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Themolecularmechanisms for hypoxic environment causing the injury of intestinalmucosal barrier (IMB) arewidely unknown. To
address the issue, HanChinese from 100m altitude andTibetans fromhigh altitude (more than 3650m)were recruited. Histological
and transcriptome analyses were performed.The results showed intestinal villi were reduced and appeared irregular, and glandular
epithelium was destroyed in the IMB of Tibetans when compared with Han Chinese. Transcriptome analysis revealed 2573 genes
with altered expression.The levels of 1137 genes increased and 1436 genes decreased in Tibetans when compared with Han Chinese.
Gene ontology (GO) analysis indicated most immunological responses were reduced in the IMB of Tibetans when compared with
Han Chinese. Gene microarray showed that there were 25-, 22-, and 18-fold downregulation for growth factor receptor-bound
protein 2 (GRB2), epidermal growth factor receptor (EGFR), and tyrosine-protein phosphatase nonreceptor type 11 (PTPN11)
in the IMB of Tibetans when compared with Han Chinese. The downregulation of EGFR, GRB2, and PTPN11 will reduce the
production of reactive oxygen species and protect against oxidative stress-induced injury for intestine. Thus, the transcriptome
analysis showed the protecting functions of IMB patients against hypoxia-induced oxidative injury in the intestine of Tibetans via
affecting GRB2/EGFR/PTPN11 pathways.

1. Introduction

Intestinal mucosa is more likely to be damaged if the person
is living in an altitude above 3000meters. Animal experiment
showed that high-altitude hypoxia induced impaired intesti-
nal mucosal barrier (IMB) [1, 2]. The incidence of digestive
system disease has been reported to be increased in the res-
idents who live at high-altitude environments [3]. Impaired
IMB threaten the residents living at high places. The therapy
for impaired IMB complicated. The main problem is that the
mechanism for high-altitude inducing IMB injury remains
widely unknown and no practical therapeutic method can be
used yet.

The intestinal tract is an important barrier for prevent-
ing bacterial translocation and endotoxin entering human
organs. It is well known that intestinal mucosal injury may

decrease the function of IMB. The most significant changes
in oxygen level in living environments, such as from nor-
mobaric normoxia to hypobaric hypoxia (3450m terrestrial
altitude), will result in the increase of reactive oxygen species
(ROS) when the balance between prooxidant and antioxidant
activity is impaired following exposure to terrestrial hypo-
baric hypoxia [4]. ROS play an important role in chronic
intestinal inflammatory diseases production by increasing
the permeability of the endothelium and the mucosa and
allowing infiltration of inflammatory leukocytes into intesti-
nal area. Scavenging of ROS is beneficial for intestinal disease
[5]. Most Tibetans live at high-altitude plateaus with hypoxic
environments [6]. In the environment, many tissues produce
ROS, which may arise under the conditions of hypoxia [7].
On the other hand, it has been reported that high-level ROS
induces intestinal cell apoptosis [8]. Thus, it almost seems
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like that ROS levels are aberrant in the intestinal mucosal
barrier of Tibetans. ROShas beenwell known to be associated
with oxidative stress [9–12] by damaging lipids, proteins, and
DNA [13]. Oxidative stress is an important contributor to
the damage of vascular cells [14] and the pathogenesis of
hypoxia/reoxygenation injury [15]. Intestinal oxidative stress
also is amain factor contributing to intestinal injury, resulting
in endotoxin translocation [16]. Dysfunction of the intestinal
barrier has been reported to be associated with high-level
intestinal oxidative stress [17]. High altitude often induces
oxidative stress by affecting biochemicalmetabolisms, such as
lipidmetabolism dysfunction [10].Thus, impaired IMB in the
people living at high altitude may be linked to altered control
of oxidative stress.

