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Abstract: The Corona Virus Disease 2019 (COVID-19) is spreading all over the world. Quantitative
analysis of the effects of various factors on the spread of the epidemic will help people better
understand the transmission characteristics of SARS-CoV-2, thus providing a theoretical basis for
governments to develop epidemic prevention and control strategies. This article uses public data
sets from The Center for Systems Science and Engineering at Johns Hopkins University (JHU CSSE),
Air Quality Open Data Platform, China Meteorological Data Network, and WorldPop website to
construct experimental data. The epidemic situation is predicted by Dual-link BiGRU Network, and
the relationship between epidemic spread and various feature factors is quantitatively analyzed
by the Gauss-Newton Iteration Method. The study found that population density has the greatest
positive correlation to the spread of the epidemic among the selected feature factors, followed by the
number of landing flights. The number of newly diagnosed daily will increase by 1.08% for every 1%
of the population density, the number of newly diagnosed daily will increase by 0.98% for every 1%
of the number of landing flights. The results of this study show that the control of social distance and
population movement has a high priority in epidemic prevention and control strategies, and it can
play a very important role in controlling the spread of the epidemic.

Keywords: quantitative analysis; COVID-19; Gauss-Newton iteration; neural network

1. Introduction

Since December 2019, The Corona Virus Disease 2019 (COVID-19) caused by the SARS-
CoV-2, has spread rapidly around the world. On 11 March 2020, the WHO announced
that COVID-19 has become a major issue in the world [1–4]. The spread of COVID-19
has had a serious impact on the medical and economic aspects of countries around the
world [5]. Due to the complexity of the spread of COVID-19, existing models cannot
accurately estimate the direction of the spread of the epidemic [6]. Therefore, we need to
build a quantitative analysis model to deeply explore the spread and influencing factors of
COVID-19 on a global scale. In the current research, the data-driven deep learning model
has an outstanding performance in the task of modeling time series [7].

The symptoms of COVID-19 are fever, cough, shortness of breath, loss of consciousness
and fatigue. Other symptoms include dyspnea and chest pain [8]. In order to prevent
the spread of the epidemic, countries have adopted many measures, such as reducing
gathering activities, controlling the movement of people, advocating the use of masks,
and regular disinfection in public areas [9]. As of 31 December 2021, there have been
more than 287 million confirmed cases of COVID-19 worldwide, and at least 5 million
people have lost their lives [10]. In order to further grasp the factors affecting the spread
of SARS-CoV-2, better support the decision-making of epidemic prevention and control,
timely made targeted countermeasures, and control the further spread of the epidemic, it
is very urgent to quantitatively analyze the relationship between various factors and the
spread of SARS-CoV-2.
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The remainder of this paper is arranged as follows. Section 2 comprehensively in-
troduces the current research on COVID-19 and the transmission characteristics of the
SARS-CoV-2. Section 3 introduces the data sources and presents our research methodol-
ogy. Section 4 describes the experimental results and provides an analytical discussion,
and Section 5 summarizes the conclusions of this study and proposes further research
directions.

2. Related Research Work
2.1. Research on COVID-19 Epidemic

Since COVID-19 outbreak in December 2019, research on COVID-19 has attracted the
attention of data scientists from all over the world. Duccio et al. [11] predicted that the
maximum number of infections in Italy was about 26,000 and the death toll was about
18,000 through analysis of the spread of the epidemic in China and France. Ricardo et al. [12]
proposed a regression of compressed space Gaussian processes based on chaotic dynamics
system to predict the number of people infected with COVID-19 in the United States,
and concluded that the number of infected people in the United States would reach more
than one million on 14 June 2020. Rohit et al. [13] proposed Genetic Evolutionary Program-
ming (GEP) to analyze and predict the amount of COVID-19 cases in India. They proposed
a GEP model based on the use of a simple function, which was highly effective for the
time series prediction of COVID-19 cases in India. Putra et al. [14] used Particle Swarm
Optimization (PSO) to estimate the parameters in the Susceptible Infectives Recovered
Model (SIR), and concluded that the parameter results of the PSO algorithm were more
accurate and had lower errors than the traditional method. Mbuvha et al. [15] estimated
the parameters of the SIR with data from Lombardy, Italy and Hubei, China, and used the
SIR model to predict the number of COVID-19 cases in South Africa, and concluded that
COVID-19 was still in the early stage in South Africa.

