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ABSTRACT
Objective: To derive and validate a clinical prediction
model to estimate the risk of liver disease diagnosis
following liver function tests (LFTs) and to convert the
model to a simplified scoring tool for use in primary
care.
Design: Population-based observational cohort study of
patients in Tayside Scotland identified as having their
LFTs performed in primary care and followed for 2 years.
Biochemistry data were linked to secondary care,
prescriptions and mortality data to ascertain baseline
characteristics of the derivation cohort. A separate
validation cohort was obtained from 19 general practices
across the rest of Scotland to externally validate the final
model.
Setting: Primary care, Tayside, Scotland.
Participants: Derivation cohort: LFT results from
310 511 patients. After exclusions (including: patients
under 16 years, patients having initial LFTs measured in
secondary care, bilirubin >35 μmol/L, liver complications
within 6 weeks and history of a liver condition), the
derivation cohort contained 95 977 patients with no
clinically apparent liver condition. Validation cohort: after
exclusions, this cohort contained 11 653 patients.
Primary and secondary outcome measures:
Diagnosis of a liver condition within 2 years.
Results: From the derivation cohort (n=95 977), 481
(0.5%) were diagnosed with a liver disease. The model
showed good discrimination (C-statistic=0.78). Given the
low prevalence of liver disease, the negative predictive
values were high. Positive predictive values were low but
rose to 20–30% for high-risk patients.
Conclusions: This study successfully developed and
validated a clinical prediction model and subsequent
scoring tool, the Algorithm for Liver Function
Investigations (ALFI), which can predict liver disease risk
in patients with no clinically obvious liver disease who
had their initial LFTs taken in primary care. ALFI can help
general practitioners focus referral on a small subset of
patients with higher predicted risk while continuing to
address modifiable liver disease risk factors in those at
lower risk.

BACKGROUND
General practitioners (GPs) commonly
request liver function tests (LFTs), but the
results rarely identify cases of liver disease.1

Abnormal LFTs can be indicators of many
different diseases besides those of the liver,
such as metastatic malignancy, congestive
heart failure and inflammatory or infective
conditions.2–5 It can therefore be difficult for
a GP to identify a specific liver disease in
patients with abnormal LFTs, particularly in
those who do not have pathognomonic signs
or symptoms. This leads to variation in
approaches to further investigation with
some patients being inadequately investi-
gated and others at low risk of disease having
invasive tests with attendant morbidity and

Strengths and limitations of this study

▪ Our study has successfully developed and vali-
dated the first risk prediction model and subse-
quent user-friendly scoring tool, the Algorithm
for Liver Function Investigations, for liver condi-
tion diagnosis in patients with no obvious liver
condition at the time of incident liver function
testing in primary care.

▪ This model can be used to facilitate general prac-
titioner decision-making about whom to refer to
secondary care.

▪ γ-Glutamyltransferase (GGT) was found to be a
powerful predictor of liver disease, over and
above alkaline phosphatase and transaminase.
Since some laboratories do not routinely test for
GGT, its use should be re-evaluated.

▪ The observational data lacked some potential
predictors of liver disease, for example, alcohol
intake and body mass index. However, other
available predictors such as liver function tests
and deprivation may act as surrogate markers for
such factors.
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cost.6 The size of this problem is huge with 22% of
patients having their initial panel of LFTs performed in
general practice with at least one abnormality in Tayside,
Scotland.7 Referral of all these patients to secondary
care would place a large burden on healthcare system
resources, so guidance is needed to ensure that care is
focused on those most in need.
The primary care management of these types of

patients might be facilitated through the use of a clinical
prediction model which estimates the risk of a specific
outcome adjusted for patient characteristics.8 These
models, such as the Framingham cardiovascular disease
risk score,9 and FRAX for osteoporotic fracture, are
regularly used in primary care.10 It is important that clin-
ical prediction models are assessed for their predictive
ability, preferably on an external cohort.11

This population-based historical cohort study followed
up two separate cohorts of patients living in Scotland
with no clinically recognised liver disease who initially
had LFTs undertaken in primary care.12 The aims of the
study were:
1. To derive a clinical prediction model using a cohort

of patients from Tayside that would estimate the risk
of a liver disease over the 2 years following LFTs
taken in primary care;

2. To validate this model geographically and temporally
using a different cohort of patients from 19 general
practices in Scotland;

3. To convert this model into a user-friendly clinical
scoring tool that will allow the GP to easily calculate
the risk of liver disease diagnosis at 6 months and
2 years.