Oxidative stress causes the injury of intestinal tissues
via multiple signaling pathways. For example, increased
oxidative stress induces the damage in the small intestine
of male Sprague-Dawley rats by activating the pathway of
p38 mitogen-activated protein kinase [18]. Another exam-
ple, ischemia/reperfusion results in oxidative injury in ani-
mal’s intestine. Chinese jujube polysaccharides showed good
enzyme activities and ameliorated the injury of the small
intestine in rabbits with ischemia/reperfusion [19]. However,
most experiments on oxidative stress-induced injury for
intestine have been performed in animals and the molecular
mechanisms remain unclear for hypobaric hypoxia promotes
intestinal barrier dysfunction in the residents at high alti-
tude. Additionally, the molecular mechanisms for hypobaric
hypoxia causing the dysfunction of intestinal barrier and
development of impaired IMB remain unknown.

The oxidative stress-induced intestinal injury may be
associated with many signaling pathways. It is impossible
to resolve such complex issues using a single signaling
pathway. Transcriptome has been widely used to explore
the related pathways in human various diseases [20–22]. To
comprehensively understand the effects of hypoxia on IMB
in the residents at high altitude, transcriptome experiment
was performed here. These gene expression differences were
analyzed using DNA microarray. The work will provide
important information for hypoxia inducing impaired IMBof
the patients at high altitude and basic knowledge for causing
IMB injury.The gene expressing profiles of intestinal mucosa
from the Tibetans at high altitude more than 3650m and
Han Chinese at 100m altitude were analyzed to investigate
the potential molecules involved in the pathophysiology of
IMB injury caused by hypoxic environments. The database
for gene ontology (GO) or Kyoto Encyclopedia of Genes
and Genomes (KEGG) was referred to predict the genes
involving important functions and signaling transduction.
Meanwhile, we observed the microstructure of intestine
mucosa of Tibetans at high altitude and Han Chinese from
plain area with a normal and an electron microscope.

2. Material and Methods

2.1. Materials. The Trizol reagent was purchased from Life
Technologies (Carlsbad, CA, USA). All primers were syn-
thesized by Takara Biotechnology (Dalian) Co., Ltd. (Dalian,
China). The cDNA reverse transcription kit and Takara Bio

SYBRPremix Ex Taqwere fromTakara too. Hematoxylin and
eosin (H&E) dyeswere purchased fromSigma (St. Louis,MO,
USA).

2.2. Participants. All the protocols in present study were
specially approved by Human Research Ethical Committee
from the People’s Hospital from the Tibet (Tibet, China).
All experiments were in compliance with the World Med-
ical Association Declaration of Helsinki regarding ethical
conduct of research involving human subjects. From June
2013 and August 2013, 3 Han Chinese from plain area were
recruited at Guangzhou First People’s Hospital (Guangzhou,
China), and 3 Tibetans at high altitude more than 3650m
were recruited at People’s Hospital from Tibet (Tibet, China).
Each patient had the similar parameter to a healthy par-
ticipant on gender, birthplace, work intensity, and so on.
Research objects were native Tibetans at Lhasa with the age
of 40–45. Each participant would sign a consent form before
his intestinal mucosa could be taken.

2.3. Sample Extraction. The biopsies of mucosa were taken
at People’s Hospital of the Tibet (Tibet, China) and the
Guangzhou First People’s Hospital (Guangzhou, China),
respectively. Six intestinal biopsies were obtained from the
IMB of 10 Tibetans at high altitude more than 3650m
as an experimental group and 10 Han Chinese at 100m
altitude as a control group. All the participants were with
underlining normal mucosa. The samples were frozen using
liquid nitrogen and kept at −80∘C.

2.4. The Observation of Intestinal Mucosa by Scanning Elec-
tron Microscope. Specimens of sigmoid colon mucosa were
obtained at colonoscopy examination from all participants.
Twenty samples were used in present work. The samples
were fixed with formalin. Tenmm pieces of samples were
washed and fixed using osmium tetroxide. All the blocks were
made for subsequent histological analysis. Thirty sections
were made from one block, dewaxed, dried, and coated using
gold palladium by a vacuum evaporator. The microstructure
of final samples was observed by a FEI Quanta 400 scanning
electron microscope (FEI Company, Hillsboro, OR, USA).