So far, some scholars have done excellent research, but if it is necessary to further
study the transmission characteristics of the SARS-CoV-2, it is impossible to predict the
number of patients only. It is necessary to collect data related to the spread of SARS-CoV-2,
and to analyze the characteristics of SARS-CoV-2 to understand what factors are related to
the spread of SARS-CoV-2 and the quantitative relationship between them, so as to support
the more precise adoption of effective prevention, control and disposal measures.

2.2. Research on the Transmission Characteristics of the SARS-CoV-2 Virus

When COVID-19 became a global hot topic, people put forward many speculations that
could affect the transmission characteristics of the SARS-CoV-2, such as temperature [16–18],
humidity [19,20], population density [21,22], age [23,24], and so on. In this regard, scholars
have also conducted a lot of research, which has a non-negligible inspiration for us to
reveal the transmission characteristics of the SARS-CoV-2. Lin et al. [25] studied the
relationship between climate and the spread of COVID-19 on a global scale, and concluded
that the spread of COVID-19 was highly correlated with temperature and relative humidity.
Roengrudee et al. [26] studied the relationship between smoking and the spread of COVID-
19, and concluded that there was a significant correlation between the number of smokers
and the spread of COVID-19. Kass et al. [27] analyzed the relationship between Body Mass
Index (BMI) and age in the number of confirmed COVID-19 patients through a multiple
linear regression model, and concluded that obesity may increase the infection rate of
COVID-19. WU et al. [28] found that in the United States, areas with higher historical
PM2.5 were positively correlated with higher COVID-19 mortality. Hamit et al. [29] found
that population density was the main factor affecting the spread of the epidemic through
research on the spread of the epidemic in Turkish cities.

The above-mentioned studies generally have the following problems: (1) The area
covered by the data set is limited to local areas, and the propagation characteristics of
SARS-CoV-2 cannot be analyzed from a global scale. (2) The conclusion is only a qualitative
analysis, and it has not been able to quantify the effects of various factors on the impact of
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the spread of the SARS-CoV-2. In response to the above problems, this paper constructs a
quantitative analysis model between COVID-19 and multiple factors. Firstly, we collect the
required data on a global scale, and then build a Dual-link BiGRU prediction network to
predict the number of new cases in each country every day, and quantitatively analyze the
impact of different factors on the number of new cases per day of COVID-19. Compared
with the above research, the model proposed in this paper is more helpful to analyze the
development trend of the epidemic on a global scale, helps to grasp the characteristics of the
SARS-CoV-2, and provides more clear theoretical support for the subsequent formulation
of anti-epidemic policies by governments of various countries.

3. Data Sources

The data set in this paper is mainly divided into four parts including epidemic data,
climate data, population and flight data, and air quality data.

1. The source of the epidemic data is COVID-19 data set published by the Center for
Systems Science and Engineering (CSSE) at Johns Hopkins University. The data set
was collected from all over the world from 22 January 2020, in the early stage of
the epidemic. The experimental data in this article include the collected epidemic
data from 22 January 2020 to 31 December 2021. The feature data elements include
the cumulative number of confirmed cases, the cumulative number of cured people,
the cumulative number of deaths, and the number of new cases per day.

2. The climate data comes from the daily recorded data of weather stations around the
world collected by the China Meteorological Data Network (http://data.cma.cn/).
This experiment selects the climate data of various regions from 22 January 2020 to
31 December 2021. The feature data elements include daily maximum temperature,
daily minimum temperature, wind speed, precipitation, dew point temperature,
atmospheric pressure, wind gust, altitude, absolute humidity and relative humidity.

