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Abstract

Motivation: Recently, machine learning models have achieved tremendous success in prioritizing candidate genes
for genetic diseases. These models are able to accurately quantify the similarity among disease and genes based on
the intuition that similar genes are more likely to be associated with similar diseases. However, the genetic features
these methods rely on are often hard to collect due to high experimental cost and various other technical limitations.
Existing solutions of this problem significantly increase the risk of overfitting and decrease the generalizability of the
models.

Results: In this work, we propose a graph neural network (GNN) version of the Learning under Privileged
Information paradigm to predict new disease gene associations. Unlike previous gene prioritization approaches, our
model does not require the genetic features to be the same at training and test stages. If a genetic feature is hard to
measure and therefore missing at the test stage, our model could still efficiently incorporate its information during
the training process. To implement this, we develop a Heteroscedastic Gaussian Dropout algorithm, where the drop-
out probability of the GNN model is determined by another GNN model with a mirrored GNN architecture. To evalu-
ate our method, we compared our method with four state-of-the-art methods on the Online Mendelian Inheritance in
Man dataset to prioritize candidate disease genes. Extensive evaluations show that our model could improve the
prediction accuracy when all the features are available compared to other methods. More importantly, our model
could make very accurate predictions when >90% of the features are missing at the test stage.

Availability and implementation: Our method is realized with Python 3.7 and Pytorch 1.5.0 and method and data
are freely available at: https://github.com/juanshu30/Disease-Gene-Prioritization-with-Privileged-Information-and-
Heteroscedastic-Dropout.

Contact: majianzhu@pku.edu.cn

implementing the same intuition try to model this problem as a rec-
ommender system, in which diseases and genes represent customers
and products, respectively (Natarajan and Dhillon, 2014; Zakeri
et al., 2018). Disease gene prioritization problem can also be mod-
eled as a link prediction problem based on the node and edge fea-

1 Introduction

Identifying disease genes is the most important step for understand-
ing parthenogenesis and for searching therapeutic targets.
Experimentally verifying a causal link between gene and disease is

time-consuming and expensive. The past decades have witnessed the
success of a number of computational models in prioritizing new
genes based on known disease and gene associations. Network fu-
sion algorithms (Aerts et al., 2006; Britto et al., 2012; Chen et al.,
2007, 2009; De Bie et al., 2007; Gefen et al., 2010; Gerstein et al.,
2012; Guney and Oliva, 2012; Kim et al., 2015; Kumar et al., 2018;
Magger et al., 2012; Robinson et al., 2014; Tranchevent et al.,
2008; Yang et al., 2015; Zakeri et al., 2018; Zitnik et al., 2015)
were first proposed to combine different sources of information on
both diseases and genes and provide an universal ranking of associa-
tions for any disease gene pairs. Another type of approaches
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tures on graphs. The early graph-based approaches mainly relies on
standard random walk (Chen et al., 2009; Kohler et al., 2008; Lee
et al., 2011) and its alternative forms (Adie et al., 2005; Chen et al.,
2009; Erten et al., 2011; Franke et al., 2006; Kohler et al., 2008;
Linghu et al., 2009; Martinez et al., 2015) to smooth the signal on
the graphs.

The main intuition behind these computational models is that
similar genes are more likely to be associated with a similar set of
diseases and similar diseases tend to share similar disease genes
(Latif et al., 1993; Tanzi et al., 1993). Therefore, an important com-
ponent of these models is the features adopted to quantify the
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similarity among diseases and genes. For genes to be prioritized,
their similarity should reflect their functional similarities, which
could be characterized by various types of information such as their
involvement in the same biological processes, their physical or genet-
ic interactions, their co-expression patterns in certain cell lines, co-
occurrence evidence from the literature and their phenotypic similar-
ity after gene deletions. Disease similarity could be calculated based
on the overlap of their symptoms or their semantic distance on the
disease ontology.

However, in practice such features are often hard to collect on a
large scale due to technical limitations. For instance, the widely
adopted gene feature dataset (Lamb et al., 2006; Subramanian ez al.,
2017) only measures the knocking out effects on 500 genes in
humans. Liu ez al. (Liu ef al., 2016) constructed a sample-specific
network to describe an individual’s disease state by integrating the
co-expression correlations and PPI interactions within a tissue.
However, those tissue-specific data are only available for a limited
number of cell lines and tissues. A third example is Shim ez al. (Shim
et al., 2019) which relies on the pathway-specific protein domains to
predict disease genes. However, they found that only 27% of
InterPro (Mitchell ez al., 2015) domains had function/pathway an-
notation from InterPro2GO. In addition, many other gene features
such as the associated drug information and evolutionary history are
also hard to collect for all the genes due to experimental limitations
(Wang et al., 2019a).

