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Finding the target sites
of RNA-binding proteins
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RNA–protein interactions differ from DNA–protein interactions because of the
central role of RNA secondary structure. Some RNA-binding domains (RBDs)
recognize their target sites mainly by their shape and geometry and others are
sequence-specific but are sensitive to secondary structure context. A number
of small- and large-scale experimental approaches have been developed to
measure RNAs associated in vitro and in vivo with RNA-binding proteins (RBPs).
Generalizing outside of the experimental conditions tested by these assays
requires computational motif finding. Often RBP motif finding is done by adapting
DNA motif finding methods; but modeling secondary structure context leads to
better recovery of RBP-binding preferences. Genome-wide assessment of mRNA
secondary structure has recently become possible, but these data must be combined
with computational predictions of secondary structure before they add value
in predicting in vivo binding. There are two main approaches to incorporating
structural information into motif models: supplementing primary sequence
motif models with preferred secondary structure contexts (e.g., MEMERIS and
RNAcontext) and directly modeling secondary structure recognized by the RBP
using stochastic context-free grammars (e.g., CMfinder and RNApromo). The
former better reconstruct known binding preferences for sequence-specific RBPs
but are not suitable for modeling RBPs that recognize shape and geometry of
RNAs. Future work in RBP motif finding should incorporate interactions between
multiple RBDs and multiple RBPs in binding to RNA. © 2013 John Wiley & Sons, Ltd.
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INTRODUCTION

Eukaryotic genomes encode hundreds of RNA-
binding proteins (RBPs) with diverse functions

in co- and post-transcriptional regulation of RNA
metabolism. Recent studies have revealed that RBPs
typically have hundreds of targets and multiple RBPs
coordinately regulate populations of functionally
related mRNAs.1–4 Identification of RBP target
sites is an important step toward understanding
the mechanisms by which they conduct post-
transcriptional regulation.

In this article, we review computational and
experimental methodologies for identifying the
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binding sites of RBPs. We pay special attention to the
role of RNA secondary structure and its impact on
binding-site selection. This attention naturally leads
to discussions of how mRNA secondary structure
is experimentally assessed and computationally pre-
dicted. Surprisingly, existing large-scale experimental
methods for assaying secondary structure are no
better than computational methods at predicting
RBP binding. Having established that the secondary
structure context of putative binding sites can be
determined, we also review the major computational
methods for generating motif models for RBPs, which
incorporate both primary and secondary structure
preferences. This review closes with some discussion
of open questions in this field and open computational
problems in RBP motif finding.

HOW RNA-BINDING PROTEINS BIND
RNA

Primary sequence specificity is often critical for
binding-site recognition by both RNA- and DNA-
binding proteins; however, RNA–protein interactions
differ from DNA–protein interactions because
double-stranded RNA (dsRNA) typically adopts
the A-form helical structure whose major groove is
deeper and narrower than that of the B-form helix of
dsDNA. As such, base-specific interactions by amino
acid side chains are rare in dsRNA,5,6 and sequence-
specific RBPs are likely to require at least some of
their binding sites to be single-stranded.7 There is
substantial evidence that this is the almost exclusive
form of interaction between sequence-specific RBPs
and their targets. Indeed, the two most common
RBDs in eukaryotes, the RNA recognition motif
(RRM) and the hnRNP K-homology (KH) domains
bind single-stranded RNA.8,9 Early surveys10–12

of RBP–RNA complexes deposited in the Protein
Data Bank (PDB) have reported that base-specific
interactions between RBPs and RNA only occur in or
near regions of single-stranded RNA (ssRNA). Subse-
quent surveys of RRM–RNA complexes13 and solved
co-complex structures of Pum-homology domains
(PUM-HD)14 and even a dsRNA binding protein
(ADAR2,15 see below) have added further support to
this well-established tendency. As examples of RBP
interactions with ssRNA, Figure 1(a) and (b) shows
structures of an RRM and a PUM-HD in complex
with their ssRNA targets.

Not all interactions with ssRNA occur in the
same context: ssRNA can occur outside of any RNA
loops (called ‘external’), in a hairpin loop, in an
internal/bulge loop, or in more complex loop struc-
tures (called ‘multiloops’); and RBPs can vary in their

(a) (b)

(c)
(d)

FIGURE 1 | Three-dimensional structures of RNA-binding domain
(RBD)–RNA complexes. (a) Solution structure of polypyrimidine tract
binding (PTB) protein RBD1 in complex with CUCUCU RNA [Protein Data
Bank (PDB): 2AD9]. PTB RBD1 binds a YCU site (Y indicating pyrimidine)
through β4, β1, and β2, respectively. (b) Co-crystal structure of the
PUM-homology domain (PUM-HD) in human Pum1 complexed with a
10-nucleotide single-stranded RNA, 5′-AUUGUACAUA where the last
eight nucleotides (UGUACAUA) are individually recognized by three
conserved amino acids in Puf repeats 8 to 1, respectively14 (PDB: 1M8Y).
(c) Solution structure of the Vts1p sterile-α motif (specific affinity
matrix, SAM) domain in complex with a 5′-CUGGC-3′ pentaloop as part
of a 19nt hairpin (PDB: 2ESE). The specific interaction between the
Vts1p SAM domain and the target RNA is stabilized by both the direct
interaction to the third guanosine base in the RNA pentaloop and the
contacts to the unique backbone structure.16–18 (d) Solution structure of
dsRBD of yeast Rnt1p in complex with the 5′ terminal AGNN tetraloop
of snR47 precursor RNA (PDB: 1T4l). Neither A nor G are recognized by
specific hydrogen bonds; instead, the N-terminal helix of the Rnt1p
dsRBD interacts with the backbone and the two nonconserved tetraloop
bases, by snugly fitting into the minor groove side of the RNA tetraloop
and extending into the minor groove at the top of the stem.19

preference for these different ‘structural contexts’ of
ssRNA. For example, yeast Vts1p and its Drosophila
homolog, Smaug, have strong preferences for binding
CNGG within a hairpin loop16–18 (Figure 1(c)).