3. The population and flight data come from the Population Division of the Department
of Economic and Social Affairs of the United Nations Secretariat. (https://population.
un.org/wpp/). This experiment selects population and flight data in various regions
from 22 January 2020 to 31 December 2021. The feature data elements include total
population, population density, the total number of flights, number of domestic flights,
and international flights.

4. The air quality data come from the open-source air quality website WAQI (https:
//aqicn.org/data-platform/covid19/). This experiment selects air quality data in
various regions from 22 January 2020 to 31 December 2021. The feature data ele-
ments include NO2, PM10, PM2.5, PM1, SO2, O3, CO content in the air, Air Quality
Index(AQI), Suspended particle concentration(from NEPH), UV Index(UVI), Pollu-
tion(POL) and Wavelength Dominant(WD).

We collected 31-dimensional features of 81 countries to form a data set. Because we
can get the data we need in these countries, we selected these 81 countries. In order to
ensure that there was a sufficient amount of data to train the model, we selected the 9:1
segmentation ratio to divide the training set and test set, that is, the data from 22 January
2020 to 31 October 2021 was set as the training set and that from 1 November 2021 to 31
December 2021 as the test set.

4. Research Methods

The quantitative relationship model between COVID-19 spread and various character-
istic factors proposed in this paper includes three steps: multi-source heterogeneous data
preprocessing, constructing Dual-link BiGRU Network to prediction COVID-19 spread,
and building a quantitative analysis model of multiple feature data relationships.

4.1. Multi-Source Heterogeneous Data Preprocessing

Because the data comes from a variety of public data sets, there are some problems
among data sets, such as inaccurate data, missing data, inconsistent data format and etc.

http://data.cma.cn/
https://population.un.org/wpp/
https://population.un.org/wpp/
https://aqicn.org/data-platform/covid19/
https://aqicn.org/data-platform/covid19/
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In the data preprocessing stage, this paper builds a dataset with the original data as the
core. For inaccurate data, when the values of the same feature data in datasets from
different sources are the same, we consider the data to be reasonable; otherwise, most of
the data in datasets from different sources are selected as the final data. For missing data,
the Cubic Spline Interpolation method is used to supplement the data. For inconsistent data
format, feature level fusion method is adopted to extract the features of each source data
set first, while the extracted feature information comes from the high-order representation
of the original information, and then to aggregate and synthesize the multi-source data
according to the feature information. The data with inconsistent scales are normalized by
the linear normalization method to unify the data scale. This is also a commonly used data
preprocessing method in the field of COVID-19 prediction. The information contained in
the fused data is shown in Table 1.

Table 1. Feature display of fusion data set.

Feature Category Feature Range

Date 22 January 2020–31 December 2021

Country

Afghanistan, Algeria, Argentina, Australia, Austria, Bahrain, Bangladesh, Belgium,
Bolivia, Brazil, Bulgaria, Canada, Chile, China, Colombia, Costa Rica,

Croatia, Cyprus, Denmark, Ecuador, El Salvador, Estonia, Ethiopia, Finland,
France, Georgia, Germany, Ghana, Greece, Guatemala, Guinea, Hungary,

Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy,
Japan, Jordan, Kazakhstan, Korea, Kuwait, Kyrgyzstan, Laos, Lithuania,

Macedonia, Malaysia, Mali, Mexico, Mongolia, Nepal, Netherlands, New Zealand,
Norway, Pakistan, Peru, Philippines, Poland, Portugal, Romania, Russia,
Saudi Arabia, Serbia, Singapore, South Africa, Spain, Sri Lanka, Sweden,

Switzerland,Tajikistan, Thailand, Turkey, Uganda, Ukraine, United Arab Emirates,
United Kingdom, United States, Uzbekistan

Epidemic Confirmed, Recovered, Deaths, New

Climate Tmax, Tmin, Wind_speed, Precipitation, DP_F,
Pressure, Wind_gust, Altitude, Ab_humidity, Re_humidity

