Nunes Amaral, (2005) as:

Pi = 1−
XNm

s

kis
ki

� �2

where i is a node index and NM is the number of communities. kis is

the within-community degree, and ki is the overall degree of node i.

2.5 | The PC through time with static
communities (PCs)

When calculating the PC through time, with static communities, the

equation is:

Pit =1−
XNm

s

kits
kit

� �2

Here, we see temporal subscripts for the participation and the

degree of the nodes. Note that, there is only one community partition

used for all time points.

2.6 | The PC through time with temporal
communities (PCT)

The PC with temporal communities is:

Pit =1−
XNmt

s

kits
kit

� �2

Above, we are summing over the communities Nmt which is the

number of communities found at time point t. This method uses a

community partition calculated separately per time point.

2.7 | Temporal PC

The TPC that we introduce is:

Pit =1−
1
T

XT

u

XNmu

s

kits
kit

� �2

Here, we have added that all temporal community partitions are

considered for each time point. See the results section for the motiva-

tion behind the TPC.

We abbreviate the different PC methods as follows: “the static

participation coefficient” (static PC), “the participation coefficient per

time point with static communities” (PCS), “the participation coeffi-

cient per time point with temporal communities” (PCT), and “the tem-

poral participation coefficient” (TPC).

2.8 | Additional network measures

We also related the different participation measures to different network

estimates throughout the article to help interpret what the changes in par-

ticipation means for the network. The additional measures we used were:

(a) flexibility (the percentage of times where a node changes its community,

Bassett et al., 2011); and (b) within-module degree z-score (z; z-score of

node's degree within its community, Guimerà & Nunes Amaral, 2005). We
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calculated z in two ways: using static communities (zS) and using temporal

communities (zT). We combined the different z estimates with their meth-

odological participation counterpart (i.e., zS is used with Ps).

2.9 | Illustrating the methodological choices do not
impact the conclusion

To ensure that our concerns about PCT generalize across different

methods, we replicated part of the analysis (Figure 5a) by changing some

methodological choices: (a) the time-varying connectivity estimation

method, and (b) the community detection algorithm. As an alternative

time-varying connectivity estimation method, we used the multiplication

of the temporal derivative (MTD) method (Shine et al., 2015). This

method multiplies the temporal derivatives of each pair of time series

and applies a smoothing parameter that averages over ±4 time points.

When changing the community detection algorithm, we applied the

“temporal community by trajectory clustering” method (TCTC)

(Thompson et al., 2019, with parameters: ϵ: 0.5, σ: 5, τ: 5, κ: 1). Since this

community detection is multilabel, we forced a single label partition by

applying the Louvain algorithm (resolution parameter: 1) to drive each

node into a single community.

3 | RESULTS

3.1 | Different reasons underlying changes in PC
through time

Here, we illustrate the potential problem introduced when calculating

the PC through time on toy network examples. Consider a time series

of PCs when the community partition is static (Figure 1b). For the two

different temporal snapshots, there is a change in the edges of the

shaded node, which changes the PC of that node. Specifically, in the

second snapshot, the connections of this node have become evenly

distributed across all communities. We can easily relate the two PC

values for the two different snapshots to each other, and it makes

sense to interpret the increase PC as an increase in the node's interac-

tion with communities outside of its own.

If instead, the community partition varies over time (Figure 1c), the

changes in edges lead to the shaded node being classed as part of the blue

community instead of the red community. The node's PC, in light of this

change in community membership, is reduced. This decrease happens

because the node changes community membership when it increased its

connection strength with the blue community. Hence, the interpretation of

a time series of PCs as reflective of a change in intracommunity connec-

tions is impeded by the extent the community structure is changing over

time. The problem is that the PCT values in a time-series can no longer be

directly compared without additional information to understand how the

abstract measure maps back to the external phenomenon.

A possible objection to this criticism of PCT is that the temporal com-

munities are calculated on the edges themselves, entailing an interconnec-

tion between the community context and edge context of a node. This

objection does not adequately take into account how communities are

generally calculated. Communities take into account the “global edge con-

text” (i.e., all edges in a network and how they relate to each other)

whereas the PC only considers the “local edge context” (i.e., all edges con-

nected to one node). There is no necessary relationship between these

two (exemplified in Figure 1d). A node's strength can increase with no

effect on the community partition. Alternatively, a node can change its

community assignment with no change to its own edges.