On the other hand, some RBDs recognize their
target sites mainly by their shape and geometry
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and not by their sequence content. For example,
proteins with double-stranded RNA-binding domains
(dsRBDs) bind stems of dsRNA with at least 10 base
pairs (bps), mainly through the interactions of the
2′-hydroxyl groups of the ribose sugars and direct (or
water-mediated) interactions with the non-bridging
oxygen residues of the phosphodiester backbone,
rather than specific interactions with the bases.
Examples of dsRBD-containing proteins with struc-
tures that have been solved in co-complex with RNA
include Xenopus Xlrbpa,20 Drosophila Staufen,21

and yeast Rnt1p (Figure 1(d)). As a counterexample,
ADAR2 binds its targets through dsRBD–RNA
interactions that include sequence-specific contacts.15

However, two of the four sequence-specific interac-
tions are to unpaired bases in bulge loops, and the
other two are near disruptions in the dsRNA helical
structure that expand the minor groove.15

EXPERIMENTAL METHODS TO
DETECT RNA–PROTEIN
INTERACTIONS

Identification of the RNAs bound by each RBP is
the key for understanding the interactions governing
post-transcriptional regulation. A number of low-
and high-throughput experimental methods have been
developed to assess the in vitro sequence-binding
preferences of RBPs, as well as to identify the in vivo
binding sites for RBPs in particular cellular contexts.

SELEX (systematic evolution of ligands by
exponential enrichment) is a low-throughput method
for in vitro detection of RBP sequence-binding
preferences.22 High-affinity binding sequences are
selected from a randomized RNA oligonucleotide
pool through several sequential rounds of binding
to purified protein, each followed by polymerase
chain reaction (PCR) amplification. The products
are then cloned and sequenced, identifying a set
of short sequences preferred by the protein. These
short sequences are then analyzed in order to define
primary sequence and structural preferences of the
RBP. One disadvantage of the SELEX assay is that,
because of the multiple rounds of purification and
amplification, it reveals only the highest affinity RNA
target sites, and does not completely characterize
the range and relative affinity of RNA-sequence
preferences of an RBP. The recent advent of relatively
inexpensive, high-throughput sequencing has facil-
itated the development of a more quantitative and
comprehensive version of this procedure, sometimes
called HT-SELEX.23,24 In this procedure, only a
single, or a small number of, binding reaction is
performed but millions of RNA oligos are sequenced,

supporting a more quantitative estimate of the RBP
sequence-binding preference.

RNAcompete is a related in vitro method that
replaces the large, complex random initial RNA oligo
pool used by HT-SELEX with a smaller, designed
pool that is synthesized with the help of a custom
microarray. The oligo pool contains approximately
244,000 short 30–38nt RNAs whose design is based
on modified de Bruijn sequences,9,25,26 ensuring
that 7nt RNA sequences appear either in ssRNA
or weakly paired RNA in at least 128 oligos. This
allows an unbiased measurement of the relative
sequence-binding preferences of RBPs. An advantage
of RNAcompete is that it is much less expensive
than HT-SELEX because its small pool size allows
the relative abundances of each oligo to be measured
using a custom-designed Agilent microarray. To date,
RNA primary sequence preferences for more than 200
RBPs have been reported and these are summarized in
the CisBP-RNA website26,27 (Table 1 summarizes the
web resources for the RBP binding sites). However,
because the RNAcompete pool is depleted for RNAs
with stable secondary structure, RBPs with strict
structural requirements on their binding sites are less
successful in this assay. Nonetheless, RNAcompete
is still able to recover the primary sequence binding
preferences of some RBPs that have preferences for
particular secondary structural contexts for these
sequences, such as Vts1p16–18 and Lin28.34

There are two major approaches for large-scale
assays of RBP binding sites in vivo: Ribonucleoprotein
immunoprecipitation (RIP)-based methods, which do
not permanently cross-link the RBP to the RNA, and
cross-linking and immunoprecipitation (CLIP)-based
methods, which do. In RIP-based assays, RNAs
associated with the RBP of interest are isolated
from cell lysate after immunoprecipitation of the
RBP, and then identified using either microarray or
sequencing technologies.35 CLIP-based assays use
ultraviolet (UV) light to form permanent cross-links
between RNAs and the RBP, followed by use of
ribonuclease to partially digest the bound RNAs,36

leaving only small segments that are in direct
contact with the RBP. Although RIP-based assays
are simpler and more widely applicable, because
UV-based cross-linking is difficult in some cells or
tissues,37 the irreversible covalent bond introduced
by cross-linking allows a more stringent washing
procedure in CLIP, which reduces the number of
false-positive targets during the purification step.
Cross-linking also protects the target site from
ribonuclease digestion, allowing a much greater res-
olution in determining the actual site of interaction.

Volume 5, January/February 2014 © 2013 The Authors. WIREs RNA published by John Wiley & Sons, Ltd. 113
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TABLE 1 Web Resources for RBP Binding Sites

Database Collection Properties (Features) Availability References

ARESITE AU-rich elements (ARE) in
vertebrate mRNA UTR
sequences

Input gene sequence is searched for enrichment of
eight predefined consensus ARE. For each
detected motif, conservation patterns and
predicted accessibility values are displayed.

http://rna.tbi.univie.ac.
at/AREsite/

28

CisBP-RNA RBP motifs identified by
RNAcompete and RBPDB

Users can browse or bulk download motifs for all
eukaryotic RBPs including direct measured motifs
for more than 200 RBPs from RNAcompete or
RBPDB, as well as thousands more motifs inferred
by homology. Also, scans input RNA sequences
for hits to directly motifs.

http://cisbp-rna.ccbr.
utoronto.ca/

27

CLIPZ Binding sites from CLIP
experiments, including
Quaking, Pumilio,
Argonautes 1–4, TNRC6 A-C,
IGF2BP 1–3

Users can browse the clusters of genome- or
transcript-based reads. Clusters from different
experiments can be compared. The transcripts
associated with a gene name could be searched
for binding sites. There is also a motif enrichment
tool that identifies overrepresented k -mers in a
set of sequences.

http://www.clipz.
unibas.ch/

29

doRiNA RBP and miRNA binding sites
identified by CLIP
experiments

CLIP-derived peaks for RBPs and miRNAs from
humans, mouse, flies, and worms are available.
Users can also search overlapping sites between
multiple RBPs or between RBPs and miRNAs.

http://dorina.mdc-
berlin.de/

30

RBPDB Experiments and observations
about RBP binding sites in
metazoan genomes

All experiments with binding data related to
metazoan RBPs can be retrieved by entering the
associated gene name. Input sequences can be
scanned for matches with RBP binding sites.
Includes motif models for more than 70 RBPs.

http://rbpdb.ccbr.
utoronto.ca/

31

Rfam Non-coding RNA genes,
structured cis-regulatory
elements and self-splicing
elements

Each entry includes multiple sequence alignment, a
secondary structure, and related references.
Please see associated reference for a complete
description of available features.