Population Pop, Density

Air quality NO2, PM10, PM2.5, PM1, SO2, O3, CO and AQI, NEPH, UVI, POL, WD

Flight Flight_total, Flight_domestic, Flight_international

Tmax, Tmin, Wind_speed, Precipitation, DP_F, Pressure, Wind_gust, Altitude, Ab_humidity and Re_humidity
represent daily maximum temperature, daily minimum temperature, daily average wind speed, daily rainfall,
daily dew point temperature, atmospheric pressure, wind gust, altitude, absolute humidity and relative hu-
midity. Pop, Density represent total population, population density. NO2, PM10, PM2.5, PM1, SO2, O3, CO and
AQI, NEPH, UVI, POL, WD represent NO2, PM10, PM2.5, PM1, SO2, O3, CO content in the air, Air Quality
Index(AQI), Suspended particle concentration(from NEPH), UV Index(UVI), Pollution(POL) and Wavelength
Dominant(WD). Flight_total, Flight_domestic, and Flight_international represent the total number of flights,
the number of domestic flights, and the number of international flights respectively.

4.2. Dual-Link BiGRU Network to Predict the Spread of COVID-19

In this paper, we construct Dual-link BiGRU Network to predict the spread of COVID-19.
The task of Dual-link BiGRU is to regress and predict the number of new cases per day
with input data. Dual-link BiGRU conducts parameter training through the relationship
between daily different factors in the training set and the number of new cases. It inputs
the values of the daily factors in the test set, and outputs the regression estimation of the
number of new cases on that day. The network structure diagram of Dual-link BiGRU is
shown in Figure 1.

Dual-link BiGRU consists of a dual-link feature network and a fully connected network.
In the feature network, Link 1 is composed of one-dimensional convolutional network,
BiGRU network, and one-dimensional inverse convolutional network. Link 2 is composed
of one-dimensional convolutional network, fully connected network, and one-dimensional
inverse convolutional network. Link 1 is mainly responsible for learning the timing infor-
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mation in the data of multiple factors. The one-dimensional convolutional network in Link
2 provides a larger receptive field for the network with a larger size of convolution kernel
to learn different feature information from Link 1. In this experiment, in order to obtain a
larger receptive field and better features, we select the kernel size of 16. After the dual-link
feature network is a fully connected network. The fully connected network’s main function
is to change the output dimension of the entire Dual-link BiGRU network to the desired
output dimension.

Figure 1. The network structure diagram of Dual-link BiGRU.

According to the prediction performance of the test set, the parameter settings of the
prediction network are shown in Table 2. The optimizer used for model training is Adam,
the loss function is Mean Squared Error Loss Function (MSELoss), and the number of
iterations is set to 500. In this paper, we selects BiLSTM [30], BiGRU [31], and CNN [32]
for comparison at the same dataset which comes from Table 1. BiLSTM, BiGRU, and CNN
are connected by their respective models and fully connected layers. The hidden layer size
and number of layers of BiLSTM and BiGRU are consistent with Dual-link BiGRU, and the
parameter setting of CNN is consistent with 1-D Conv1 in Dual-link BiGRU.

Table 2. Prediction network parameter settings.

Layer Parameter Value

1-D Conv1
Out channels 256
Kernel size 16
Stride size 8

1-D Conv2
Out channels 512
Kernel size 16
Stride size 8

BiGRU Hidden size 100
Number of layers 5

1-D ConvTranspose1
Out channels 256
Kernel size 16
Stride size 8

1-D ConvTranspose2
Out channels 512
Kernel size 16
Stride size 8

Full Connected layer 1 In channels 26
Out channels 200

Full Connected layer 2 In channels 201
Out channels 1
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4.3. The Quantitative Analysis Model of Multi Characteristic Data Relationships

In this paper, we sets the tolerance of the prediction error rate β ∈ [0, 1]. The model
with a prediction error rate lower than β is called an effective model, otherwise it is called
an invalid model. It is assumed that only effective models can participate in quantitative
analysis. Therefore, the larger of β means the more effective models, and the quantitative
analysis results have better generalization ability, but it also means that the results have
larger errors; the smaller of β means the less effective the models and the poorer generaliza-
tion ability of the quantitative analysis results, while the results have smaller errors within
a limited range. This paper needs to have a small result errors on the basis of ensuring a
certain generalization ability, so β = 0.2 is set in the experiment of this paper.