3.2 | Misleading network-level interpretations of
PC with temporal communities

We have demonstrated that community context affects a node's PC

when quantified at multiple snapshots. Here, we show how PCT can

cause misinterpretations. To address this, we must first consider what

property that PC tries to identify. In its introduction by Guimerà and

Nunes Amaral (2005), they claim that “[t]he participation coefficient Pi

measures how ‘well-distributed’ the links of node i are among differ-

ent modules” (p. 897). This property of “well-distributed” edges has

been interpreted as the integration within network neuroscience when

applied to static functional connectivity. For example, Bertolero et al.

(2017) interpreted their results regarding PC as: “nodes with high PCs

integrate information and coordinate connectivity between communi-

ties” (p. 2). Likewise, Power et al. (2013) stated that the PC's interpre-

tation relates to information spanning multiple different systems: “If a

node has a high participation index […] we infer that such nodes likely

have access to a variety of types of different information processing

represented among different systems” (p. 808). PCT kept the same

interpretation when applied in time-varying contexts. Shine et al.

(2016) stated that they identified “functional states that maximize

either segregation into tight-knit communities or integration across

otherwise disparate neural regions” (p. 544) where the integration

was calculated using PCT. Thus, from its network science origins, to

static functional connectivity in network neuroscience, to time-

varying connectivity, the PC has consistently been used to quantify

the integration of nodes in a network.

We will now show that multiple estimates of PCT do not identify

moments of increased integration for a node. Consider the toy net-

work shown in Figure 2a. Here we have two different time points

where the community context changes. In this toy example we have,

for simplicity, only marked edges that increase or decrease at the sec-

ond time point relative to the first. We have selected nodes from this

network and identified if, with PCS and PCT, they exhibit increased

integration, segregation or no change in regards to the previous time

point (Figure 2b). Note how PCT assigns increased participation, and

thus interpreted as having higher integration, to the node marked in

blue in Figure 2b. The difference between the network at Time 1 and

Time 2 is the blue community which has split into two smaller com-

munities. Following the interpretation that integration represents the

information processing across different communities (e.g., quote by

Power et al. 2013), it is hard to consider a split in community structure

due to a decrease in the magnitude of edges as increased integration.
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Likewise, the temporal community of the red node has extended in

the second time point (Figure 2b, Time 2). This extension of the com-

munity can be interpreted as the red node sharing similar information

with more nodes due to the increase in edge weights (i.e., integration).

However, PCT will ascribe a low score and interpret less integration at

the second time point. In both these examples, PCS provides the

opposite interpretation to PCT. Given the definitions of integration,

we see that moments of increased PCT cannot be interpreted as

moments of more integration in the brain.

Note that, there is nothing mathematically wrong with each PCT

estimate in isolation—each estimate is indeed correct. The problem

lies when contrasting PCT estimates with each other and inferring

F IGURE 2 The different PC calculation methods lead to different interpretations of the network's organization. (a) An example network
consisting of multiple communities for two time points. The figure shows both a temporal community partition and a static community partition.
Red lines at time point 2 indicate an increase in connectivity, and blue lines indicate a decrease. (b) Different types of nodes from (a) are
highlighted. The accompanying table states how these nodes at time point 2 will be quantified relative to time point 1 with static or temporal
communities for the participation coefficient (PC) and within-module degree z-score (z). (c) The difference in PC and z for nodes in the static and
temporal for all nodes/time points for one subject/run in the MSC dataset. The red, blue, and green quadrant corresponds to the interpretations
found in (b). (d) Density plot showing the difference in PC versus PCS for the example session/subject in (c). (e) Same as (d) but the difference in
PC versus PCT. (f) Same as (d) but for all sessions/subject. (g) Same as (e) but for all sessions/subjects. All density plots have a logarithmic color
scale. (h) The PCS through time for an example subject/session/node. The color of the time series is to assist understanding of Panel (k) and
changes as the time series progresses. (i) Same as (h) but for the PCT. (k) The PCS and PCT from panels (h) and (i) plotted against each other. The
color of each point corresponds to the time illustrated marked in (i,h). (l) Depiction of the example node used in Panels (h–k)
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changes in integration across time. When quantifying a time series of

participation estimates, it is typical for such between time point infer-

ences to be made.