http://rfam.sanger.ac.uk/ 32

UTRSite Regulatory elements in 5′ and
3′ UTRs

Each entry summarizes the current knowledge on a
regulatory element: location (e.g., 3′UTR), Rfam
cross-reference, binding proteins and interactor(s)
of binding protein(s) and related references. Tools
for searching and scanning are available.

http://utrsite.ba.itb.
cnr.it/

33

One method, photoactivatable-ribonucleoside-
enhanced cross-linking and immunoprecipitation
(PAR-CLIP), modifies CLIP by culturing living cells
with a photoreactive ribonucleoside analog, such as
4-thiouridine (4-SU), to facilitate cross-linking.38

The chemical structural change of the 4-SU base
upon cross-linking to the RBP causes preferential
pairing of guanine (G) rather than adenine (A) with
the 4-SU base, and therefore introduces a thymidine
(T) to cytidine (C) transition at the cross-linked
position during PCR amplification. In PAR-CLIP,
the frequencies and types of mutations observed
are used as indicators to pinpoint the precise RBP
binding site.39 Diagnostic mutations are also observed
in other CLIP approaches, though with a lower

frequency.40 Although these techniques increase the
resolution of these methods, they still cannot robustly
achieve single-nucleotide resolution.40 Furthermore,
the cross-linking step as well as the choice of RNAase
can introduce nucleotide biases in the read data
that, if not corrected, can mask the true sequence
binding preference of the RBPs.40,41 However, when
combined with computational motif finding methods
that correct these biases and improve resolution,
CLIP-based methods can support the definition of
detailed sequence and structural RNA-binding prefer-
ences. Recent examples of combined analyses include:
Lin28,34 GLD-1,42,43 FMRP,44 and HuR.45 Databases
containing sets of CLIP-based target regions for RBPs
include doRiNA and CLIPZ (see Table 1).
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COMPUTATIONAL METHODS THAT
USE PRIMARY SEQUENCE TO
IDENTIFY RBP TARGET SITES

Even when experimentally defined RBP-binding sites
are available, computational motif-based methods
are useful to define the precise site of binding,
to detect false positives and negatives, to identify
degenerate motifs, to model the impact of RNA
secondary structure on binding, to identify co-binding
factors (e.g.,46), and to predict the likely impact of
polymorphisms on RBP–RNA interactions.

Often motif models developed for DNA-binding
proteins have been adapted to identify primary
sequence preferences of RBPs and to scan tran-
scripts for potential binding sites.47–52 For example,
MatrixREDUCE was used to find RNA motifs associ-
ated with transcript stability in yeast48 and to recover
binding preferences of RBPs from in vitro binding
affinity data.53 This model represents the binding
sites with a position-specific affinity matrix (PSAM)
that can be used to predict the relative affinity for
each potential binding site. Unlike many other motif-
finding methods, MatrixREDUCE takes as input
quantitative values associated with each sequence in
the dataset rather than a subset predefined as ‘bound’
or ‘unbound’. MEME (multiple expectation maxi-
mization for motif elicitation)49 is another popular
motif discovery algorithm originally designed to find
repeated, ungapped sequence patterns in DNA or pro-
teins. MEME has been used to predict motifs for Puf
proteins in flies and yeast.54,55 Additional models, such
as FIRE (finding informative regulatory elements)50

and REFINE (relative filtering by nucleotide
enrichment),51 have been used to identify a group of
sequence consensuses from yeast RIP-Chip datasets.1

Motif finder methods that consider the rank-order
of genome-wide binding sites, like AMADEUS52 or
cERMIT47, are popular for CLIP-seq data (see, e.g.,
Ref 56 or 45) because CLIP-seq read clusters are
typically assigned a semiquantitative score (e.g., a
P-value). CLIP-seq reads can be preprocessed with
PARalyzer39 to score potential RNA–protein interac-
tion sites taking into consideration the locations of
the diagnostic PAR-CLIP mutations. A summary of
motif discovery tools can be found in Table 2. Users
who choose to run DNA-motif finders on RNA should
adjust the options within these methods (e.g., search-
ing complementary strands should be turned off).

Primary sequence motif-based models can miss
important secondary structural context constraints
and, in doing so, incorrectly predict the primary
sequence preference of an RBP.60 For example, both

REFINE and FIRE fail to identify known binding pref-
erences of Vts1p (i.e., CNGG within a hairpin loop)
from RIP-Chip data,1 whereas this primary sequence
motif is easily found on the same data by motif finders
that also model preferences for RNA accessibility.63

To incorporate the mRNA secondary structure
information into RBP motif discovery, one must first
determine the structure. This is still a very active area
of research and, in the following sections, we review
both computational and experimental methods used
to estimate RNA secondary structure. We then review
the evidence supporting a role for intrinsic RNA
secondary structure in sequence-specific RBP binding
and, finally, describe RBP motif discovery algorithms
that incorporate secondary structure information.

COMPUTATIONAL METHODS FOR
PREDICTION OF RNA STRUCTURE

The most popular computational method to fold a sin-
gle RNA sequence is based on the calculation of free
energy from thermodynamic parameters derived from
chemical melting experiments.64–66 Often, the focus is
on the structure with the minimum free energy (MFE)
because it is assumed that the RNA sequence folds into
the lowest free energy structure at equilibrium.65–67

However, as thermodynamic parameters have sub-
stantial uncertainties and RNA secondary structure is
often dynamic,68–70 the predicted MFE structure may
not accurately represent the typical base-pairing that
occurs in the structure. To address these concerns,
some methods consider the ensemble of all possible
structures.67,71–74 One way to represent this ensemble
is to use the centroid structure, which is defined as
the structure with minimum total base-pair distance
to all other structures in the ensemble.75

Another way is to calculate base-pair probabil-
ities from all possible structures using the partition
function, with the assumption that the frequency
of any specific RNA structure obeys the Boltzmann
distribution.74 However, accurately predicting the
global structure of an RNA is challenging owing to the
decreasing predictive power of computational meth-
ods with increasing length of the input RNA.76 For
long mRNA sequences, it is, in fact, often more accu-
rate to only estimate structure using local interactions
among bases and to ignore any potential long-range
pairings.77 RNAplfold is one method for predicting
site accessibility by averaging across short windows
of the mRNA centered on the site of interest.71,73

Other approaches predict RNA secondary
structure are based on pairwise covariation in
multiple alignments with the assumption that
functional RNA families should have conserved