In this paper, the Gauss-Newton iterative method is used for quantitative analysis.
The Gauss-Newton iterative method uses Taylor series expansion to approximately replace
the nonlinear regression model. Through multiple iterations, the regression coefficient is
modified many times, so that the regression coefficient continuously approaches the best
regression coefficient of the nonlinear regression model, and finally the Residual Sum of
Square of the original model is minimized.

According to the selected observation variable data, a multiple nonlinear regression
model as in Equation (1) can be constructed.

y = f (X, β) + ε (1)

where y is the dependent variable, which represents the number of newly diagnosed people
every day in this experiment; X is the set of independent variables, which represents the
data of each characteristic factor in this experiment; β is an unknown parameter; ε is an
error term, and it is an unobservable random variable with a mean of zero and a variance
of σ2 > 0. The above model can be used to predict the number of the newly diagnosed
daily and determine the nonlinear quantitative relationship between each independent
variable and the dependent variable. The Gauss-Newton iteration method estimates the to-
be-regressed parameter β of the nonlinear regression model through continuous iteration.

The realization process of the quantitative analysis model includes the following steps:

1. Construct multiple regression models and train through data;
2. The prediction ability of the model is evaluated by modifying the determination

coefficient;
3. The quantitative relationship between multiple factors and the number of new cases

per day was determined by a multiple regression model;
4. Given different initial values for different factors x0;
5. For the kth iteration, calculate the Jacobian matrix J, Hessian matrix H, B, and calculate

the increment4xk;
6. If4xk is small enough, stop the iteration, otherwise, update x(k+1) = xk +4xk;
7. Repeat steps (5) (6) until the maximum number of iterations is reached, or the termi-

nation condition of (6) is met;
8. Complete the estimation of the unknown parameter β, and determine the quantitative

relationship between different elements and the number of new cases per day;
9. Complete for β to determine the quantitative relationship between different elements

and the number of new cases per day.

5. Experimental Results and Discussion
5.1. Dual-Link BiGRU

In this paper, the evaluation index is selected as the error rate ρ, and the error rate
calculation formula is shown in Equation (2):

ρ = (1/m
m

∑
i=0

(ŷi − yi))/(1/m
m

∑
i=0

yi) (2)
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where ŷi represents the model output, yi represents the label of the number of new cases
per day, and m represents the total number of samples in the test set. This indicator can
measure the gap between the model output and the label of the entire test set sample.

In this paper, we selects BiLSTM [30], BiGRU [31], and CNN [32] for comparison at
the same dataset which comes from Table 1. BiLSTM, BiGRU, and CNN are connected
by their respective models and fully connected layers. The hidden layer size and number
of layers of BiLSTM and BiGRU are consistent with Dual-link BiGRU in Table 2, and the
parameter setting of CNN is consistent with 1-D Conv1 in Dual-link BiGRU in Table 2.
Sets the prediction error tolerance β = 0.2, and uses the model error rate as the evaluation
index. In the data of 81 countries, the model with an error rate lower than β is regarded as
an effective model, and the difference in the number of effective models among different
models is compared in the test dataset. The comparison experiment results are shown in
Table 3.

Table 3. Comparison of model results.

Model 0–5% 5–10% 10–15% 15–20% >20% Effective Invalid

Dual-link BiGRU 2 12 12 22 33 48 33
BiGRU 0 6 7 12 56 25 56
BiLSTM 0 6 8 10 57 24 57

CNN 0 7 8 12 54 27 54

Table 3 shows that (1) Dual-link BiGRU has a larger effective model ratio in the
prediction network; (2) Compared with BiGRU, BiLSTM, and CNN, Dual-link BiGRU
performs better in low error rate. Therefore, it is believed that the Dual-link BiGRU
has better performance and generalization ability in predicting the daily number of new
epidemics in various countries. Therefore, this paper selects the Dual-link BiGRU as the
prediction network. Figure 2 shows the difference between the daily number of new
cases predicted of the Dual-link BiGRU and the label value. Because showing the forecast
results for all countries would make the paper extraordinarily long, in this paper, we
select 6 countries with better results for display, including Canada, China, India, Indonesia,
Russia, and United Kingdom.