Do situations where PCS and PCT have flipped interpretations

occur on empirical data (i.e., situations demonstrated in Figure 2b)? To

test this, we calculated the difference between PCT and PCS and

between zT and zS on an example subject's resting-state fMRI data

(Figure 2c). In the figure, the colored quadrants represent situations

similar to Figure 2b's node examples. Here, the red quadrant indicates

that they would have “more integration with static communities, more

segregation with temporal communities” and vice versa for the blue

quadrant. A large portion of the nodes (example session/subject:

75.59%; all subjects: 66.08%) end up in the red and blue quadrants,

entailing that they have alternative interpretations about what is

occurring in the network when using PCT and PCS methods.

A possible critique of the foregoing analysis is that the differences

we highlight reflect a well-known negative relationship between PC and

z and we are merely illustrating small deviations between the two

methods while preserving the static relationship. However, our argument

is that different time points receive substantially different interpretations

between the two PC methods, and not to draw any conclusion about

the overall negative relationship between the differences of PC and z.

To clarify this, we found that when difference in PC is large, then either

PCT or PCS will have high participation (Figure 2d–g). Thus, we see that

the two PC methods are interpreting time points differently which is all

we are trying to establish in this section. For completeness, we further

show the PC trajectories through time for a single node (Figure 2h–k).

The time series for PCS (Figure 2h) and PCT (Figure 2i) are ostensibly dif-

ferent. Contrasting the two (demeaned) example time series highlights

that PCT has multiple peaks of participation when PCS interprets the time

point as average or below in participation (Figure 2j).

In sum, we have shown that there is a divergence between the

methods. This divergence entails that PCS and PCT give different inter-

pretations about a node's role in the network through time. Further,

we have shown that differences in PCT across time do not map to

increases in integration. Thus, given the PC's long history with being

used to quantify the amount of integration in the brain, using PCT will

lead to misinterpreting results. Importantly, PCS does not suffer from

this problem as it uses the same reference community. However, the

temporal community information is discarded, leading us to our possi-

ble modification of PC to allow for temporal communities.

3.3 | PC in relation to all temporal communities

Given the substantial evidence for temporal changes in community

structure, there is an understandable desire to calculate the PC with

fluctuating communities. We present a possible solution to the problem

outlined above: the TPC. The crux of the problem is that the PC of a

node is relative to the community partition. If instead, each PC esti-

mate considers all possible community partitions that the node has

been assigned, then the multiple PC estimate will be comparable across

time points as each estimate is now relative to the same community

context (Figure 3). Specifically, TPC considers how a node is participat-

ing relative to all possible community structure it can have. In Figure 3,

each TPC estimate is calculated relative to both community contexts

and then averaged, entailing that the shaded node at the second time

point has more participation compared to the first time point (contrast

to PCT in Figure 1). As both time points are considered relative to both

community contexts, these values can now be compared.

The motivation behind TPC is to have all time points compared to

the same community context (like PCS) but to retain the temporal

information inherent in community fluctuations (used in PCT). Perhaps

this logic seems counter-intuitive as it entails using community parti-

tions that do not fully reflect the snapshot. However, this is also the

same logic as PCS, as it applies a static community partition to each

time point that does not fully reflect the community structure at each

snapshot. The only difference here is that TPC utilizes multiple com-

munity partitions instead of a single partition.

TPC quantifies a node's activity in relation to all communities that

it could potentially be in. Consequently, if a single large edge at t1

merges two communities and, at t2, only that edge decreases such

that the community splits, TPC will always assign higher participation

to t1. Since all time points use the same community information, it is

mathematically impossible for any time point that decreases all of its

edge weights to get higher participation—this guarantee is not possi-

ble for PCT. Thus, TPC can utilize all community contexts but avoids

the problematic applications shown for PCT in the previous section.

There is one crucial assumption when applying this method,

namely that the community structure can recur again through time.

This assumption means that the same or similar community partitions

will be found at later time points. In a network like the brain, this is

reasonable, and it is a basic assumption that is made in all psychologi-

cal experiments where the task is repeated (see discussion for when

F IGURE 3 The temporal participation coefficient (TPC). To
calculate the TPC, PC is calculated per time point, taking into account
all possible community contexts the node can be in. PC value
calculated for each possible temporal community context is shown
under each network. These are then averaged together. This fix
makes PC of the shaded node comparable across time points as they
have been compared against the same community contexts
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this assumption breaks down). Without this assumption, it becomes

unfair to use earlier or later community partitions to analyze a node's

PC in a snapshot as if it was in another community.