2.5. Histological Analysis. All intestinal samples were rinsed
with saline solution, fixed in ten percent formaldehyde at
4∘C for one day, and washed with PBS. The treated samples
were made as four𝜇m species and dyed using H&E stain
(hematoxylin and eosin). The microstructure of samples was
observed under a microscope. The amounts of villi were
calculated within one visual place. IMB was assessed in a
double-blind way. The mucosae were injured if intestinal
surface was discontinuous, gland was dilated, or superficial
cells were damaged [12].

2.6. RNAExtraction. Intestinal samples from 10 Tibetans and
10 Han Chinese were collected. All samples were digested in
threemL Trizol and ground using a homomixer. Chloroform
was added, and RNAs were collected by addition of ethanol.
Final RNA sampleswere resuspended in a bufferwith tenmM
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tris hydrochloride, pH 8.0, one mM EDTA. The quantity of
RNA verified by a NanoDrop 1000 Spectrophotometer V3.7
(NanoDrop Technologies, Inc. Wilmington, DE).

2.7. RNA Microarray. Genome Oligo Microarray represents
the genes and transcripts, which are determined by genome
sequencing. RNA microarrays are often regarded as cDNA
database after the reverse transcription. All the sequences
were obtained from six participants (3 Han Chinese and 3
Tibetans) and verified by aligning these sequences from all
known mRNA sequences.

2.8. RNA Amplified, Labeled, and Hybridized with Agilent
Microarrays. Sample labeling and hybridization was con-
ducted based on the protocols for Microarray-Based Gene
Expression. All RNAs were increased and marked by Cy3-
UTP. The amount and cRNAs activity were identified using
NanoDrop 1000 Spectrophotometer V3.7 (NanoDrop Tech-
nologies, Inc., Wilmington, DE). One 𝜇g labeled cRNAs were
disrupted and then incubated at 60∘C within half an hour.
Subsequently, cRNA was diluted by GE Hybridization buffer.
RNA microarray was assembled by adding 100 𝜇L hybridiza-
tion solution to the slide.The final sample was heated at 65∘C
and measured by using Agilent Microarray Scanner.

We used the software for Agilent Feature Extraction to
assess all the final data. DEGs (differently expressed genes)
were confirmed by a Volcano Plot. Hierarchical Cluster
analysis was conducted by the software Agilent GeneSpring
GX. Signaling transduction was analyzed and the enrichment
in the microarray was calculated.

2.9. Enrichment Analysis of Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG). The GO work
offers control vocabularies to indicate the DEGs functions.
GO has 3 parts: biology processing (BP), cell components
(CC), and molecules functions (MF). 𝑃 values showed the
richness of DEGs. There were significantly statistical dif-
ferences if 𝑃 < 0.05. EASE scores, 𝑃 values of Fisher, or
hypergeometer presents the significance for the correlated
pathways.

2.10. Real-Time Quantitative PCR (qRT-PCR). To further
confirm above RNA microarray data, qRT-PCR was used to
analyze the top DEGs in 10 Han Chinese at 100m altitude
and 10 Tibetans at high altitude more than 3480m, includ-
ing epidermal growth factor receptor (EGFR), growth fac-
tor receptor-bound protein 2 (GRB2), and tyrosine-protein
phosphatase nonreceptor type 11 (PTPN11). The RNAs were
extracted using above intestinal mucosa by Trizol. Five𝜇g
RNA was reversely transcribed using reverse transcription
kits. All the primers were given as Table 2 showed, and qRT-
PCRwas conducted by SYBR�GreenRT-PCRKit on the real-
time PCR system. The amplification situation was given as
follows: 94∘C for 5min, 45 cycles of 95∘C for 20 s, 65∘C for
30 s, and 65∘C for 40 s.