A trivial solution adopted by most of these algorithms is to take
the union of all the features and create a very large and sparse fea-
ture matrix by filling the missing values as zeros. In this disease gene
prediction problem, the number of positive training samples corre-
sponding to the known disease-gene associations is very small.
Therefore, merging all features together increases the risk of overfit-
ting the training data by significantly enlarging the feature dimen-
sion. Second, this trivial solution significantly limits the
generalizability of the machine learning models. Consider the gene
knocking out features in the CMAP project, if only 500 genes have
such features, then the model has to rely on many zeros to make pre-
dictions for the rest of the genes and lead to less accurate results.
Third, such a high feature dimension requires a more complicated
model, which poses technical challenges for certain types of machine
learning models. For instance, graph neural networks (GNN) were
recently adopted to predict disease genes (Liu et al., 2020; Li et al.,
2019b; Testolin and Zorzi, 2016; Wang et al., 2019b) and it is wide-
ly known that GNN models suffer from an ‘over-smoothing’ prob-
lem when their architectures become very deep (Li et al., 2018). In
addition, when a data observation has a missing feature, we usually
impute this missing value by taking average of this feature values
among all the other observations that have this feature. However,
sometimes there are many observations missing this feature, then
impute this missing value by taking average is not a good choice. In
this case, we choose to delete this observation. Therefore, it is typ-
ical for the above methods to remove all the genes without any of
the above features from both training and test data, which further
limits their usage and generalizability (Li et al., 2019b). However, if
we still include these sparse feature genes in the model and fill the
missing features with zero, then the learnt embedding of these genes
will have a high variance. This side effect might become even larger
when we train the model in a batch fashion based on neighborhood
sampler or reconstructed subgraphs, which will make the model
very unstable and hard to generalize.

To address these problems, we developed a new computational
framework to predict disease gene associations, which belongs to
the family of Learning under Privileged Information (LUPI) (Vapnik
and Vashist, 2009). We implemented it using a relational graph
neural network (RGCN) (Schlichtkrull et al., 2018) with the
Heteroscedastic Gaussian Dropout. One of the intriguing properties
of our model is that the training and test samples could take differ-
ent sets of features. In particular, we introduce a concept called
‘privileged features’ to indicate those features that are only available
for the training samples. The main computational challenge we
addressed here is how to leverage the information provided by these
privileged features to improve the prediction accuracy on the test

samples. The backbone of our model is two connected RGCN mod-
els with the same architecture running on top of a heterogeneous
network of diseases and genes. One RGCN model is used to map
the features of diseases and genes to low dimensional embedding by
using a non-linear aggregation of the neighborhood information.
The second RGCN takes the privileged features which might be
missing at the test stage to control the dropout probability of the
first RGCN model. Since the dropout operation is not needed at the
test time, the second RGCN and the privileged features can be
excluded when making predictions. The second RGCN model
injects the information provided by the privileged features into the
first RGCN by determining the importance and scales of noise of
each hidden neuron at each training epoch. As a result, we can in-
clude the information of those genes with sparse features and con-
trol the variance of the learnt embedding. This learnable and
informative dropout model is very useful because usually not all the
nodes in a graph have the same set of features, this is especially true
in the biology domain where features are difficult to get due to high
experiment cost. This framework is not only suitable to the graph
convolutional networks, but also can be extended to various of
GNNs, such as GraphSage (Hamilton er al., 2017) and GAT
(Velickovi¢ et al., 2017), which has been more and more applied to
biology domain (Kwak et al., 2020; Zitnik et al., 2018).

To evaluate our method, we compared our method with four
state-of-the-art disease gene prediction algorithms, including IMC
(Natarajan and Dhillon, 2014), GeneHound (Zakeri et al., 2018),
Catapult (Singh-Blom ez al., 2013), Katz (Singh-Blom et al., 2013)
and a basic RGCN model on the Online Mendelian Inheritance in
Man (OMIM) dataset (Hamosh, 2002). We evaluated the perform-
ance of these models on various graph learning settings including
general link prediction, link prediction on unseen nodes and on
sparse features. Extensive experiments show that our method signifi-
cantly outperforms other methods on these machine learning tasks
related to disease gene prediction. More importantly, our model can
accurately make link predictions for those genes with sparse features
or even without any genetic features by successfully incorporating
privileged features during the training process.