Figure 2. Cont.
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Figure 2. Display of Dual-link BiGRU prediction results.

It can be seen from Figure 2 that in the selected 6 countries, the red solid line is the
label of the number of new cases per day, and the green dashed line is the predicted
value by the Dual-link BiGRU network. The two curves have a high degree of overlap.
Therefore, the prediction network constructed in the experiment has a good fit with the
real data. The trained prediction network can better predict the daily new cases and has a
strong generalization ability. For different countries, the model can learn more appropriate
parameters to predict the number of the daily new cases.

5.2. Quantitative Analysis Results of Multi-Characteristic Data Relationships

In this paper, we uses the method of Lin [25] and others to build a multiple regression
model for the selected 44 effective national models and train them. Through the multiple
regression model, the quantitative relationship between multiple factors and the number of
new cases per day is determined, and the prediction ability of the model is evaluated by
determining the Adjusted R Square (R). The larger R is, the stronger the prediction ability
of the model is. If R is greater than 0.6, the model has strong epidemic prediction ability.
Then, the initial value of the Gauss-Newton iterative method is selected through the model
parameters. The quantitative relationship between multiple factors and the number of new
cases per day is shown in Table 4, and the initial values are shown in Table 5.

Table 4. Regression equation parameter.

Global

Confirmed Recovered Deaths Tmax Tmin

0.06 0.17 −0.28 −4.52 −2.97

Wind_speed Precipitations DP_F Pressure Wind_gust

−16.46 84.64 −4.67 2.02 73.72

Altitude Ab_humidity Re_humidity Pop Density

6.71 × 10−7 −0.17 −0.112 5.8 × 109 54,282.5

NO2 PM10 PM2.5 PM1 SO2

1.95 × 103 49.42 55.59 45.29 −21.91

O3 CO AQI NEPH UVI

65.56 12.61 0.14 −8.45 −1.46

POL WD Flight_total Flight_domestic Flight_international

23.68 1.91 189.547 379.995 187.5932

ε Adjusted R Square

293.18 0.79
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Table 5. Example of initial value of each characteristic coefficient.

Country Tmax Tmin DP_F . . . . . . Re_Humidity Density Iterations

Canada 0.58 −0.91 −0.0075 . . . . . . −1.67 0.34 100
China 2.33 −11.48 −18.34 . . . . . . −12.03 0.071 100
India −5.22 −16.35 −19.45 . . . . . . −15.50 −1.44 100

Indonesia 5.64 4.25 14.55 . . . . . . −1.15 −0.88 100
Russia −23.36 28.45 40.13 . . . . . . −2.71 0.23 100

United Kingdom −391.08 244.49 698.08 . . . . . . 262.37 −34.67 100

In this paper, we uses the trained Dual-link BiGRU model of various countries to gen-
erate simulation data for quantitative analysis. The data generation method is as follows:

1. Goal: To generate data for analyzing the quantitative relationship between x1 and
y, where x1 is the maximum temperature per day and y is the number of new cases
per day.

2. To control other factors unchanged, adjust x1, and generate the predicted value of y.
3. The simulation data is used as input, and training is performed with the Gauss-

Newton method to obtain the coefficient between x1 and y, so as to determine the
quantitative relationship between them.

According to the above method, the coefficient equations between the number of
new cases per day in each country and the characteristic factors in Table 1 are obtained
respectively, and the quantitative relationship between the number of new cases per day
and the characteristic factors in each country is determined. Then take the average of the
quantitative relationship coefficients of the same feature in all countries, and finally get the
quantitative relationship between each feature that is applicable in the selected country
and the number of new cases per day with strong generalization performance, as shown in
Table 6.

Table 6. Quantitative relationship between characteristic factors and daily number of new cases.