METHODS
Separate populations were used to develop the prognos-
tic model (derivation cohort) and then validate it (valid-
ation cohort).

Derivation cohort
The study population was initially derived from a labora-
tory database which contains all electronically available
LFT results from patients within Tayside during the
15-year period from January 1989 to December 2003
linked to hospital admission and GP prescribing data.12

LFTs included bilirubin, albumin, alkaline phosphatase
(ALP), γ-glutamyltransferase (GGT), alanine transamin-
ase and aspartate aminotransferase. Since many labora-
tories only measure either alanine transaminase or
aspartate aminotransferase, these two tests were com-
bined as one test and are referred to as transaminases
throughout.
Patients aged 16 and above with no obvious or

reported clinical signs of a liver disease on presentation
to their GP, and with at least two different LFTs
requested from the index appointment between 1989
and 2003, were eligible for inclusion. The following
exclusion criteria ensured that the study population of

patients had no clinically recognised liver disease at pres-
entation in primary care:
▸ Bilirubin greater than 35 µmol/L at baseline, suggest-

ing jaundice.
▸ Diagnosis of ascites, encephalopathy, varices or portal

hypertension within 6 weeks of their first LFTs.
▸ History of any liver disease before baseline.

Databases
The databases relevant to this study are described briefly
in box 1 and in further detail elsewhere.12–18 In
Scotland, all individuals registered with a GP have a
unique identifier, the Community Health Index
(CHI).14 This number is used for all health encounters

Box 1 Databases record linked to create the Tayside
derivation cohort

1. Death registry from the General Register Office for Scotland
including date and causes of death.

2. Deprivation score was assessed by the Carstairs method.13

The score was divided into two categories of affluent and
deprived.

3. Tayside Community Health Index (CHI) files: Contains CHI
number,14 name, address and date of birth for all individuals
registered with a general practitioner in Tayside. It also holds
migration dates to and from Tayside. The database was pseu-
donymised before release to the researcher.

4. Regional biochemistry database: All liver function tests (LFTs)
came from the largest hospital laboratory in the Tayside
region, Ninewells. Two smaller hospital laboratories contribu-
ted electronic LFT results later, one from 1998 and the other
from 2003.

5. Scottish Morbidity Records 1 (SMR01) database: Patient-spe-
cific morbidity data are routinely collected in Scotland, and col-
lectively these are known as SMR. SMR01 contains hospital
admissions and procedures for all hospitals in Scotland and is
one of the oldest and most complete national health datasets in
the world.15 Major comorbidity groups at baseline were identified
using this database, and the Diabetes Audit and Research
Tayside Scotland (DARTS) and Heart disease Evidence-based
Audit and Research Tayside Scotland (HEARTS) databases for
diabetes and chronic heart disease, respectively.16

6. SMR04 database: Holds all inpatient and day case episodes
for mental health specialties, which identified patients admit-
ted/discharged with diagnoses of alcohol dependency or drug
misuse.

7. Pharmacist dispensed prescription database: A community-
based database that holds encashed prescriptions in Tayside,17

and allowed identification of patients on some potentially hep-
atotoxic drugs including statins, antibiotics and non-steroidal
anti-infammatory drugs.

8. Epidemiology of Liver Disease In Tayside (ELDIT) database:
Contains all Tayside patients with liver diseases who have
been ‘electronically’ diagnosed using record linkage of bio-
medical datasets, including virology and immunology.18

ELDIT was used for the study exclusion criteria (ie, previous
liver disease, liver disease complications within 6 weeks) and
for the outcome of liver disease diagnosis during the 2-year
follow-up period.
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and is contained within all of the databases used in this
study. Since it contains person identifiable information,
the CHI was mapped to a project-specific pseudonymous
10-digit code by the data protection officer at the Health
Informatics Centre, University of Dundee, before remov-
ing the CHI and releasing the data to the researcher. All
of the electronic databases were electronically
record-linked deterministically using this project-specific
pseudonymous code.

Ethics statement
Written informed consent from patients was waived by
the Tayside Committee for Medical Research Ethics
because the databases were anonymised so that no
patient identifiable information was accessible. The data-
bases used in this study (see box 1) covered the entire
study period and were used in accordance with proce-
dures approved under the Caldicott Guardian and the
Data Protection Act UK (1998), in line with the
European directive of 1995.