2 Materials and methods

In this work, we model the disease gene prioritization problem as a
link prediction task. We integrate disease similarity, gene similarity
and disease—-gene associations into a multi-relational network. As
shown in Figure 1, two RGCN models are constructed to transform
two separate feature sets into one low dimensional embedding
which represents either a disease or a gene. Another edge decoding
layer then transforms the embedding’s of a disease—gene pair to their
strength of associations. Note that the parameters in both RGCNs
and the decoding layer are trained in an end-to-end manner so that
they could act as regularizers for each other.

2.1 Relational graph convolutional networks

To capture the non-linear relationship between features, labels and
network topologies, we adopt the relational graph convolutional
network (RGCN) (Schlichtkrull et al., 2018) framework to jointly
model different types of edges in the disease-gene graph. The convo-
lution operation in RGCN is the same as the one defined in the
graph convolutional neural networks (GCN) (Bruna et al., 2013) in
which the parameters are shared over all the locations in the graph.
The central idea of GCN is to generate a node representation by
aggregating its own features and neighbors’ features. This aggrega-
tion process can be viewed as a message passing operation over the
entire graph. The propagation rule on a regular graph for the Ith
layer is defined as follows,

H™Y = 6(D#ADHHOWO) (1)

where HVis the node embedding in the Ith layer and H®is the raw
feature matrix. A is the adjacency matrix of the regular graph and D
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Fig. 1. The LUPI paradigm. The main net (left) is a RGCN model which integrates
the neighborhood information. The dropout net (right) is another RGCN model
whose outputs are used as the variance of a Gaussian distribution in the Gaussian
dropout of the main net

is the degree matrix in which DJi, {] is the node degree for node i and
0 elsewhere. We choose the non-linear function Relu (Nair and
Hinton, 2010) as the activation function o(-). W is the weight of
the linear layer. However, gene disease network has three types of
relations, namely gene-gene, gene—disease and disease—disease asso-
ciations, and GCNs only capture single type of relations. Therefore,
we consider the variants of GCN that can model several types of
associations. As a natural extension of GCN, RGCN can model dif-
ferent types of edges for a relational graph by propagating different
types of messages within the graph (Schlichtkrull ez al., 2018). The
above layer-wise propagation rule is then modified as the following,

141 1 I .
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Here hl(l * 1 is the node embedding of node i in (I + 1)th layer.
N denotes the set of neighbors of node i under relation € R, R is
the relation set, including gene similarity, disease similarity and the
gene disease associations. ¢/ is the normalization factor and taking
the value of |N7|, which is different from node to node in the graph.
Compared to CNN, different linear weights are defined for different
relations and then aggregated together by using the mean operation.
The gene disease prediction model proposed by (Li et al., 2019b) is a
RGCN model. But they did not include all the genes because some
genes have many missing features and these genes have been
removed from the gene disease network. The removal of these genes
will make the dependence structure between genes and between
genes and diseases incomplete, which means we will train on a sub-
graph and it will loss some information compared with training on
the original graph. Even though they can include those deleted genes
and fill the missing features with zero, the learnt embedding of the
nodes will have a high variance, thus leading to unstable results.
Our framework is also built on the RGCN model, but we incorpor-
ate another RGCN or simply GCN to decide the variance of an in-
formative and learnable dropout. In this case, we can include the
genes deleted by (Li ez al., 2019b) and also control the variance of
the learnt embedding To put it simple, the model in (Li et al.,
2019b) is just the left part (RGCN) in Figure 1 and our framework
is the RGCN plus a learnable dropout scheme.