2.11. Western Blot Analysis. Rabbit anti-human polyclonal
EGFR antibody (Cat. number ab2430), rabbit anti-human

polyclonal GRB2 antibody (ab32037), rabbit anti-human
monoclonal PTPN11 antibody (Cat. number ab32083), and
rabbit anti-human beta-actin antibody (Cat. number ab8227)
and goat anti-rabbit HRP (IgG H&L) (Cat. number ab6721)
were purchased from Abcam Shanghai office launch (Shang-
hai, China). The intestinal samples were taken from all
participants by a noninvasive method using endoscopic
techniques. All tissues were ground by using a sterile mortar
and pestle. Sample proteins were collected by centrifugation
and separated by SDS-PAGE and then electrophoretically
transferred onto PVNF membranes. After blocking the
membranes with free-fat milk, they were then incubated
with primary antibody. The members were washed three
times and incubated with HRP-linked secondary antibody.
The protein expression level was normalized by beta-actin
expression. The immunoreactive result was visualized by
using an enhanced chemiluminescence system (Amersham
Pharmacia Biotech, Stockholm, Sweden).

2.12. The Locations of DEGs on Human Chromosomes. The
locations of DEGs on human chromosomes were marked
on the human chromosomes using the data from RNA
microarray results. Messenger RNA expression profiles were
analyzed at genome level using the above results. About 400
significantly differently expressed genes were marked on 24
human chromosomes. The fold changes were marked with
different colors.

2.13. Data Analysis. All data were showed using average
values ± S.D. AnANOVA analysis was performed to compare
the difference between different groups and the statistical
significance was verified. There were significantly statistical
differences if 𝑃 < 0.05.

2.14. Construction of Gene Networks Based on Microarray
Data. The significantly differentially expressed genes from
microarray data were used. String software was used to
retrieve the interacting genes (http://string-db.org/). Up- or
downregulated genes from the microarray were visualized
on this network. According to experimental results and
computational prediction, a confidence score was used to
confirm the interaction between miRNA and DEGs. The
confidence score > 0.5 is regarded as statistically significant.

3. Results

3.1. Baseline Characteristics of Participants. The baseline and
physical characteristics of the study population were listed in
Table 1.There were significant differences for the distribution
of living altitude (𝑃 < 0.01) but no difference for years
at their locations (𝑃 > 0.05) between Tibetans and Han
Chinese. In contrast, no significant difference was found for
other parameters including age, cigarette smoking, alcohol
drinking, and BMI (𝑃 > 0.05, Table 1). In contrast, there
were statistically significant differences for Hb and diastolic
pressures (𝑃 < 0.05, Table 1). The levels of oxygen saturation
were lower in the residents from high altitude than at low
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Table 1: The baseline characters of all participants.

Characteristic Han Chinese Tibetans
𝐹-ratio 𝑃 valueGroup I Group II Group I Group II

Age (years) 41–45 40–49 40–45 39–48 0.38 0.77
Smoking (no/yes) 1/2 3/4 1/2 2/5 1.77 0.29
Drinking (no/yes) 1/2 3/4 1/2 2/5 1.77 0.29
Gender (male/female) 2/1 5/2 2/1 4/3 1.77 0.29
BMI 29–34 28–35 30–33 27–36 0.26 0.29
Food calorie intake (kcal/d) 2545.4–2089.3 2435.6–2132.7 2533.8–2134.7 2510.6–2184.1 0.85 0.36
Frequency of food (per day) 3 times 3 times 3 times 3 times 0 1
Habit Rural Rural Rural Rural — —
Marital status Married Married Married Married — —
Physical activity Routine work Routine work Routine work Routine work — —
Emotional makeup Normal Normal Normal Normal — —
Sleep habits Day Day Day Day — —
Mental stress Social Social Social Social — —
Water intake During meal During meal During meal During meal — —
Diet and sleep timings Regular Regular Regular Regular — —
Living at altitude (meters) 100 100 3650–3690 3650–3690 297.3160 <0.0001
Time at plain area or high altitude (years) 41–45 40–46 40–45 42–44 1.54 0.28
Hb (g/L) 144–156 140–160 166–175 165–180 2.56 0.04
Systolic pressure (mmHg) 112–124 108–129 125–130 122–138 2.20 0.03
Diastolic pressure (mmHg) 68–78 65–80 82–89 80–92 3.62 0.01
Blood oxygen saturation (%) 98-99 98-99 82–85 80–86 5.36 0.01
Heart rate (time/mini) 64–78 60–80 78–87 78–90 2.04 0.06
Note: BMI, body mass index; Hb, hemoglobin. There is a significant difference if 𝑃 < 0.05.
Group I, the participants underwent genome-wide transcriptional analysis, real-time PCR, and Western Blot analysis. Group II, the participants underwent
real-time PCR and Western Blot analysis.