Baseline characteristics
As well as the five analysed LFTs, baseline characteristics
included age, gender, deprivation,13 comorbidities
(including cancer, diabetes, ischaemic heart disease
(IHD), stroke, renal disease, respiratory disease and
biliary disease), diagnosed alcohol and drug dependency,
methadone use, and the use of statins, non-steroidal anti-
inflammatory drugs (NSAIDs) or antibiotics in the
3 months before LFTs. Since patients with bilirubin
>35 µmol/L were excluded, bilirubin was categorised
into normal and mildly raised (<18 and 18–35 µmol/L,
respectively, for male patients; <16 and 16–35 µmol/L,
respectively, for female patients).

Outcome
The primary outcome for this study was liver disease
diagnosis during the 2 years following the initial analysis
of LFTs in primary care. Liver diseases were identified
from the Epidemiology of Liver Disease in Tayside
(ELDIT) database (box 1), described in further detail
elsewhere.18 A detailed table of the liver diseases
included and their source database is presented in
online supplementary appendix 1.

Model derivation
Survival analysis was conducted using parametric regres-
sion models to estimate the risk of liver disease within
2 years. The starting point was taken as the date of the
initial LFT test and the endpoint for each patient was
whichever one of the following events came first: end of
follow-up (ie, 2 years later), death, end of study period
(ie, 31 December 2003), date of emigration or liver
disease diagnosed. All patients whose endpoint was not
liver disease diagnosis were censored in the model.
The Weibull regression model was used for model

building using potential predictors at baseline. A
manual stepwise technique was used to arrive at a model

that contained only significant predictive characteristics.
The functional form of continuous characteristics (age,
albumin, ALP, GGT and transaminase) was assessed by
plotting each against the Martingale residuals and, sub-
sequently, appropriate transformations were carried out
where necessary. Clinically important two-way predictor
interactions were also investigated and were included in
the final model if they were statistically significant. The
significant predictors from the Weibull model were then
refitted to different parametric model distributions
including the generalised γ, log-logistic, log-normal and
exponential distributions to find the one that fitted
best.19 The Akaike’s information criterion (AIC) was
used to select the optimal model. Covariates which were
just outside the significance level for the Weibull model
were also added to these other models to check whether
they became significant. If they did, then they were
included in that model.
The problem of missing data occurs in almost all retro-

spective studies using routine health databases. The sim-
plest way of dealing with this is to use only cases with
complete data in the analysis. However, this leads to the
loss of potentially valuable information from the incom-
plete cases (and hence loss of power), and introduces
bias, especially if there are systematic differences between
the complete and incomplete cases. Therefore, the find-
ings from an analysis using only the complete cases may
not be a true reflection on what would be found if all the
cases were analysed. To analyse only the complete data
assumes that the missing data are missing completely at
random (MCAR), which is unlikely.20 21 A weaker version
of the MCAR assumption is the missing at random
(MAR) assumption. This differs from MCAR in that it
assumes that the missing data are dependent on one or
more variables in the observed data.21 Assuming MAR, a
multiple imputation technique using the Markov chain
Monte Carlo method was conducted to impute missing
values for the LFTs using PROC MI in SAS.22 Every
model was fitted to 30 imputed datasets and the 30 sets of
parameter estimates and covariances were combined to
produce inferential results using PROC MIANALYZE. All
baseline characteristics, time to liver disease (or censored
event) and liver disease diagnosis outcome were included
in the procedure. The complete data were also analysed
separately as a sensitivity analysis.
The integrated discrimination index (IDI) was used to

measure the improvement in the final model for each
individual covariate.23 The IDI for a covariate is essen-
tially the difference between the proportion of variance
explained by the full model (ie, adjusted for all covari-
ates) and the model without the covariate of interest.
The sensitivity, specificity, positive predictive value (PPV)
and negative predictive value (NPV) were also calculated
for different risk cut-offs, accounting for censoring.23

Model validation
A separate cohort of patients was obtained from the
Primary Care Clinical Informatics Unit (PCCIU),
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University of Aberdeen,24 and was used to externally val-
idate the final model. The validation cohort contained
all patients registered with 19 practices from across
Scotland excluding Tayside. The practices were partici-
pating in the Practice Team Information project oper-
ated by the Information Services Division of the National
Health Service National Services Scotland, and contribu-
ted data to PCCIU. The patient population within the
PCCIU database is broadly representative of the Scottish
population with respect to age, sex and social depriv-
ation.25 The validation cohort contained patients having
their initial LFTs measured in primary care between
January 2004 and August 2008. All eligible patients had
to have test results for ALP, bilirubin, albumin and trans-
aminase. All baseline characteristics and outcome data
obtained for the derivation cohort were also obtained
for the validation cohort. The same exclusion criteria
listed above were also applied to the validation cohort.
The parameter estimates of the final model from the