2.2 Privileged information and heteroscedastic

Gaussian dropout

Privileged features represent those features that are often hard to
collect in practice so that sometimes we only have this kind of fea-
tures in the training phase but not the testing phase, which might
provide valuable information for the model training. In contrast to
privileged features, we called the features available for both training
and test data the public features. For a particular disease or gene
node, let x and x* denote the public feature vector and the privileged
feature vector, respectively. In this paper, we generalize the defin-
ition of the privileged information, where x and x*can be the same
and that is to say we use the same information to determine the
mean function and the Gaussian dropout variance. In order to in-
corporate the privileged features during training, we introduce two
multi-layer RGCNs with the same architecture, i.e. the numbers of
layers, hidden neurons and their connectivities in each layer are
exactly the same. As shown in Figure 1, the first RGCN (left),
named the main net, is used to transform the public features x to
node representations and later to the final predictions. The second
RGCN (right), named the dropout net, takes the privileged features
x* and transforms it to the variance of a Gaussian distribution which
controls the confidence of each hidden neuron in the main net. At
each training epoch, the two RGCN models perform message pass-
ing separately on the same graph using the updating rule defined at
Equation (2). Let m(x) and d(x*) denote the node embedding of the
main net and dropout net, respectively, then the value of the ith di-
mension v; of the joint representation of both x and x* is defined as
the follows,

vi = mi(x)xN(1, di(x")) 3)

For conventional dropout (Srivastava et al., 2014), the second
term of the right-hand side of Equation (3) is a Bernoulli distribution
with a fixed probability. For Gaussian dropout, it simply replaced
the Bernoulli distribution with a Gaussian distribution (Lambert
et al., 2018). The mean of the Gaussian distribution is 1 and the
variance is derived from the dropout net. To calculate Equation (3)
at each training epoch, we need to sample a weight from the
Gaussian distribution and then multiply this weight with the embed-
ding’s from the main net. This technique is called Heteroscedastic
Gaussian Dropout (Lambert ef al., 2018) which is a natural exten-
sion of the Gaussian dropout in which the variance of Gaussian dis-
tribution is a constant. The intuition is that for an important hidden
neuron, which captures the feature patterns within a local network
region, tends to get a Gaussian distribution with a smaller standard
deviation because its exact value is necessary for the final prediction.
For a less important hidden neuron, the RGCN allows its value to
be flexible within a certain range based on their privileged features.
To the best of our knowledge, our method is the first to adopt this
technique on GNNs. A naive implementation of Equation (3) is to
generate different variance values for different dimensions of the
node embedding’s. However, such implementation significantly
increases the risk of overfitting by introducing extra model complex-
ity. To address this problem, we consider using a shared variance
across all the dimensions for each node, then Equation (3) becomes,

Vi = ml(x) X N(Lg(fl (X*)7f2(x*)7 : 7fm(x*)) (4)

Where g(-) is an aggregation function that can output a summary
statistic, such as sum, mean or median.

2.3 Training via variational graph auto-encoders
Equation (3) provides a way to calculate the value of each hidden
neuron. However, it is hard to calculate its gradient and propagate
it back to train the parameters in the neural networks. Therefore,
we formalize the entire model as a Graph Variational Auto-Encoder
(VAE) (Simonovsky and Komodakis, 2018). Let X denote the fea-
ture matrix by collecting all the disease and gene nodes and A the
adjacent matrix of the disease—gene association graph. We optimize
the variational lower bound of the log likelihood with respect to the
parameters was follows,
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L = Eqzx.4)llogp(A|Z)] — KL[g(Z|X, A)||p(Z)] (5)

Here, g(Z|X,A) is the encoder function transforming the input
feature X into a latent variable Z on the low dimensional space,
which is defined as a Gaussian distribution as follows,

q(21x. 4) = [La@lX. A) = [[ NGzl diag(c?)  (6)

The mean g; and variance 67 of the Gaussian functions are the
main net and dropout net RGCN models with the form defined in
Equation (2). That is, the hidden variable Z is sampled from a multi-
variate Gaussian distribution in which the mean and variance are
derived from two RGCN models. p(A|Z)is the decoder function
which transformed the hidden variable Z sampled from the encoder
function back to the adjacent matrix A of the disease gene graph.
p(Z) is the prior distribution of Z following the Gaussian distribu-
tion defined as follows,

»(2)=[INGIo.D 7)

Note that the hidden variable Z in the first term of Equation (5)
is the same as what we defined in Equation (3). The second KL di-
vergence of Equation (5) restricts the posterior distribution to be
close to the prior distribution we set beforehand, which acts as a
regularization term to prohibit overfitting. Different from conven-
tional VAE, the mean and variance are two RGCNs instead of one
CNN or Multilayer perceptron. In addition, the features used to cal-
culate the mean and variance are different. The mean is calculated
by the main net using the public features and the variance is calcu-
lated by the dropout net using the privileged features. To train the
model, we adopt the reparameterization trick (Kingma and Welling,
2013) to help the gradient back-propagate properly, which is the
same as used in VAE. Please refer to (Xu et al., 2018) for more tech-
nical details for training the VAE. To optimize L defined in
Equatiozl (5), we adopted the ADAM algorithm with learning rate
1x107".