Table 2: The primers used for real-time quantitative PCR.

Genes GenBank accession number Primers (5-3) Size (bp)

EGFR BC094761.1 Forward accatccaggaggtggctgg 440
Reverse ggatcacacttttgtccctg

GBR2 JX512444.1 Forward aagacggcttcattcccaag 134
Reverse ctctctcggataagaaaggc

PTPN11 NM 002834.3 Forward ttcacactttccgttagaag 162
Reverse attgcccgtgatgttccatg

Note: epidermal growth factor receptor (EGFR), growth factor receptor-bound protein 2 (GRB2), and tyrosine-protein phosphatase nonreceptor type 11
(PTPN11).

altitude (𝑃 < 0.01), although heart rates in Tibetans were
faster than in Han Chinese.

3.2. Hematoxylin-Eosin Staining Analysis of Intestinal Tissues.
Hematoxylin-eosin stained results showed cylindric and cup
cells were mostly destroyed as arrow indicated in Tibetans
(Figure 1(a)) while cylindric and cup cells had normal
structures in Han Chinese (Figure 1(b)). There were more
capillary microvessels in the intestinal mucosa in antrum
region of theTibetans than inHanChinese (Figure 1(c))while
there were no more capillary microvessels in the intestinal
mucosa in antrum region of Han Chinese (Figure 1(d)).

3.3. Scanning ElectronMicroscope (SEM) Analysis of Intestinal
Mucosa. SEM of the intestinal mucosa from jejunum was
shown in Figure 2, revealing the basic characteristics of the

intestinal tissues. The features of intestinal symptoms were
seen in these specimens. Electromicroscopy showed that
Tibetans had intestinal mucosa injury while Han Chinese
had normal intestinal mucosa. Intestinal villi were usually
reduced and appeared irregular in the IMB of Tibetans
(Figure 2(a)) while intestinal villi were usually rich and in
regular form in the IMB of Han Chinese (Figure 2(b)).
Glandular epithelium was destroyed in the IMB of Tibetans
(Figure 2(c)) while the glandular epithelium was in a fine
situation in the IMB of Han Chinese (Figure 2(d)).

3.4. Screening of Differentially Expressed Genes. Hierarchical
cluster analysis was conducted as Figure 3 showed.ThreeHan
Chinese and three high-altitude Tibetans showed different
gene expressing patterns. The levels of 1237 genes increased
and 1336 genes decreased in the intestinal tissues from
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Figure 1: Histopathological examination of intestinalmucosa sections. (a) Cylindric and cup cells weremostly destroyed as arrow indicated in
the IMB of Tibetans. (b) Cylindric and cup cells had normal structures in the IMB of Han Chinese. (c)There weremore capillarymicrovessels
as arrow indicated in the intestinal mucosa in antrum region of the Tibetans. (d)There were nomore capillarymicrovessels as arrow indicated
in the intestinal mucosa in antrum region of Han Chinese.

Tibetans when compared with Han Chinese. There were
25-, 22-, and 18-fold downregulation for GRB2, EGFR, and
PTPN11 in the IMB from Tibetans when compared with Han
Chinese.

3.5. qRT-PCR. We measured the levels of three significantly
changed genes using real-time PCR. GRB2, EGFR, and
PTPN11 had similar expressing profiles with those obtained
from the RNA transcriptomes analysis. GRB2, EGFR, and
PTPN11 were more than 20-fold downregulated in Tibetans
when comparing to Han Chinese (𝑃 < 0.05) (Figure 4).
The results showed the similar changing trend with that
frommicroarray analysis while their baseline characters were
also similar with patients analyzed by microarray method
(Table 1).