derivation cohort were applied to the validation cohort
to assess its predictive ability. The C-statistic was used as
a measure of discrimination.26 Discrimination assesses
the model’s ability to correctly distinguish between
patients who develop liver disease (for whom the model
assigns a high risk) and do not develop liver disease (for
whom the model assigns a low risk). The model’s pre-
dicted probabilities were assessed for accuracy using cali-
bration plots.27 A calibration slope test was conducted to
test for overfitting of the model and true differences in
the effects of predictors.27 This was done by fitting the
linear predictor of the final model in a model by itself
and testing its slope. A significant deviation from one
signifies overfitting. The sensitivity, specificity, PPV and
NPV of the model were also calculated for the validation
cohort. These assessments were calculated using the val-
idation cohort with the average GGT values across the
30 imputed datasets used for those patients who did not
have a GGT measurement.

Decision curve analysis
Decision curve analysis was used to determine a range of
threshold predicted probabilities of liver disease where
the primary care decision to refer a patient to secondary
care would be better than assuming all patients are
disease free (ie, not referring anyone) and assuming that
all patients have liver disease (ie, referring everyone).28

The method involves plotting the net benefit of the
model against the threshold probability. The net benefit
is defined as the difference between the proportion of
patients who are true positive and false positive weighted
by the relative harm of a false-positive and false-negative
result. The net benefit of the model is then compared
with the scenario where everyone is assumed to be
disease free and therefore not referred (net benefit
equals zero) and to the scenario where everyone is
assumed to be disease positive and therefore referred.
Threshold probabilities that have a higher net benefit
than both of these scenarios means that, for these

thresholds, the model is better than referring no one and
referring everyone. The analysis was conducted using the
validation cohort and the predicted probabilities at the
maximum follow-up time of 2 years were used.

Clinical scoring tool
A point-based scoring tool was created from a simpler
version of the final model for potential use in primary
care.29 Continuous predictors from the model were
dichotomised into clinically and statistically sensible cat-
egories to create the tool. Mid-points of the categories
were used to estimate the risk of liver disease for each
category. The tool estimated short-term risk at 6 months
follow-up and longer term risk at 2 years follow-up.
Model development and validation were performed

using SAS (V.9.3) (SAS Institute, Cary, North Carolina,
USA) and the decision curve analysis was performed
using the stdca() function in R V.3.0.1.30–32

RESULTS
Baseline characteristics
Before applying the exclusion criteria, LFTs were
extracted for 310 511 patients. After excluding patients
under 16 years of age, non-Tayside residents and those
whose initial LFTs were measured in secondary care,
99 165 patients remained. After excluding those with clin-
ically recognised liver disease at baseline, the derivation
cohort contained 95 977 patients with incident initial
LFTs taken in primary care and with no obvious liver
disease. There were more female patients (57.9%) than
male patients (42.1%), and the median (IQR) age was
54.6 (39.2–68.8) years (table 1). The most frequent
comorbidity was IHD (5.6%), followed by cancer (3.8%).
Only 8388 (8.7%) patients had all five LFTs. The per-

centage of complete data for each LFT was as follows:
ALP (99.2%), albumin (99.2%), bilirubin (93.6%), trans-
aminases (76.5%) and GGT (10.9%). There were more
male patients with complete data (ie, having all five
LFTs) than female patients (54.6% vs 45.4%) compared
with the incomplete data group (40.9% vs 59.1%). The
group with complete data was also more deprived and
contained more alcohol-dependent patients than the
incomplete data group (see online supplementary
appendix 2). When those without GGT measurements
were compared with those with GGT measurements, the
results were similar to the above since those without GGT
measurements comprised the majority of the incomplete
data group. The group of patients without transaminase
measurements contained a higher proportion of female
patients (63.5% vs 36.5%) than the group with transamin-
ase measurements (56.2% vs 43.8%) and had a higher
median ALP result (86 vs 73 U/L).

Liver disease diagnosis
A total of 481 patients (0.5%) were diagnosed with a
liver disease during the 2-year follow-up period. Of
these, 339 (70.5%) had at least one abnormal LFT (out
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of 22 673). Cirrhosis was the most frequently diagnosed
condition (n=75, 15.6%), and in 19 of these patients the
cause was recorded as alcohol-related liver disease.
Primary biliary cirrhosis was diagnosed in 73 patients but
only as definite in 13 (probable n=37; possible n=23).
The next most frequent diagnoses were hepatitis C
(n=68), alcoholic-related liver disease (n=68), hepatitis B
(n=40), hepatocellular carcinoma (n=34), autoimmune
hepatitis (n=29) and fatty liver disease (n=28).