Features Particle Influence/%

Density +1%/km2 1.0767212
Pop +1%/km2 1.0441276

Flight_total +1% 1.0102873
flight_domestic +1% 0.9881371

flight_international +1% 0.9455161
UVI +1% 0.8142484

PM2.5 +1 µg/m3 in the range of 0–100 µg/m3 0.0126328
PM10 +1 µg/m3 in the range of 0–100 µg/m3 0.0124261
NO2 +0.3 µg/m3 in the range of 0–30 µg/m3 0.0190209
SO2 +0.1 µg/m3 in the range of 0–10 µg/m3 0.0208433
PM1 +1 µg/m3 in the range of 0–100 µg/m3 0.0145565

Wind_speed +1 m/s in the range of 0–10 m/s −0.0135183
Preciptation +1% −0.0198199
Re_humidity +1% −0.0159099

DP_F +1 ◦C in the range of 0–50 ◦C −0.0150033
Tmin +1 ◦C in the range of 0–50 ◦C −0.0285928
Tmax +1 ◦C in the range of 0–50 ◦C −0.0217991

The influence >0, indicating that the factor has a positive correlation with the increase in the number of new cases
per day. The influence <0, indicating that the factor has a negative correlation with the increase in the number of
new cases per day.

As shown in Table 6, among the selected features, the population density per unit land
area has the largest positive correlation with the number of new cases per day, followed
by the number of landing flights. The population density per square kilometer increases
by 1%, and the number of new cases per day in the corresponding area increases by about



Int. J. Environ. Res. Public Health 2022, 19, 3187 10 of 13

1.076%. For every 1% increase in the number of landing flights, the number of new cases
per day in the corresponding area increases by about 0.98%. Among the selected features,
the daily maximum temperature, daily minimum temperature and dew point temperature
have negative correlations to the number of new cases per day. Within the range of 0–50 ◦C,
each increase of 1 ◦C can reduce the number of new cases per day by 0.021%, 0.028% and
0.015% respectively.

Based on the above analysis, the following further inferences can be drawn:

1. Population factors and flight factors has an obvious positive correlation impact on
the spread of COVID-19. From the data of the selected 44 countries, it can be seen
that population factors and flight factors have a greater impact on the spread of
COVID-19. Every 1% increase in population factors will increase the spread of the
epidemic by 1.044%. Every 1% increase in the number of arrival flights will increase
the spread of the epidemic by 0.98%. Therefore it can be seen that population factors
and flight factors have a more obvious impact on the increase in the spread of the
epidemic. From the perspective of formulating epidemic prevention and control
policies, controlling social distancing and population movement will have a more
obvious positive correlation impact on epidemic prevention and control.

2. The increase in temperature and relative humidity has a negative correlation impact
on the spread of COVID-19.Among the climatic factors, the increase of temperature
and humidity has a negative correlation impact on the spread of COVID-19. In this
paper, the temperature range of 0–50 ◦C and the relative humidity range of 1–100%
are selected for the experiment. It is obtained that within this range, temperature
and relative humidity has a negative correlation impact on the spread of COVID-19,
but the impact is not obvious. Since the correlation between population density and
the speed of the epidemic is far greater than the correlation between temperature
and the speed of the epidemic, it is speculated that in areas with higher temperatures
and higher population densities, such as India and other countries, the speed of the
epidemic still has a relatively rapid possibility.

3. A larger AQI has a positive correlation impact on the spread of COVID-19.AQI repre-
sents the degree of air cleanliness or pollution and its impact on health. The higher
the AQI, the more serious the air pollution in the region. This experiment shows that
in the range of AQI value 100–200, the epidemic transmission speed of COVID-19
will increase by 0.013% every time AQI increases by 1. Some researchers have shown
that SARS-CoV-2 can spread through aerosols [33–35]. Therefore, a higher AQI means
a higher aerosol content in the air, which is not good for air circulation. Such an
environment may promote the spread of COVID-19.