Volume 5, January/February 2014 © 2013 The Authors. WIREs RNA published by John Wiley & Sons, Ltd. 115
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patterns of base-pairing. Covariance models (CMs)
are a specialized stochastic context free grammar
(SCFG) (Box 1) that probabilistically model both the
RNA secondary structure and the primary sequence
consensus of an RNA family.59,78 CMs are fit through
a procedure that iterates between aligning individual
sequences to a single CM and refining the CM based
on the alignment.59,78 These methods work best
when a good initial alignment is available to seed the
search, and are used to predict families of functional
RNAs (like tRNAs); however, their ability to model
RBP binding sites in general is unclear. Indeed, the
main challenge for predicting consensus structure
from multiple sequences is that accurate structure
prediction requires an accurate multiple-sequence
alignment. Not only is simultaneously folding and
aligning sequences computationally challenging,79

but also this strategy may not be appropriate for
modeling RBP-binding sites, as only the parts of the
secondary structure that affect binding by the RBP
may be conserved. We return to this issue in later
sections where we introduce CM-based motif finders.

BOX 1

STOCHASTIC CONTEXT-FREE GRAMMAR

Context-free grammars (CFGs) can be used to
describe valid RNA secondary structures with
nested base pairs using a set of production rules
generated from outside in. Stochastic context-
free grammars are extensions of CFGs that assign
a probability to each rule and thereby specify
a probability distribution over sequences that
satisfy the grammar.

EVIDENCE THAT INTRINSIC RNA
SECONDARY STRUCTURE HAS AN
IMPACT ON RBP BINDING

The accessibility of a potential RBP target site plays
an important role in finding whether the RBP actually
binds to the site. Often ‘accessibility’ is defined on
the basis of predictions of RNA secondary structure
and can be roughly interpreted as the proportion
of transcripts in which that site is single-stranded.
This calculation is based exclusively on the RNA
sequence without consideration of a potential role for
other binding factors. The role of mRNA accessibility
in binding-site selection by microRNAs (miRNAs)
and small interfering RNAs (siRNAs) is well
established80–83; the role of accessibility in RBP–RNA
interaction has taken longer to establish owing to the
diversity and complexity of these interactions.

The effect of RNA secondary structure in
recognition of target sites was first investigated
for the RBP, HuR.84 A positive correlation was
found between predicted site accessibility and the
binding affinity of HuR to sites that matched the
NNUUNUUU HuR consensus. Furthermore, it was
possible to alter HuR–mRNA binding in vitro and to
increase mRNA stability in cell lysates by introducing
secondary structure modulators that either increased
or decreased the predicted accessibility of the HuR
binding site; this was accomplished by hybridization
to complementary RNAs that were predicted either to
‘open’ or ‘close’ the HuR binding site within the
target mRNA’s secondary structure. Reduction in
predicted accessibility also explained the reduction
of HuR–TNFa binding upon an insertion of a
sequence adjacent to the AU-rich element (ARE) in
TNFa.85,86 A companion paper contained what we call
the Hackermüller-Stadler model, which models the
observed Ka of an RBP to a bound RNA as the product
of the probability (in the RNA structure ensemble) that
the site is in the preferred structural context and the
Ka of the RBP for the site in this context.87

We have explored the role of accessibility in
RBP–target interactions for more than a dozen RBPs
from yeast, flies, and humans; these RBPs contain a
range of RBDs with diverse primary sequence binding
preferences.63 By analyzing RIP-Chip datasets of
RBPs using these preestablished preferences, we found
that, for >70% of the RBPs, when we considered
target-site accessibility we significantly increased the
ability to predict in vivo binding of those RBPs
(Figure 2). Because this accessibility was predicted
based solely on the mRNA sequence,71,73 these results
suggest a greater than previously anticipated role for
intrinsic mRNA secondary structure in determining
RBP target preference. Furthermore, we found that
more stringent methods to estimate accessibility were
better predictors of RBP binding than others, suggest-
ing that we could use this dataset as a benchmark
for comparing different mRNA secondary structure
estimates.88 Indeed, replacing the accessibility-based
scoring system with one that considers the structural
context of ssRNA further improves prediction of in
vivo target selection by RBPs (Figure 3).

EXPERIMENTAL METHODS FOR
PREDICTION OF RNA STRUCTURE

By far, the fastest, cheapest, and easiest way to
estimate mRNA secondary structure is using com-
putational prediction methods (reviewed above and
summarized in Table 3). However, the accuracy
of these methods is controversial and, recently,
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FIGURE 2 | Target site accessibility predicts in vivo
binding for a diverse range of RNA-binding proteins (RBPs).
Comparison of accuracy in predicting bound transcripts
based on a given consensus, using either #ATS (i.e., the
expected number of accessible target sites, y-axis) or #TS
(i.e., the number of target sites, x-axis). Each dot
represents the results of an RBP coupled with its previously
defined consensus sequence. If there are multiple reported
consensus sequences for a protein, the result for each is
shown and is distinguished from others by a superscript.
Cartoons indicate the species of origin (yeast, fly, or
human). RBPs in bold have significantly improved AUROC
for #ATS versus #TS (P < 0.05,
Delong-Delong-Clarke-Pearson test). The RBDs housed in
the RBPs (using SMART domains) are summarized in the
pie graph.
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biochemical methods have been introduced that query
mRNA secondary structure genome-wide. In this
section we review experimental approaches used for
prediction of mRNA structure.

Physical methods, including X-ray crystal-
lography and nuclear magnetic resonance (NMR)
spectroscopy, have been used to describe RNA’s
three-dimensional structure in great detail, but are
often time-consuming and are limited to relatively
short RNAs. RNA footprinting, an easier alternative,
is often selected to analyze the structure of long
RNAs. RNA footprinting detects RNA structure by
treating the RNA of interest with a chemical or a
nuclease to modify or cleave bases, respectively, that
have a particular structural conformation (e.g., single-
stranded, double-stranded, or solvent-exposed).93–97

RNase-cleaved products, usually radioactively
end-labeled, are then detected by autoradiography,
while the chemically modified bases are detected by
electrophoresis of the reverse-transcribed products
that have stalled at the modified bases.