2.4 Link prediction

After the model is trained, we only need to calculate the hidden vari-
able Z from using the main net and no dropout net or privileged fea-
tures are involved at this step. The probability for disease j to be
associated with gene 7 is defined as:

s(xj, xj) = sigmoid( < m(x;), m(x;) >) (8)

where m(x;) and m(x;) are the node embeddings of gene node i and
disease node j, respectively. Link prediction is a binary classification
problem given two nodes, if there is an edge between them, we de-
note the label variable as 1 and 0 otherwise. Therefore, we view a
disease—gene association as a positive sample and no association be-
tween a disease and gene as a negative sample. This disease gene pre-
diction task is a highly imbalanced problem, in which there are
overwhelmingly more negative samples compared to positive sam-
ples. In practice, the disease gene associations only occupy 0.5% of
all the possible links. To address this problem, we did negative sam-
pling, and each positive sample has one negative sample from the en-
tire graph that will be included in our objective functions.

2.5 Heterogeneous network

The heterogeneous disease gene network contains three types of
edges: gene similarity, disease similarity and disease-gene
associations.

Gene similarity. Gene similarity network is extracted from the
HumanNet database (Lee et al., 2011), which characterizes the
function similarity between two genes using multiple resources,
including mRNA co-expression, protein—protein physical interac-
tions and evolution information based on comparative genomics.

Disease similarity. The disease similarity network is constructed
based on their phenotype similarity extracted from MimMiner (Van
Driel et al., 2006) using text mining techniques. There is an edge

connecting two diseases if their phenotypic similarity score exceeds
0.2.

Gene—disease association. Gene-disease association is the most
important association we studied in this paper. It is constructed
from the OMIM database (Hamosh et al., 2005), in which data
were collected and edited at Johns Hopkins University with input
from scientists and physicians around the world. In total, we include
3215 diseases, 12 331 genes, 321 375 disease—disease edges, 366
918 gene—gene edges and 3988 disease—gene edges. All the edges are
undirected edges.

2.6 Features

We adopted the same features and data pre-processing pipeline as
described in (Natarajan and Dhillon, 2014) for both genes and dis-
eases. In particular, we collected two types of features for genes:

Gene expression. We extracted the gene expression measured by
the microarray experiments in different samples from the BioGPS
database (www.biogps.org) and the Connectivity Map (www.broad
institute.org/cmap) (Natarajan and Dhillon, 2014). In particular,
each feature represents the value of the mRNA expression in a par-
ticular sample in a given cell type. Two genes with similar feature
vectors indicates that their expressions are similar across different
individuals in multiple tissues and cell types. To remove the redun-
dancy among highly correlated individual samples, we used princi-
pal component analysis on the feature matrix and used the first 100
eigenvectors as the feature representations.

Function associations from different species. Natarajan and
Dhillon collected (Natarajan and Dhillon, 2014) the gene-pheno-
type association’s studies in eight species including plant, worm,
fruit fly, yeast, E.coli, mouse, zebrafish and chicken. If two genes
have similar phenotype features, it indicates two genes are associ-
ated with a similar set of phenotypes across different species. In
total, we considered 17 480 gene features in the model.

For each disease, we also consider two sets of features: the ontol-
ogy annotations from the Human Disease Ontology (https:/www.
ebi.ac.uk-/ols/ontologies/doid) and the clinical features drawn from
the OMIM webpage (https://bioportal.bioontology.org/ontologies/
OMIM).