Prediction of a liver disease
The log-normal regression model had the lowest AIC
and therefore was proven to have the best fit to the sur-
vival distribution. The following baseline characteristics
were significant predictors of liver disease diagnosis:
increasing GGT, decreasing albumin, alcohol depend-
ency, being female, increasing ALP, living in a deprived
area and younger age (table 2). There were also signifi-
cant interactions between albumin and transaminase,

and albumin and methadone use. NSAID use, antibiotic
use, drug dependency and all comorbidity history indi-
cators were not significantly predictive of a liver disease.
The IDI statistic showed that albumin explained the
greatest percentage of variance in the model followed by
GGT. When the model was fitted to the subgroup of
patients with complete data (N=8738), only GGT and
albumin were significant out of all the predictors.
However, the parameter estimates had the same direc-
tion of effect and a reasonably similar size of effect. The
added heterogeneity from the subgroup of patients with
imputed GGT and the increased power from the much
larger study population would explain the significance
of all the predictors in the imputed model.

Validation
After exclusions, the external cohort contained 11 653
patients with incident initial LFTs taken in primary care.
A total of 57 patients (0.5%) were diagnosed with a liver

Table 1 Baseline characteristics of patients in the derivation (n=95 977) and validation (n=11 653) cohorts

Baseline characteristics

Cohort n (%) or median (IQR)

Derivation Validation

Age (years) 54.6 (39.2–68.8) 60.0 (47.0, 72.0)

Gender

Male 40 374 (42.1) 5271 (45.2)

Female 55 603 (57.9) 6382 (54.8)

Carstairs category*

Affluent 47 286 (49.3) 2753 (23.6)

Deprived 48 691 (50.7) 8900 (76.4)

Comorbidity history

Cancer† 3629 (3.8) 956 (8.2)

Diabetes 1386 (1.4) 1441 (12.4)

IHD 5370 (5.6) 2034 (17.5)

Renal disease 141 (0.2) 155 (1.3)

Respiratory disease 2636 (2.8) 883 (7.6)

Stroke 1471 (1.5) 583 (5.0)

Medication in previous 3 months

Statins 3176 (3.3) 3178 (27.3)

NSAIDs 6698 (7.0) 1762 (15.1)

Antibiotics 8307 (8.7) 1962 (16.8)

Abusive substance

Alcohol 2632 (2.7) 465 (4.0)

Drug 371 (0.4) 0 (0.0)

Methadone 377 (0.4) 10 (0.1)

Liver function tests

Albumin (g/L) 44.0 (42.0–46.0) 44.0 (41.0, 46.0)

ALP (U/L) 76.0 (62.0–94.0) 75.0 (62.0, 92.0)

Transaminase (U/L) 18.0 (14.0–26.0) 21.0 (16.0, 30.0)

GGT (U/L) 26.0 (17.0–47.0) 27.0 (18.0, 45.0)

Bilirubin‡

Normal 81 111 (91.0) 10 587 (90.8)

Mildly raised 8058 (9.0) 1066 (9.2)

Data reported are median (IQR) or percentage.
*Carstairs categories 1–3 were recoded as affluent and categories 4–7 were recoded as deprived.
†Not including biliary cancer or hepatocellular cancer.
‡Normal bilirubin defined as 0–15 μmol/L for female patients, 0–17 μmol/L for male patients; mildly raised bilirubin defined as 16–35 μmol/L for
female patients, 18–35 μmol/L for male patients.
ALP, alkaline phosphatase; GGT, γ-glutamyltransferase; IHD, ischaemic heart disease; NSAID, non-steroidal anti-inflammatory drug.
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disease within 2 years. The proportion of male and
female patients was reasonably similar to the derivation
cohort (45.2% vs 42.1% male patients), but the external
cohort was older, more deprived and had a greater pro-
portion of comorbidities and medications (table 1).
However, the median LFTs were similar between the two
cohorts. GGT was missing for 4178 (35.9%) patients and
was imputed using the same method as for the deriv-
ation cohort. The average GGT measure for each
patient from the 30 imputed datasets was used where
the original measure was missing so that the validation
could be performed in one dataset.
The C-statistic for the final model parameter estimates

applied to the external cohort was 0.78 (95% CI 0.72 to
0.84). The calibration plot (see online supplementary
appendix 3) showed some visible evidence of overfitting
for the highest risk group; however, the calibration slope
showed no significant deviation from one (slope=0.871
(95% CI 0.696 to 1.047); p=0.15).
The sensitivity, specificity, PPV and NPV for different