RNA footprinting has been extended to a large-
scale method by combining next-generation sequenc-
ing technology with traditional RNase/chemical foot-
printing in order to simultaneously probe a mix-
ture of RNAs.98–100 Structure probing by chemical
modification has a higher resolution than by nucle-
ases because it is less restricted by steric hindrance;
however, the read-out of the modification is much
more difficult and, to date, has not been appli-
cable to genome-wide assays of mRNA secondary

structure. Selective 2′-hydroxyl acylation analyzed by
primer extension (SHAPE) is the major chemical
modification-based technique. Unlike other base-
selective chemical reagents, the hydroxyl-selective
electrophiles used in SHAPE prevent reverse tran-
scription on flexible nucleotides (e.g., single-stranded
ones) by reacting with the 2′-hydroxyl group to form
a 2′-O-adduct. This method can thereby interrogate
all nucleotides in an RNA molecule simultaneously
without biases toward certain primary sequences.101

SHAPE-seq, which couples SHAPE chemistry with a
multiplexed hierarchical barcoding and deep sequenc-
ing strategy,100 has been used to accurately and
simultaneously probe structures of several in vitro-
transcribed RNAs.100 However, the barcodes must be
designed to target specific RNAs, thus preventing the
expansion of SHAPE-seq to genome-wide assays.102

In contrast, large-scale, nuclease cleavage-based
structure probing experiments have recently been
developed.98,99 Parallel analysis of RNA structure
(PARS) has been used to profile mRNA secondary
structures in the budding yeast, S. cerevisiae.98

Purified polyadenylated transcripts were renatured in
vitro and separately treated with RNase S1 (specific
for single-stranded RNA) and RNase V1 (specific
for double-stranded RNA). The cleaved products
from these two complementary enzymes were then
analyzed using deep sequencing technology to infer
single- or double-strandedness at single nucleotide
resolution. Related techniques have been used to
probe mRNA secondary structure in Drosophila and

118 © 2013 The Authors. WIREs RNA published by John Wiley & Sons, Ltd. Volume 5, January/February 2014
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FIGURE 3 | Structural context of target sites improves prediction of
target mRNAs bound in vivo by RNA-binding proteins (RBPs). Bar
graphs compare the accuracy of different methods that use the
structural context of motif matches to predict in vivo binding of RBPs.
The inset describes the different bars within the graph.

C. elegans.103 An alternative method, fragmentation
sequencing (Fragseq), has been used to provide an
‘RNA accessibility profile’ on the naked RNAs from
the mouse nuclear transcriptome.99 This method
differs from PARS in two ways. First, Fragseq focuses
on cleavage products that are 20–100 bases long,
while PARS explores all the cleavage products using
random fragmentation. Fragseq, thus, primarily
focuses on small RNAs.102 Second, Fragseq uses only
RNase P1 to cleave single-stranded RNA and reports
the log ratio between the number of sequence reads
obtained from the nuclease-treated sample and the
untreated sample. This is done to control the occur-
rence of RNA degradation in the cell or during sample
preparation. PARS, however, uses both RNase V1
and RNase S1 and reports the log ratio between the
number of sequence reads obtained from the RNase
V1-treated sample and the RNase S1-treated sample.

These methodologies are still undergoing
development. Currently, PARS requires multiple
manipulations on cellular RNA including heating and
refolding—it is unclear how the resulting product
reflects the in vivo mRNA secondary structure.

Although recent reports suggest that SHAPE-like
methodologies can be applied in vivo,104 to date,
genome-wide SHAPE has not been reported.

COMPARISON OF EXPERIMENTAL
AND COMPUTATIONAL METHODS
FOR PREDICTION OF RNA
STRUCTURE

To assess the relative accuracy of experimentally
assayed versus computationally determined mRNA
secondary structure, we applied a slightly modified
version of our benchmark63 to compare how well
each set of structures supports the prediction of in
vivo RBP binding. Specifically, we compared the abil-
ity of PARS98 and RNAplfold71,73 to recover RBP
binding sites. RIP-Chip data was used to define sets
of bound transcripts (i.e., positives) and co-expressed
but unbound transcripts (i.e., negatives) for nine yeast
RBPs with defined consensus single-stranded binding
motifs that are predictive of in vivo binding.63 For
each RBP, we scored every bound or unbound tran-
script according to the structural accessibility of all
sites in that mRNA that matched the RBP’s previ-
ously described consensus motif (as described in Ref
63). Briefly, for each RBP, the accessibility score for
an entire transcript was set to be the maximum of
the RNAplfold-predicted accessibility scores for each
match to the RBP consensus motif in that transcript.
The accessibility score for a match was set to be the
minimum of the accessibilities of all nucleotides in the
match. For many sites, PARS scores were unavailable
for every nucleotide, so this minimum was calculated
over all nucleotides for which PARS data were avail-
able. For PARS, we used the inverse of the PARS score
as a measure of single-nucleotide accessibility and, for
RNAplfold, we used the predicted probability that
the nucleotide was single-stranded. We have previ-
ously reported that the minimum is the best single-
nucleotide predictor of the accessibility of the entire
binding site and the maximum is nearly as good as the
sum at consolidating estimates from multiple sites.63

This slight modification of our original methodol-
ogy allows us compare PARS and RNAplfold fairly
without requiring us to make arbitrary choices in
order to calibrate the PARS scores. For each RBP, we
then ranked transcripts according to their accessibility
scores and evaluated how well that ranking distin-
guished positive and negative transcripts using the area
under the receiver operating characteristic (AUROC),
a standard metric commonly used for this purpose.

Using these methods, we found that RNAplfold-
based calculations of site accessibility are significantly
better predictors of in vivo binding than those
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TABLE 3 Web Resource for Predicting mRNA Secondary Structure

Software/Method Input Summary Availability References

Mfold RNA sequence It predicts the suboptimal structures within a free
energy increment from the minimum free energy.

Software package and web
server: http://mfold.rna.
albany.edu/?q=mfold

89

RNAshapes RNA sequence It calculates shapes and their probabilities by
analyzing the full ensemble, predicts the complete
set of suboptimal structures and their probabilities

Software package and web
server: http://bibiserv.
techfak.uni-bielefeld.de/
rnashapes/

90

RNAstructure RNA sequence It includes algorithms for RNA secondary structure
prediction and calculation of base-pair
probabilities.

Software package with GUI:
http://rna.urmc.rochester.edu/
RNAstructure.html

91

SFOLD RNA sequence It computes base pair probabilities from a
representative sample of the full ensemble

Software package and web
server: http://sfold.wads
worth.org/

75

Vienna package RNA sequence RNAfold: predicts MFE energy structure and
base-pair probabilities

RNAplfold: uses local folding to calculate base-pair
probabilities

Software package:
http://www.tbi.univie.ac.at/∼
ivo/RNA/

Web server: http://rna.tbi.
univie.ac.at/

72, 92

provided by PARS (P = 0.004, two-tailed sign test;
Figure 4(a)). Note that only 58% of nucleotides have
a defined PARS score, possibly due to the non-uniform
ability of V1 and S1 nucleases to cleave different parts
of an mRNA and/or insufficient sequencing depth.
RNAplfold remains a better predictor than PARS even
when only those nucleotides with PARS scores are
considered (P = 0.04, two-tailed sign test; Figure 4(b)).