3.4 | Nodes with high static PC change
communities the most

We have presented a theoretical problem, and illustrated how it could

lead to differences in interpretation. We have also proposed a fix that

does not suffer from interpretation problems. However, it could be

the case that there is no difference when applying TPC versus PCT.

We begin by asking the question: how are nodes with high static PC

affected by the temporal community partitions? If nodes with high partic-

ipation have little change in their community context, the problem we

raise may be redundant. To clarify this, we compared the flexibility with

the static PC (Figure 4a,b). Here, we see that nodes with high participa-

tion also increase their flexibility. If nodes with high participation always

remained in the same communities, calculating PC with temporal com-

munities would be less problematic. Nodes that switch temporal commu-

nities have high static PC. We have not proven which participation

method should be preferred here. However, this relationship that the

changes in communities are affecting nodes with high participation which

will help us understand any differences between participation methods.

3.5 | Divergence of the different methods

Now, we contrast PCT with the TPC to see whether they compute

similar values or whether they diverge. First, we begin by considering

all time points and all nodes together. A heteroscedastic relationship

between the two coefficient emerges (Figure 4c,d, Bartlett test for

heteroscedasticity: all subjects: T = 153,221.9, p < .001; example sub-

ject: T = 1902.3, p < .001). This heteroscedastic relationship entails

that, while both methods may identify points that have the highest

participation, the relationship quickly breaks down. For completeness,

Supplementary Figure S1 shows the correlation between both PCT

and TPC with PCS. It can be observed that the extent of the hetero-

scedastic spread is largest for PCS and PCT.

To quantify the extent to which the methods diverge, we consid-

ered two different questions: (a) do the time-series of PCs correlate

with each other?; and (b) if selecting the top x% of time points to be

marked as candidate temporal hubs for the different methods, do the

selections intersect? The time series of PCS and PCT did not correlate

highly (Spearman rank [ρ]: median: 0.30, SD: 0.21, min: −0.44,

max: 1.0, Figure 5a), especially compared to PCS and TPC (Spearman

rank: median: 0.96, SD: 0.19, min: −0.80, max: 1.0, Figure 5b). TPC

also did not correlate highly with PCT (median: 0.32, SD: 0.21, min:

−0.37, max: 1.0, Figure 5c). Note that, the descriptive statistics in both

PCT and PCS with TPC, the minimum values can be negative, but the

number of these negative correlations is few in number (hence not

visible in Figure 5b,c). In sum, these correlations show that TPC and

PCS correspond the most with each other through time. However,

while there is generally a positive correlation between TPC and PCS

time series, some of the time series differ quite radically (i.e., min cor-

relation value is −0.80). This illustrates that these two methods can

produce very different results for some nodes.

Taking the average PC over time for the various methods, the

correlation between the methods is high for all combinations (PCS and

PCT: 0.91; PCS and TPC: 0.91; PCT and TPC: 1.0). This shows that the

average PC over time is similar across methods. Thus, the divergence

of the methods is primarily with the fluctuations through time.

F IGURE 4 Differences between TPC
and PCT. (a) Static participation
coefficient (PC) versus the flexibility for
one subject/session. (b) Same as (a) but
for all subjects. (c) Temporal PC versus
the PC per time point with temporal
communities for one subject/session.
(d) Same as (c), but for all subjects. All
color bars show density on a 100 × 100

grid. Panels (b–d) show logarithmic range
between colors
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The correlation between PC time series does not mean that the

same nodes or time points will be candidate hubs. For each method,

we then identified the highest 5, 10, and 20% of values for both for

the top time points for each node (Figure 5d) and when concatenating

across all nodes (Figure 5e). If we try and find when each node has its

highest participation, we find that PCT has more unique nodes. When

pooling all nodes and time points together, the overlap of all three

methods reached over 60% with larger thresholds, but was under

40% for lower thresholds. Finally, we also observed that the TPC and

PCS overlapped the most (reaching 80% of nodes in some instances

and always over 60% when combining the paired and triple intersec-

tions). This overlap is reassuring for TPC as we know PCS is a valid

method. Moreover, the divergence that happens between the TPC

and PCS with static communities is due to the TPC utilizing the tempo-

ral community information.