cut-offs of predicted risk of liver disease diagnosis, along
with the receiver operating characteristic curves for the
final model applied to the derivation and external valid-
ation cohorts, are displayed in online supplementary
appendix 4. A cut-off greater than or equal to the 75th
centile of the risk score (ie, 0.43% in the derivation
cohort and 0.57% in the validation cohort) had sensitiv-
ity and specificity of approximately 75% each. The NPV
was very high at almost 100% for all cut-offs. Although
PPV was very low, it rose to over 10% for predicted risks
over 5% and reached 20–30% for higher risks (over
20%). These performance measures were similar for
derivation and validation cohorts. From the decision
curve in figure 1, it can be seen that the range of thresh-
old predicted probabilities where the prediction model
is of value is approximately between 0.5% and 7.5%.

Predicted probabilities
The final model and how to calculate the risk of liver
disease directly from it is presented in online supple-
mentary appendix 5. Figure 2 shows the risk of diagnosis
over 2 years for the average risk patient and two
example patients with different characteristics as
described in the legend.

Clinical scoring tool
A user-friendly paper-based scoring tool was developed
from a slightly simpler version of the final model with the
albumin and transaminase interaction term removed

Table 2 Parameter estimates (95% CI) and IDI for the final log-normal regression model predicting risk of a liver disease

diagnosis within 2 years of initial liver function tests (481 diagnosed)

Parameter Coefficient (95% CI) p Value IDI (%)

Intercept 9.524 (1.986 to 17.062) 0.013

Albumin 0.488 (0.306 to 0.669) <0.001 0.711*

Log(GGT) −1.704 (−2.223 to −1.184) <0.001 0.689

Methadone (yes vs no) 8.319 (−2.019 to 18.657) 0.115 0.465*

Log(ALP) −0.739 (−1.213 to −0.264) 0.002 0.307

Log(transaminase) 2.016 (−0.151 to 4.183) 0.068 0.266*

Alcohol dependent (yes vs no) −1.210 (−1.856 to −0.563) <0.001 0.143

Gender (male vs female) 0.583 (0.236 to 0.930) 0.001 0.135

Age at baseline 0.014 (0.004 to 0.024) 0.009 0.121

Deprived† (yes vs no) −0.518 (−0.852 to −0.183) 0.002 0.013

Methadone×albumin −0.295 (−0.530 to −0.061) 0.014

Albumin×log (transaminase) −0.070 (−0.122 to −0.018) 0.008

Scale 4.551 (4.192 to 4.910) <0.001

Parameter estimates are in decreasing order of IDI. A negative coefficient indicates an increased risk of diagnosis, while a positive coefficient
indicates a decreased risk of diagnosis. However, this differs for terms involved in interactions, that is, increasing transaminase increases risk;
for a methadone user, increasing albumin increases risk; for non-methadone users, decreasing albumin increases risk.
*The relative interaction terms containing this parameter were also excluded.
†Carstairs categories 1–3 were coded as affluent and categories 4–7 were coded as deprived.
ALP, alkaline phosphatase; GGT, γ-glutamyltransferase; IDI, integrated discrimination index.

Figure 1 Decision curve for a model to predict liver disease

diagnosis in patients having their liver function tests (LFTs)

measured in primary care. Dashed line: prediction model; grey

line: assume all patients have liver disease; black line:

assume no patients have liver disease.
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(figure 3). The C-statistic for the scoring tool when
applied to the validation cohort was 0.77 (95% CI 0.59 to
0.89). When the tool’s approximation to the linear pre-
dictor was used in a calibration slope test, it was not signifi-
cantly different from one, β=0.93 (0.73 to 1.14), p=0.53.
The scores for each of the risk factors add up to a total
score that corresponds to the risk of liver disease. The
baseline case for the tool was a 45-year-old woman, living
in an affluent area, who was not alcohol or methadone
dependent with transaminase=11.5 U/L, ALP=46 U/L,
GGT=17 U/L and albumin=48 g/L. Her score of zero cor-
responded to a liver disease risk of 0.03%. As an example,
a 60-year-old man living in a deprived area, who is alcohol
dependent but not a methadone user, with
transaminase=70 U/L, ALP=130 U/L, GGT=45 U/L and
albumin=38, has a score of 29, which corresponds to a
liver disease risk within 2 years of 4.1%. For comparison,
when this patient’s characteristics were entered into the
full model in online supplementary appendix 5, their risk
was 3.8%.
The correlation between the predicted probabilities

from the scoring tool probabilities and the predicted
probabilities from the final model when applied to the
validation cohort was 0.91. Online supplementary
appendix 6 shows the scatterplot of the relationship
between the two.