As mentioned above, one factor that contributes
to the unexpectedly poor performance of PARS is
that in vitro refolding may not capture the in vivo
structure.105 Sequencing errors are likely to lead
to additional inaccuracies; reliable quantification of
structure profiles may require a higher read count
than the one read/nucleotide that was used to
define the PARS scores. Indeed, when we restricted
our analysis to transcripts with an average of
five reads/nucleotide or higher, the performance
difference between PARS and RNAplfold was no
longer statistically significant (P = 0.18, two-tailed
sign test; Figure 4(c)). Unfortunately, very few
transcripts have any PARS data at this restrictive
threshold.

In summary, while PARS provides a useful
empirical tool to assess mRNA secondary structure on
a genome-wide basis, at present data can be collected
for only a subset of nucleotides and coverage is
strongly biased toward highly expressed transcripts.
On the other hand, computational methods such as
those based on RNAplfold provide information on
every nucleotide and are not sensitive to transcript
abundance.

COMBINING EXPERIMENTAL AND
COMPUTATIONAL METHODS

In the previous section, we directly compared the
performance of experimentally and computationally
predicted secondary structure. However, it is pos-
sible to incorporate experimentally derived RNA
structure profiling data as a guide to computa-
tional prediction of RNA secondary structures. For
example, chemical/RNase-probe-based measurements
of nucleotide structural conformation can be used as
additional energy potentials to guide folding.55,56,88

In this case, the folding computation is biased toward
RNA secondary structures that are consistent with the
experimental data by assigning a large positive free-
energy penalty to all possible alternatives.65,66,106 The
resulting algorithm has a similar time and space com-
plexity as default secondary structure prediction.106

It is also possible to include an additional term
that reflects the inverse correlation between the
SHAPE score and the base-pairing probability,
and to integrate this term into the RNAstructure91

software. An alternative approach, named ‘sample
and select’, uses experimental data to identify the
correct structure among the Boltzmann ensemble of
structures.107 SeqFold88 modified this approach so
that only centroids of structure clusters (identified by
Sfold) are considered as candidate structures. Seqfold
is less sensitive to noise in experimental data than
RNAstructure and ‘sample and select’. Binding site
accessibility assessed by SeqFold has been shown to be
a better predictor of in vivo binding than RNAfold for
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FIGURE 4 | Comparison of prediction accuracy for in vivo binding of nine yeast RNA-binding proteins (RBPs) using parallel analysis of RNA
structure (PARS) and RNAplfold to estimate the secondary structure of bound versus unbound transcripts. The results using PARS are shown on the
y-axis, those using RNAplfold on the x-axis. (a) The analysis was performed on all consensus sites containing at least one nucleotide with a nonzero
PARS score. (b) The analysis was performed only considering nucleotides with nonzero PARS score. (c) As for (b) but with the additional constraint
that the transcript load (i.e., reads/nucleotide) was at least five. P-values were calculated using the two-tailed sign test.

at least some yeast RBPs; however, not all available
RBPs have been assessed. However, initial results
suggest that incorporating current experimental data
does, indeed, improve secondary structure prediction
by computational methods.88

RBP MOTIF DISCOVERY ALGORITHMS
THAT INCORPORATE SECONDARY
STRUCTURE INFORMATION

Because mRNA secondary structure can either be
predicted or measured, and these estimates improve
the ability of computational methods to predict in
vivo binding, it makes sense to incorporate secondary
structure preferences into motif models used to scan
for RBP target sites.

There are two main approaches to incorporating
structural information: (1) methods that model the

preferred structural context of the primary sequence
motif bound by the RBP53,60,63,108 and (2) meth-
ods that explicitly model the secondary structure
recognized by the RBP using stochastic context-free
grammars.59,58,62 Table 2 summarizes the motif
models described below.

Structural Context-Based Methods
The first structural context-based method, MEMERIS,
incorporates the Hackermüller-Stadler model into the
popular DNA motif finding program, MEME, by
annotating nucleotides according to their predicted
RNA secondary structure. MEMERIS precomputes
for each word (i.e., k-mer) the probability that the
word is in single-stranded context (as predicted by
RNAfold), and then uses these values as priors
on possible motif start positions. This adaptation
changes the search so that motifs that are enriched
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in single-stranded regions are preferentially found.
Compared with MEME, MEMERIS is more accurate
at recovering RNA motifs in both artificial and in
vitro datasets.60 As expected, MEMERIS is able to
identify the correct motifs in single-stranded regions
even with the existence of a stronger sequence motif
embedded in a double-stranded region. MEMERIS
could, in principle, easily be modified to incorporate
the probability that each word is in another secondary
structure context as a way of identifying, say, motifs
for an RBP that binds hairpin loops; to date, such
a modification has not been tested. MEMERIS is a
‘generative’ motif finding algorithm in that it tries to
find motifs enriched among a set of bound transcripts.

Often, it is more accurate to identify ‘dis-
criminative’ motifs, which distinguish between sets
of bound and unbound transcripts.53,109,110 This
approach removes the necessity to define a ‘back-
ground model’ because it uses the unbound set. We
have described a discriminative motif-finding method
called #ATS (i.e., expected number of accessible tar-
get sites)63 that incorporates accessibility. #ATS also
differs from MEMERIS in that it fits a degenerate
consensus sequence motif model (e.g., CNGG, where
N could be any base). #ATS uses a greedy heuristic
to build its model: it starts from the five hexam-
ers with the largest predictive power and iteratively
refines them (by shortening, lengthening, or introduc-
ing degenerate bases) until it can no longer improve the
discriminative power of the motif. Applying the #ATS
model to several RIP-Chip datasets has successfully
recovered the previously identified motifs indicating
its ability to identify in vivo RBP binding sites.63

The methods mentioned above allow query of
single-strandedness only. However, some RBPs may
have more complex structural-context preferences.
StructRED108 extends MatrixREDUCE48 to find RNA
cis-regulatory elements that are located in hairpin
loops. Briefly, StructRED pre-filters all k-mers for
those that are flanked by at least three bases that can
pair (e.g., A-U, G-C, and G-U) and applies MatrixRE-
DUCE to these k-mers. Unlike the two methods
described above, no consideration is given to the ther-
modynamic stability of the stem in the naked mRNA;
however, it is known that RBPs such as Vts1p can sta-
bilize otherwise unstable loop structures.16–18 Struc-
tRED correctly recovered the known binding prefer-
ences of Vts1p in yeast and its ortholog, Smaug, in
flies, and discovered a number of RNA-regulatory ele-
ments in humans and flies; however, its limited repre-
sentation of secondary structure elements makes it dif-
ficult to apply it to RBPs other than stem-loop binders.