Finally, we replicated Figure 5a by changing the time-varying con-

nectivity method (to MTD) (Supplementary Figure S2a) and by chang-

ing the community detection algorithm (to TCTC) (Supplementary

Figure S2b). The general pattern remains when contrasting Figure 5a

with these other methods. While the distributions changed shape for

PCS and TPC, the peaks of the distributions remained in the same

order as Figure 5a. More importantly, there is no sizeable

improvement with PCT's correlations with the other methods, entailing

that the interpretation problem with PCT persists. In sum, methodo-

logical variability does not induce the problems we have raised in this

article.

4 | DISCUSSION

We have outlined why PCT misleads interpretations when contrasting

different temporal snapshots. Further, we have proposed the TPC,

which allows for across time points comparisons without impeding

the interpretation. Finally, we have also shown that these methods

diverge in how much nodal time series correlate and which nodes will

be considered hubs. The extent of the divergence between PCT, PCS,

and TPC will depend on how much the communities fluctuate, the

community detection algorithm, the parameters used in the commu-

nity detection, and time-varying connectivity method. However, when

changing both the time-varying connectivity method and community

detection algorithms, PCS and TPC were consistently the closest to

each other, illustrating that PCT diverges the most.

Measures of network neuroscience aim to increase our under-

standing about the organization of the brain. Our results show that

F IGURE 5 Comparison of the hub
overlap for three different participation
coefficient (PC) methods. (a–c) The
histograms of correlation values for each
time series for different participation
methods. Histograms show all nodes,
sessions, and subjects. (d,e) The
intersection of high participation
coefficient from different methods.

Here, we see the intersection of each
combination of three methods. (d) For
each subject, the top x% time point for
each node. (e) For each subject, the top x
% across all nodes and time points. Error
bars show SD
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PCT can lead to misleading interpretations about what the brain is

doing, especially when inferring a property such as integration. At the

regional level, the time series between PCS and PCT correlated around

0.3 on average during resting-state (i.e., only sharing 9% of the vari-

ance). Our discussion has shown that it is unclear whether changes in

PCT occur due to communities splitting or via increased integration.

Hence, interpretations of PCT being a measure of integration when

comparing multiple time points are, in our opinion, ill-advised. How-

ever, averaging over time points is possible for PCT, which multiple

studies have done (e.g., in Shine et al. (2016)). This strategy is possible

because it is no longer comparing time points with different communi-

ties which is unproblematic (but looses the temporal resolution of the

PC). In sum, we feel that any quantification of fluctuations of partici-

pation through time should use PCS or TPC.

We are not challenging PCT in all use cases; it is mathematically

sound when applied to each time point. The problem arises when con-

trasting values from different time points that are derived on different

community vectors. If two snapshots are contrasted with PCT and

presented with their respective community differences, then each

estimate can be useful for understanding each snapshot

(e.g., Figure 1d) which can facilitate understanding about the network.

However, multiple PCT estimates cannot be directly contrasted unless

you alter the meaning of integration.

The solution we present, TPC, does not fit all possible use cases.

One limitation is that it can only be applied when the network can

return to previous states (the recurrence assumption). Some temporal

communities may only be possible after certain events have

transpired—for example, during a contagious outbreak, patients

(nodes) could form temporal communities in the hospital. Using our

proposed TPC on such a dataset would entail that postinfection com-

munities influence preinfection participation estimates, which would

be unrealistic. Furthermore, care would also be needed for any of the

participation methods if a network bifurcates its community structure

between entirely different states that have little or no topographic

overlap. Thus, the proposed solution only covers networks which can

theoretically return to similar states. This assumption appears reason-

able for networks such as the brain. However, quantifying variations

in how nodes relate to their community assignments (e.g., Bassett

et al., 2011) or using time-varying measures with static communities

(e.g., PCS) may be more prudent analysis alternatives. The ultimate les-

son here is that network measures need to be chosen based on the

knowledge about the system under investigation and the new infor-

mation that the measures hope to attain.

Here, the focus has been on temporal communities and its recent

application within network neuroscience. However, this can also be a

more general warning for such nodal measures that are relative to the

community structure when applied in multilayer cases. For example, if cal-

culating PC per task when each task has its own community partition will

suffer the same interpretability problems. We hope that this article high-

lights the problematic nature of quantifying temporal nodal measures rel-

ative to a fluctuating temporal community partition. We have offered one

possible solution for this problem that utilizes temporal community infor-

mation that does not suffer from similar issues regarding interpretation.
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