6. Discussion

Since the discovery of COVID-19 in 2019, countries have successively formulated
epidemic prevention and control policies that suit their own national conditions [36].
According to the current development status of the world epidemic, a long-term coexistence
with the virus has been formed, that is, even though the vaccine has been developed, it
will take a long time to completely eliminate COVID-19 [37,38]. This paper carries out
quantitative analysis and research on COVID-19 transmission by various factors all over the
world and comes to the conclusion that the increase of population density, population flow,
and flight times has a positively correlated impact on the epidemic transmission, and the
increase of temperature, relative humidity, and dew point temperature has a negative
correlation impact on the epidemic transmission. It can be concluded that the positive
correlation effect of population density on the epidemic spread is much greater than the
negative correlation effect of climate factors on the epidemic spread.

Therefore, according to the regional characteristics and national conditions, govern-
ments should formulate epidemic prevention and control policies to control population
density and population flow in the climate environment with high local temperature and
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relative humidity, maximize the effect of epidemic prevention and control, and curb the
spread of the epidemic from the aspects of transmission route and virus characteristics.

International organizations need to establish high, medium and low-risk epidemic
spread levels globally. The faster the epidemic spread, the higher the epidemic spread
level, and the more stringent prevention and control policies need to be adopted. For cities
where the epidemic has spread, it is necessary to keep wearing masks, maintain proper
social distancing, and reduce public recreational activities. For cities with large population
density and serious epidemic spread, it is recommended to strictly control population flow,
tighten restrictive measures for international flights, and take “city closure” measures when
necessary, and other cities need to take more stringent entry epidemic prevention measures
for personnel from high-risk countries and regions. For cities with slow epidemic spread,
it is suggested to control the population flow within a certain range, allow international
flights under the condition of good epidemic prevention measures, strictly control the flow
of people from high-risk countries and regions, and be vigilant against the epidemic spread
caused by climate change.

7. Conclusions and Future Work

In this paper, we fuses multi-source heterogeneous data, and makes predictions for
the current COVID-19 epidemic based on the fusion data set, and quantitatively analyzes
the model to obtain the quantitative relationship between various factors and the spread of
the epidemic. The contributions of this paper are as follows:

1. Dual-link BiGRU network is proposed, which integrates time-series features and high-
order features through dual-link construction, and can obtain more accurate prediction
effects and generalization capability. Through experiments, it can be determined that
the Dual-link BiGRU network has the following advantages:

• Compared with the CNN, LSTM, and GRU networks, the prediction accuracy
of the Dual-link BiGRU network is improved by 35.03%, 31.41%, and 27.36%,
respectively;

• Compared with the CNN, LSTM, and GRU networks, the generalization ability
of the Dual-link BiGRU network is improved by 25.00%, 27.50%, and 28.75%,
respectively.

2. According to the quantitative analysis between the SARS-CoV-2 virus and its charac-
teristic factors on a global scale, we concluded that the SARS-CoV-2 virus transmission
has the following characteristics:

• The increase in population factors and flight factors has an obvious positively
correlated impact on the spread of COVID-19.

• The increase in AQI will has a minor positively correlated impact on the spread
of COVID-19.

• The increase in temperature and relative humidity has a negative correlation
impact on the spread of COVID-19.

Accordingly, this paper makes the following recommendations for global epidemic
prevention and control:

1. Countries should take appropriate or even stricter prevention and control measures
according to their national conditions, such as demographic factors, climate factors,
air quality factors, and the number of flights, to minimize the risk of outbreaks.

2. Demographic factors have a strong positive relationship with the spread of COVID-19
epidemic. Governments can control the spread of the epidemic by strictly controlling
the movement of people both within and outside the country.

3. Since the impact of population and flight factors on the spread of the epidemic is
much greater than that of climate factors, governments of various countries should
not expect the epidemic to disappear after the temperature rises, and should actively
control population movement.
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This paper has completed the multi-factor quantitative analysis model affecting the
spread of COVID-19. Due to the different detection coverage of COVID-19 in various
countries, the number of confirmed cases is inevitably underestimated, and this paper does
not evaluate the impact of changes in policies and local prevention and control strategies
on the spread of COVID-19. Therefore, more detailed exploration is needed on these issues
in the next step.
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