Some RBPs can bind their target site in a vari-
ety of structural contexts; for example, SNRPA (aka

U1A) binds AUUGCAC when it is at the 5′ end of
a hairpin or internal loop111 but can bind the same
sequence with lower affinity if it is single-stranded
but not in a loop.112 RNAcontext53 is the first motif-
finding algorithm that is designed to detect the relative
preferences of an RBP for multiple structural contexts.
Like #ATS, it is a discriminative motif finding method
that outputs an RNA sequence motif but, unlike either
#ATS or MEMERIS, it also outputs a vector indicat-
ing the relative preferences for a nonoverlapping set
of structural contexts (e.g., paired, hairpin loop, etc.).
When applied to RNAcompete data from nine RBPs,9

RNAcontext recovered known structural context pref-
erences, as well as, showing an improved ability to pre-
dict in vitro binding to sequences not used to train the
motif model.53 RNAcontext uses represent the struc-
tural context of a base by annotating it with probabil-
ity distribution over an alphabet representing the pos-
sible contexts (Figure 5). The input into RNAcontext
consists of a set of RNA sequences, their associated
structure profiles as computed by RNAplfold or Sfold,
and estimates of binding affinities of the RBP of inter-
est. Each input RNA sequence is scored by using the
sequence and structure context parameters. RNAcon-
text has been applied to in vitro binding-affinity data.
The RBPmotif webserver implements RNAcontext.113

Stochastic Context-Free Grammar
(SCFG)-Based Methods
There are two main methods in this category:
CMfinder58 and RNApromo.62 Both fit CM-based
motif models similar to those used to define RNA
families.58,62,114 However, unlike many RNA families,
sets of RBP target sites from different transcripts rarely
have conserved sequence in paired regions, making it
difficult to establish the initial alignment required
for the CM iterations. CMfinder and RNApromo
both use strategies based on thermodynamic stability
to establish an initial structural alignment of
putative RBP binding sites. CMfinder identifies
(and aligns) shared secondary structures among
the minimum free energy structures of the input
sequences. RNApromo replaces this initialization with
nonredundant substructures that are overrepresented
in the positive set versus the background set. Methods
like these are well-suited to modeling complex primary
and secondary structure preferences such as those
recently reported for LIN28A34 and ADAR2.15,115

Although neither method has yet been used for these
specific RBPs, CMfinder has successfully identified
complex structures such as riboswitches.116

CMfinder focuses on large secondary structures
with extensive base-pairing. Recently, two CM-
based methods have been described, Aptamotif57 and
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FIGURE 5 | RNAcontext-predicted
motifs. The figure shows motifs and their
structural contexts predicted by RNAcontext
using RNAcompete binding data.9

(Reprinted with permission from Ref 53.
Copyright 2010, PLoS Computational Biology
Creative Commons Attribution License.)

TEISER,117 which can detect motifs that contain
shorter stems. Aptamotif57 adapts the iterative
learning procedure of CMs to find sequence-structure
motifs in SELEX-derived aptamers. As a first step,
Aptamotif parses both optimal and suboptimal
structures of input sequences to generate a set of loop
substructures. Next, a set of seed motifs is randomly
selected from the set of all loop substructures. Input
sequences are scanned with these seed motifs and
matching regions are aligned. The motifs with the best
alignment score are retained for the next iteration.
Aptamotif has been able to recover the reported
binding preference of L22, a ribosomal protein that
binds a long primary-sequence motif within a hairpin
loop; although MEMERIS correctly identified the
motif, it was not able to capture permitted gaps or
the requirement for the hairpin structural context.
Aptamotif’s search procedure ignores single-stranded
motifs outside of loops, and the use of suboptimal
structures may limit its use with longer RNA
sequences as the number of such structures increases
exponentially with sequence length. This suggests that
Aptamotif will be most useful for RBPs that have a
strong requirement for specific secondary structural
contexts. TEISER is a method specifically designed
to identify short stem-loop structures with primary
sequence preferences in either the loop or the stem.
It represents these using a non-stochastic context-free
grammar and does a combinatorial search over all
possible stem-loops up to a given size to detect those
with highest mutual information with RBP binding or
mRNA stability.117 To date, it has not been validated
on RBPs with known stem-loop binding preferences,
and its predicted binding preference for HNRNPA2B1
differs from previously reported ones for close
homologs118,119 and from an in vitro binding assay,26

all of which are in agreement with one another.

One must exercise care when using SCFG-
based methods to model the binding preferences of
sequence-specific RBPs. Because these methods explic-
itly search for secondary structures, while ignoring
the impact that sequence flanking the structure might
have on its folding, these methods are unsuitable
for use with RBPs that simply bind an accessible
mRNA sequence. For these RBPs, the ‘structural
context’ of their binding site cannot be detected by
SCFG methods because it is defined by the absence
of nearby flanking sequence that can pair with the
binding site. This, coupled with the tendency of CMs
to over-predict pairing,63 makes it hard to interpret
motif models generated by these methods for HuR120

and Puf3p62 which place their target sites partially
within the stem of a hairpin loop. Both RBPs had been
previously reported to bind ssRNA84,121 and to prefer
ATS.63 Subsequent reanalysis of the HuR stem-loop
binding model on different data122 suggested that
the binding model was simply capturing biases
in dinucleotide frequencies rather than secondary
structure. Over-prediction of secondary structure may
also account for differences between TEISER’s motif
model for HNRNPA2B1 and those of others.