3 Results

In this section, we present the results of the performance evaluation
for different models to recover the gene disease edges. We consider
the other three scenarios: First, we evaluated the predicted associa-
tions for new diseases, for which all the associations with genes
were removed during test and validation sets (Li ez al., 2019b). In
the second experiment, we tested the performance of different meth-
ods on recovering new associations between a gene and a disease,
both of which have no gene—disease association in the training and
validation dataset (Li et al., 2019b). In addition, we also focused on
a special group of genes, named ‘singleton genes’ (Li et al., 2019b;
Singh-Blom et al., 2013), which only has one association with one
of the many diseases. This association will be removed from the
training data and the task is to recover this association. For all these
conditions, we considered two scenarios: (i) Prediction performance
using all the features and (ii) prediction performance when the gen-
omics features on the test sample are sparse. Besides, the missing fea-
tures in the training, validation and test sets will be filled with zero.
The purpose of our framework is not to impute the missing features
of each node. Instead, it tries to alleviate the effect of missing fea-
tures by applying a learnable dropout to each node so that each
node can learn its representation from additional information. In
addition, the gene disease network is an undirected graph and that is
to say edges i — ;> and § — i’ between nodes i and j are the same
edges. Therefore, we need to avoid the data leakage problem, which
means that if 4 — ;> has been moved to test set, then § — 7’ should
not appear in the training set. This has been violated in (Li et al.,
2019b), where they put the edge ¢ — ;* in the test set but fail to re-
move § — 7 from the training set. We believe the results they
reported in their paper are not reliable. Therefore, we retrained the
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Fig. 2. Overall performance of different models on all genes. (A) ROC curve of dif-
ferent models and (B) PR Curve of different models

PGCN model (we called RGCN model in our experiment) using the
same train/val/test dataset as ours.

3.1 Overall performance

3.1.1 Performance on all the genes

We used the 10-fold cross validation strategy to test each computa-
tional model. In each fold, we use 10% of the data as validation set,
10% as test set and the remaining 80% as the training set. AUROC
(Provost Foster et al., 1998) and AUPRC (Manning and Schutze,
1999; Raghavan et al., 1989) were adapted to evaluate the perform-
ance of each model. Both AUROC and AUPRC are important
assessments to evaluate the model performance when dealing with
imbalanced prediction problems. Hence, we used AUPRC and
AUROC to measure the model performance in the following sec-
tions. For the four competing methods, Katz is a similarity score-
based method, where the similarity is measured through the number
of walks connecting the two nodes with different lengths. Katz
makes prediction that merely depend on the network structure but
cannot incorporate node features into the modeling process. Hence,
it is hard to make a good prediction for both genes and diseases.
Catapult improves the results through supervised learning and the
features used are merely network topological features. GeneHound
and IMC prioritize the disease genes by modeling this problem as a
recommendation system through matrix factorization. In this case,
they can take full advantage of the gene- and disease-specific infor-
mation (Li ef al., 2019b). In this experiment, the public features and
the privileged features of our method are the same and our model is
equivalent to the variational dropout framework (Kingma et al.,
2015; Molchanov et al., 2017). To evaluate the contribution of
Heteroscedastic Gaussian Dropout, we also implemented a relation-
al GCN model with the exact same architecture but without using
the LUPI paradigm. To further evaluate the contribution of network
topology and genetic features, we also compared our methods with
a RGCN model without using any features on diseases and genes.

As demonstrated in Figure 2, LUPI-based RGCN models outper-
form other models by at least 8.8% in AUROC and 7.0% in
AUPRC. In comparison to the simple RGCN model, LUPI-based
RGCN model could achieve 11.7% of improvement in AUROC and
12.4% in AUPRC. This demonstrates that even though we could
collect all the features easily for all the genes, our framework is
more robust compared to other models by introducing a feature-de-
pendent dropout framework. This result is also consistent with the
finding that variational dropout could provide more accurate and
stable predictions (Kingma et al., 2015).

We also found the RGCN model (RGCN_Feature) could only
slightly outperform the RGCN model solely based on the network
topology (RGCN_noFeature). Our LUPI-based learning model pro-
vides a more efficient way for the GCN model to learn the feature
patterns by determining the importance of each dimension using the
dropout net during the training phase through Heteroscedastic
Gaussian Dropout.

3.1.2 Performance of genes with sparse features
Due to technical limitations and high experiment cost, a significant
amount of genes contains sparse features. As shown in Figure 3, all
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Fig. 3. Distributions of feature sparsity for all the genes in the dataset
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curve of different models and (B) PR Curve of different models

the genes in our dataset contain less than 30% of non-zero features
and 27.7% of the genes only have less than 5% of non-zero features.
Note that sparse features is a very common phenomenon in biologic-
al applications especially in system biology (Kuenzi et al., 2020; Ma
et al., 2018; Severson et al., 2017; Yu et al., 2016). In this section,
we specifically examine the performance on this subset of genes with
extreme sparse features. We use all the gene features as the public
features as well as the privileged ones to train the LUPI based
RGCN model.