DISCUSSION
Summary
A user-friendly clinical scoring tool has been developed
that can estimate the risk of liver disease diagnosis at

6 months and 2 years in patients who had their initial
LFTs measured in primary care. The tool is based on a
clinical prediction model which was derived and vali-
dated using large population databases. This model adds
morbidity and a longer duration to a previous algorithm
that predicts 1-year mortality as part of our Algorithm
for Liver Function Investigations (ALFI).33

Strengths and limitations
This is the first large-scale population-based analysis of
LFTs with complete determination of liver disease
outcome. ALFI has been derived from unselected ‘real-
world’ observations in a geographically defined popula-
tion: an approach recommended by the National
Institutes of Health.34 A weakness of the electronic data-
bases was the lack of some potential predictors of liver
disease, for example, alcohol intake and body mass index,
which the GP can readily ascertain to guide decisions.
However, predictors in the model, such as LFTs and
deprivation, may act as surrogate markers for such factors.
While we have no data on the clinical indications for LFTs
being measured, we were able to identify patients with a
history of major comorbidities since 1980, including
cancer, diabetes and IHD using hospital admission records
and population registers, and patients who were pre-
scribed statins, NSAIDs and antibiotics. Using the predic-
tors we did have, the model was proven to have good
ability to predict liver disease. There will have been an
underascertainment of some liver diseases; particularly
those diagnosed in primary care, such as mild alcohol-
related liver disease and the steatotic end of the spectrum
of non-alcoholic fatty liver disease. Patients with these dis-
eases are most likely to be dealt with by being advised to
lose weight or reduce alcohol intake, and only those who
developed further problems and who were referred would
be captured on the database.
The aim of the study was to combine known signifi-

cant predictors of liver disease into one source of prog-
nostic information that could provide the GP with an
individualised estimate of the predicted risk of liver
disease at the point where the patient has had their
initial LFTs measured. If, at that point, the patient has a
high risk of liver disease based on this model, then the
GP can also use other contextual information and their
own clinical judgement to make a decision as to whether
to monitor or refer the patient to a liver clinic according
to national or local protocols.
The predicted probabilities from the scoring tool cor-

related well with those from the model. However, it is
evident from the scatterplot in online supplementary
appendix 6 that for high predicted probabilities from
the final model the tool underestimates the predicted
probability. This is because many of these higher prob-
abilities come from patients who have very highly abnor-
mal LFTs. The tool assigns such patients the points
based on the highest cut-off in the tool. For example, if
a patient has an ALP measure of 825, the tool assigns
the same points as someone with an ALP of 181 (ie, +4

Figure 2 Probability of a liver disease diagnosis during the

2 years for the average risk patient and two example patients

with different risk levels. Note: Average risk is defined as the

risk calculated using the average linear predictor value from

the model. Patient 1 and 2 characteristics are presented in the

boxes within the plot. The estimated risk of being diagnosed

with a liver disease within 2 years for each of these patients is

0.002 (average risk patient), 0.097 (patient 1) and 0.493

(patient 2). ALP, alkaline phosphatase; GGT,

γ-glutamyltransferase.
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points) since ≥180 U/L is the highest cut-off in the tool.
It would be inefficient to expand the number of groups
for the LFTs to include such large values as the score
card would be huge. In such circumstances, the GP
would automatically refer without the need for a scoring
tool. Also, it is advisable to reduce the influence of
extreme values when creating such a scoring tool by
using the 99th centile value of measurements as the
largest possible value when creating the cut-offs.29

External validation
The validation cohort came from 19 general practices
across nine different regions of Scotland during a differ-
ent time period than the derivation cohort. Good

discrimination and calibration demonstrated that ALFI
is transportable to different geographical and temporal
populations. The C-statistic for discriminatory ability was
0.78, which is comparable to that found in the validation
of the Framingham equation on different cohorts
ranging from 0.63 to 0.83.35 The external cohort also
contained more deprived and comorbid patients than
the derivation cohort, proving that ALFI is also robust to
changes in baseline characteristics.