USING SEQUENCE AND STRUCTURE
CONSERVATION TO FIND RBP
BINDING SITES

Another strategy for identification of likely RBP
binding sites is to search for motifs in the 5′UTRs
or 3′UTRs (untranslated region) that are surprisingly
highly conserved, which display a bias toward
conservation when they are in the sense strand and do
not correspond to miRNA seeds. This approach was
first used within the context of genome-wide discovery
of regulatory motifs.123 On the basis of distinct
patterns of genome-wide conservation of known
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motifs versus random sequences across four yeast
species (S. paradoxus, S. mikatae, S. bayanus, and S.
cerevisiae), conservation criteria were used to discover
regulatory motifs. The algorithm uses an enumeration
approach to select strongly conserved motif cores
and then extend or collapse these motifs to produce
candidate regulatory motifs. A similar comparative
genomics analysis approach has been applied to the
genomes of 12 Drosophila species.124 This particular
method used the total branch length over which
a motif is conserved, to estimate the conservation
level of a motif instance. Such a scoring system is
robust to comparative genomic analysis because it
does not explicitly penalize missing instances, but
instead rewards the motif instances in distantly related
species more than ones in closely related species in
order to capture neutral divergence of the motifs.124

Motifs describing primary and secondary structure
preferences have been detected using a comparative
method called EvoFam, which uses phylogenetic,
stochastic context-free grammars125 to identify
conserved, potentially regulatory, RNA structures in
a 41-way genomic vertebrate alignment.126

FUTURE CHALLENGES AND
DIRECTIONS

To this point, we have described experimental
methods to query RBP–RNA interactions and also
how computational models can be used to infer
binding preferences from experimental data. The
following sections summarize the existing challenges,
and point to possible improvements that might be
made in several areas.

Combinatorial Interactions among RBPs,
miRNAs, and mRNAs
There is increasing evidence for widespread non-
additive interactions among trans-factors in post-
transcriptional regulation. A number of such
interactions have already been described among
specific RBPs1,41,127,128 or between RBPs and
miRNAs.45,46,129–133 Other interactions are suggested
by computational analyses: for example, miRNA sites
are significantly enriched in the human PUM1 and
PUM2 targets defined by RIP-Chip experiments, and
the PUM-binding motifs (UGUANAUA) is enriched in
the vicinity of the predicted miRNA sites.130 Further-
more, hundreds of short k-mer sequences have recently
been reported to have significant correlation with
increases or decreases in steady-state mRNA abun-
dance following transfection of small RNAs; a number
of these k-mers match the known sequence-binding

preference of RBPs including U-rich sequences (bound
by ELAVL1/HuR and HuD) and AREs bound by a
number of ARE-binding proteins.132

These combinatorial interactions can be medi-
ated by the mRNA sequence itself. Competitive
interactions can occur as a result of overlapping
binding sites. For example, Dead end 1 (Dnd1)
positively regulates its targets by counteracting
miRNA-mediated repression through binding to
U-rich regions in the 3′UTR of the target, thereby
physically blocking access to overlapping miRNA
target sites.131,134 On the other hand, the secondary
structure of the target mRNAs may induce the coop-
erative binding of trans-acting factors. For instance,
the binding of RBPs, PUM1 and PUM2, induce a con-
formational change in the 3′UTR of P27 mRNA, thus
making a target sequence accessible to an miRNA.46

Currently, little computational methodology exists to
detect and model these phenomena.

(a) (b)

FIGURE 6 | Three-dimensional structures of multiple RNA-binding
domains (RBDs) in complex with RNA. (a) Solution structure of
polypyrimidine tract binding (PTB), RBD3, and RBD4 in complex with
CUCUCU RNA [Protein Data Bank (PDB): 2ADC]. RBD3 and RBD4 have
different binding specificity: RBD3 binds YCUNN and RBD4 binds YCN
(Y, pyrimidine; N, any nucleotide). RBD3 and RBD4 interact extensively,
resulting in an antiparallel orientation of their bound RNAs, suggesting
that the only way to make these two RBDs bind to a single RNA is to
separate their sites by a linker sequence.137 (b) Solution structure of
ADAR2 dsRBD1 and dsRBD2 in complex with GluR-2 R/G RNA (PDB:
2L3J). The dsRBDs recognize their targets by the shape and by the
primary sequence in the minor groove. Sequence-specific recognition is
achieved through a hydrogen bond to the amino group of G (in the GG
mismatch for dsRBD1; in the GC pair for dsRBD2) via a β1-β2 loop and
via a hydrophobic contact to adenine H2 (in the AU pair for dsRBD1; in
the AC mismatch for dsRBD2) via helix α1. The two dsRBDs bind one
face of the RNA and cover about 120◦ of the turn of the RNA helix.15
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Gapped Motif Finders for RBPs
Many RBPs have multiple RBDs: either repeated
copies of the same domain or a mixture of distinct
domains.135 For instance, the human PUM1 protein
has eight repeats of the Puf domain where each
domain recognizes a single nucleotide.14 The poly(A)
binding protein (PABP) has four RRM domains
and each pairwise combination of these domains
has a different RNA-binding activity.136 RBD3 and
RBD4 of polypyrimidine-tract binding (PTB) protein
bind RNA with a fixed orientation relative to each
other such that a single RNA cannot be bound
simultaneously by these two RBDs unless the two cis-
elements are separated by a linker sequence (Figure
6(a)).137 The two dsRBDs in ADAR2 bind to distinct
locations in the GluR-2 R/G RNA and both are
essential for R/G editing15,115(Figure 6(b)).

The unique modular structure of each RBP is
crucial for definition of its mode of target recognition,
especially for those RBPs equipped with multiple
copies of the same RBD.137 Modeling the modular
structure of RBPs in identification of their binding
sites is crucial. Some work has, for example, modeled
gapped DNA motifs, such as GLAM2 (gapped local
alignment of motifs).138 However, finding gapped
RNA motifs is much more difficult than finding
gapped DNA motifs as one must take into account

primary sequence, secondary and even tertiary,
structural elements.

Motif Finding for dsRNA Binding Proteins
How do dsRNA binding proteins achieve specificity?
Possibly through base-specific interactions with the
minor groove of the dsRNA helix139 or subtle dif-
ferences in dsRNA structures140,141 or a combination
of the two.15 To date, few motif finding methods
are available for modeling the preferences of dsRNA
binding proteins. Early efforts in this area include
those that model preferences for length and pairedness
of dsRNA stems arising from inter-molecular140 or
intra-molecular interactions,141 but more work is
needed in this area to develop general methodology.

CONCLUSION

New technologies have rapidly increased the quantity
of in vivo and in vitro binding data available for RBPs.
At the same time, new methods are being developed
to measure or model RNA secondary structure on
a genome-wide scale. Motif-finding methods that
capture RBP-binding preferences are still in their
infancy and have been derived largely from DNA motif
finding methods. Motif finding for RBPs is poised to
become a rapidly expanding field.
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