Overall, the results show that most of the model performance
decreases compared to the performance on all the genes. For LUPI-
based RGCN method, the feature-dependent Gaussian dropout, to
some extent, alleviates this sparse-feature problem (Figure 4). Our
LUPI-based model outperforms the second-best model by 10% in
AUROC and 8.7% in AUPRC, respectively. This improvement is
larger than the one achieved when compared on all the genes. This
result suggests that a better place to deploy our model is when the
feature is sparse and Heteroscedastic Gaussian Dropout could more
efficiently select the important features by reassigning the variance
of each feature dimension.

3.1.3 Performance for different numbers of features

We further analysed how the performance changes with respect to
different feature sparsity. We randomly sampled £% of gene fea-
tures in the test dataset and used all the features in the training data-
set. Note that only our model allows the features for training data
and test data are different and RGCN-based models could take gen-
etic features. Therefore, we compared with the RGCN-based model
and filled the missing feature as 0 in the test data. For each k, we
repeated this sampling process ten times. In this experiment, we
applied the Fl1-score to measure the performance, which is an inte-
gration of both recall and precision:



Disease gene prediction with privileged information and heteroscedastic dropout i415

0.88
I wei_RGCN T RGCN_Feature
0.86 I
0.84 r —FT I
I
et

v 0.82
o
gl 0.80
—~

0 10 20 30 40 50 60 70 80 90
% of features used in test data

Fig. 5. Overall performance on using different numbers of features

A 0074 B 0.05%
Genetound E weircow [ AGCN Featurs

e

0.06 { — catapuk

0.04 ]

Recall
=
2
Recall@10
=
2
——
——

I sl 0.02

0 2 & 6 8 10 12 18 16 18 & 2 W 20 30 40 50 €1 70 &0 90
K % of features
Fig. 6. Performance comparison of different models on the singleton genes associ-
ation prediction. (A) Recall@K of different models. The x-axis indicates the top K
predictions. (B) Recall@10 of model LUPI_RGCN and RGCN when using different
percent of features in the test data

precision x recall

F1 —score =2————
precision + recall

9)

As shown in Figure 5, the prediction performance of our model
is constantly better than the RGCN model for different numbers of
features. In Figure 2, we had already found that the gene features on
this task did not improve the overall performance significantly
(2.9% improvement for AUROC and 2.7% for AUPRC). Here, we
found the performance did not improve much if one compared the
result of 90% of the features to 10% of the features. This result sug-
gests that each of the single dimensions of the genetic features might
not be very powerful but still have some signal to the final predic-
tions. These features could be viewed as ‘many weak learners’ in-
stead of ‘one strong learner’. However, our model could still achieve
a larger performance improvement (3.0%) when using more fea-
tures in comparison to RGCN model (2.3%).

3.2 Performance for singleton genes

From the previous studies, we know that the main signal of the pre-
diction comes from the topological structure of the disease gene net-
work. Next, we evaluate the prediction performance on another set
of genes on which genetic features play more important roles in
comparison to network structures. We evaluated the prediction per-
formance on recovering gene and disease associations for singleton
genes. Singleton genes are those genes who are only associated with
one disease, so their network topology information is weak. In the
dataset, we found 577 singleton genes. The evaluation metric is
called recall@K, which is also used in (Li et al., 2019b). Recall@K
suggests the probability of an actual association being retrieved
when checking the top-K predictions and is frequently used in the
context of recommendation systems (Herlocker ez al., 2004), whose
target is to recommend top-N items to the user. In disease gene pri-
oritization, recall@K is also an important indicator because the top-
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ranked genes are candidates for further investigation. As shown in
Figure 6A, the results show that the LUPI-based RGCN model out-
performs the other baseline models. When K is small, the perform-
ance of Katz, RGCN and LUPI-based RGCN model are almost the
same. When K increases, our LUPI-based method starts to signifi-
cantly outperform other baseline methods. In particular, our method
outperforms the RGCN model without genetic features 17.3%
when considered the top 10 candidate genes, suggesting our model
could better combine the information provided by genetic features
when the network topology signal is weak. We further investigate
the performance of different models for different number of features
in test data. That is, the training and test features are different only
for these singleton genes. As demonstrated in Figure 6B, our method
is constantly better than the RGCN. When using more features in
the test data, the performance can be improved in both
LUPI_RGCN and RGCN model, suggesting the advantage of using
Heteroscedastic Gaussian Dropout.