GGT and transaminase
GGT and, to a lesser extent, transaminase were either
missing or not tested for a large proportion of patients
in the derivation cohort, but much less so in the

Figure 3 Clinical scoring tool for likely liver disease diagnosis in primary care. For each risk factor category, enter the

corresponding score into the box on the right-hand side. Sum the scores in the total score box. Look for the total score in the

lower table and read off the risk of liver disease within 6 months and/or 2 years. ALP, alkaline phosphatase; GGT,

γ-glutamyltransferase.
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validation cohort. From the database, it was not possible
to determine the exact reason for the non-presence of
these two LFTs. However, in Tayside, the laboratories do
not routinely include GGT with the other four LFT
results unless specifically requested by the primary care
physician. The demographics of the patients with com-
plete data (ie, males, illicit drug users, alcohol depen-
dants and patients living in deprived areas) suggested
that some primary care physicians may have requested
GGT where they suspected substance abuse.7 Testing
bone biochemistry may explain the reason for trans-
aminase not being measured, since this group contained
a higher proportion of female patients who are more
susceptible to bone disease, such as osteoporosis, and
had a higher median ALP, which is a marker for bone
disease. Furthermore, one of the hospitals in Tayside
analysed transaminase using a separate analyser for
several years throughout the study and did not keep
electronic copies, which may also explain some of the
missing values. Therefore it was assumed that the
missing/untested LFT data depended on variables in
the observed data, the assumption required for multiple
imputation,22 and that the appropriate guidelines for
handling this problem were followed.36

Implications for practice and research
At a cut-off of 0.6% (the 75th centile) for liver disease
risk, sensitivity and specificity were similar with values of
73.7% and 75.3% in the validation cohort. However, the
PPV for low cut-offs such as this was poor. The specificity
at a cut-off of 1.2% risk is greater than 90% and rises to
100% at the 10% cut-off. The NPV of the model is very
high even for reasonably small cut-offs of risk, meaning
that the model is good at ruling out risk of liver disease
within 2 years. However, this is not surprising, given the
low prevalence of liver disease in the sample of 0.5%.37

The PPV was low since liver disease diagnosis was rela-
tively rare, but it rose to over 10% for predicted risks of
over 5% and in a small minority of patients with higher
predicted risk reached 20–30% with the NPV remaining
very high. Therefore, ALFI may be most accurate at
higher predicted risk cut-offs with reasonable PPVs. As
well as displaying reasonable accuracy, it is also import-
ant to show that the model has the potential to improve
decision-making.
The decision curve analysis showed that the model was

of value for threshold probabilities between 0.5% and
7.5%. To determine whether the model is of clinical
value, we should consider the possible range of thresh-
old probabilities of liver disease at which GPs would
decide to refer the patient to secondary care. The deci-
sion to refer is not a particularly risky intervention for
the patient. Initially, it will lead to further blood tests
and possible ultrasound in secondary care. The
outcome of these results will determine whether the
patient requires a liver biopsy which has some risk
attached to it. However, if the patient gets to that stage,
then the clinician must have a high suspicion of liver

disease, meaning that the decision to refer was correct.
If the GP does not refer and the patient does have or
develop liver disease, then the risk to the patient (ie, of
being a false negative) depends on the type and stage of
the disease. Therefore, the GP may think that the inter-
vention of referral is much less risky than not referring
and decide that a probability threshold of, say, 5% is
enough to refer. For thresholds between 5% and 7.5%,
the model is also reasonably accurate. Therefore, ALFI
could help GPs focus referral on a small subset of
patients with higher predicted risk and reasonable PPVs
while taking clinical factors that were not included in
the model (but which may have improved prediction)
into account. However, where the risk is lower, the long
time frame of the development of many liver diseases
means that GPs can continue to address modifiable liver
disease risk factors (eg, alcohol misuse).
The next step is to evaluate ALFI as a complex inter-

vention while taking into account the cost associated
with referral of false positives.38

GGT should be considered just as important as other
LFTs in the prediction of liver disease since only
albumin explained more variation in the model. Proper
use of ALFI in practice will depend on GGT being a
routine part of the LFT panel. Local health economies
will have to decide whether the additional cost of an
extra test in the panel is worth it in terms of GGT’s
value in improving the ability to predict those patients
who are at high (or low) risk and, subsequently, change
referral practice. Before such decisions are made,
further research is necessary involving cost-effectiveness
analysis.

CONCLUSIONS
In summary, this study has developed and externally vali-
dated the ALFI model for prediction of liver disease
diagnosis in patients with no clinically obvious liver
disease having their LFTs taken within primary care.
From this model, a simple scoring tool was developed to
facilitate GP decision-making with regard to retesting or
referring their patients. GP decisions regarding referral
of patients to secondary care should be based on prob-
ability thresholds where benefits outweigh harm.39 ALFI
requires further evaluation as a complex intervention,
but it has the potential to save health service costs and
prevent unnecessary further investigations and
treatments.
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