3.3 Performance for new diseases

We also evaluated the performance of recovering gene disease asso-
ciations for new diseases using the metric of recall@K. This task is
much less difficult than the singleton gene task because one new dis-
ease might have multiple associations with some other genes.
Successfully recovering associations between new diseases and genes
can help us with molecular diagnosis for human disease.

As shown in Figure 7A, all the competing methods demonstrate
similar patterns as the singleton gene results. LUPI-based RGCN
performs much better than other baseline models. In particular, our
model created an even larger performance gap compared to the
RGCN model without using features (79.7% of relative improve-
ment at top 10 predictions). This observation suggests that the pre-
diction for the new diseases heavily rely on their features such as
disease ontology and clinical features. We further investigate the
performance of different models for different number of features in
test data. From Figure 7B, our method performs better than the
RGCN. When we use more features in the test data, the perform-
ance can be improved in both LUPI_RGCN and RGCN models.

3.4 Performance for new associations

The prediction for new association is the most difficult task com-
pared with the previous two machine learning tasks, because neither
the disease nor the gene of the association has been seen in the train-
ing set. As a result, it requires the model to learn a representation
that understands well why there is a link between certain genes and
diseases. As shown in Figure 8A, there is a clear performance drop
in the recall value compared to the previous two experiments. Katz
and Catapult cannot recover any associations within the top 10 pre-
dictions. The reason is that Katz and Catapult merely rely on the
network topology information. However, in this setting, the missing
associations significantly affect the topological structure of the
graph. In this case, our method can better use the node features to
help to learn an expressive embedding and improve the performance
in recovering novel associations. As LUPI-based RGCN models
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incorporate more information through heteroscedastic dropout, it
performs better than the conventional RGCN model. We also evalu-
ate the performance for different number of features used in the test
data. Figure 8B shows that our method is constantly better than the
RGCN. When we use more features in the test data, the perform-
ance can be improved in both LUPI_RGCN and RGCN models,
which indicates that more features are helpful to recovering the
novel associations.

3.5 Run time analysis

As our model contains an extra neural network (dropout net), we
need to evaluate its prediction performance under different hyper-
parameters to avoid the overfitting problem. We use Pytorch 1.5.0
and Cuda 10.2 to run all the experiments. CPU is Intel Xeon Silver
4114 and the GPU is Nvidia Tesla P100. Therefore, we first evaluate
the overall performance on all genes under different model struc-
tures. As shown in Figure 9A, our method outperforms the conven-
tional RGCN model under different neural network architectures
and a complicated model does boost model performance. Second,
we also examined the running time of our model. As shown in
Figure 9B, our new method does not require too much extra training
time compared with the RGCN model. The reason is that even
though we introduced more parameters in the model, the epochs the
model needs to converge also decreases as now we could control the
dropout probability in a more efficient way. Therefore, the overall
running time does not increase much.

4 Discussion

In this work, we formalized the gene disease prioritization task as a
link prediction problem, which considers both the similarity of net-
work topology and genetic features. We designed a RGCN version
of LUPI framework which could integrate these two information
sources in a more efficient way. By introducing an extra neural

network model to control the dropout variance, we showed that our
model could better leverage these genetic features in various condi-
tions such as sparse features, singleton genes, new diseases and novel
associations. In particular, our model could achieve stable perform-
ance improvements even when the public features and privileged fea-
tures are the same.

In this work, we mainly focused on the disease gene prediction,
we view our computational framework as a very general learning
paradigm which could be easily adapted to other biology applica-
tions where collecting certain genetic features is hard. For example,
in cancer study, it is very common to train supervised learning mod-
els to understand the relationship between rich genomic and genetic
features and tumors’ phenotypes (Ing et al., 2017; Lu et al., 2019;
Nevins and Potti, 2007; Warnat et al., 2005). However, such models
are very hard to deploy in clinics as it is typically hard to measure
the same set of features for real patients. Our LUPI framework could
be easily applied here to bridge this gap.

Nowadays, there are a lot of interests in studying the interpret-
ation of GNNs. Under the LUPI framework, the interpretation task
is not only to understand the behavior of the main GCN but also to
understand the behavior of the dropout GCN and their interactions.
This requires non-trivial extensions of current GCN interpretation
frameworks such as GraphLIME (Huang et al., 2020),
GNNexplainer (Ying et al., 2019) and Xgnn (Yuan et al., 2020). In
the future work, we will focus on generalizing such interpretations
frameworks to interpret our LUPI predictions.
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