3.6. Protein Expression of GRB2, EGFR, and PTPN11. The
protein levels of GRB2, EGFR, and PTPN11 had similar
changing trends with those obtained from qRT-PCR analysis.
GRB2, EGFR, and PTPN11 were significantly downregulated
in Tibetans when comparing to Han Chinese (𝑃 < 0.05)
(Figure 5).The results showed the similar changing trendwith
those from microarray analysis.

3.7. Comprehensive Peptidome Profiling of DEGs. All DEGs
were explained using GO terms by peptidome profiling
analysis. All the events were elucidated in intestinal mucosa
from the IMB of Tibetans when compared to those fromHan
Chinese. In the GO, the upregulated DE genes were involved
in the reactive oxygen species activity, oxygen ions and
peroxides, lipid peroxidation and so on; the downregulated
DE genes were involved in the decrease of immunological
ability. All the changes can be caused by oxidative stress, such
as cancer suppressor [23], cell normal functions [24], special
responses for pathogens [25], maximal actions, and antigen
presentation [26] (Figure 6). Pathway analysis revealed that,
in intestinalmucosa tissues of participants fromhigh altitude,
many pathway genes had aberrant expression and may be
also related with oxidative stress, especially in inflamma-
tory bowel diseases [27, 28], myeloperoxidase [29], ROS
production [10], apoptotic cell death [30], tissue damage
[31], interleukin-1 [32], oxidative modification [33], cystic
fibrosis [34], natural killer cells activity [35], lymphocytes
[36], fibrinolysis [37] and so on (Figure 7).

3.8. Clusters of Differently Expressed Genes on Human Chro-
mosomes. Just as Figure 8 showed, four hundred DEGs
are mapped on using human chromosomes. The differently



6 Oxidative Medicine and Cellular Longevity

1 𝜇m

(a)

1 𝜇m

(b)

1 𝜇m

(c)

H

N

N

1 𝜇m

(d)

Figure 2: Electroscopic studies of the digestive tract in the IMB of Tibetans and Han Chinese at high altitude. (a) Intestinal villi are usually
reduced and appear irregular in the IMB of Tibetans. (b) Intestinal villi are usually rich in the Han Chinese. (c) Glandular epithelium is
destroyed in the IMB of Tibetans. (d) Glandular epithelium is in a fine situation in Han Chinese.

expressed genes on chromosomes thirteen, fourteen, fifteen,
eighteen, twenty, twenty-one, twenty-two, and Y had fewer
DEGs locations involved with reactive oxygen species activ-
ities. The high density of DEGs gathered on chromosomes
one, six, seven, eleven, fourteen, seventeen, and nineteen.The
most significantly expressed genes with more than 10-fold
were all located on three different chromosomes: epidermal
growth factor receptor (EGFR), chromosome 7p12.3-p12.1;
growth factor receptor-bound protein 2 (GRB2), chromo-
some 17q24-q25; and tyrosine-protein phosphatase nonre-
ceptor type 11 (PTPN11), chromosome 12q22-qter (Figure 8).

3.9. Visualization of Microarray Data by Using DEGs Net-
works. The microarray data mainly showed the up- and
downregulated genes and were visualized on the network
(Figure 9), which was created around mainly interesting
proteins relating to the protecting functions for oxida-
tive stresses and significantly differently expressed between
Tibetans and Han Chinese. On the network, genes that were

downregulated were shown as green circles and genes that
upregulated were shown as red circles (Figure 9). In Tibetans,
three main signaling pathways associated with GRB2, EGFR,
and PTPN11 were shown on a network to be significantly
downregulatedwhen comparedwithHanChinese (Figure 9).

4. Discussion

Many factors can result in the injury of intestinal mucosa
and hypoxia is an important risk for causing the injury of
intestinal tissues [1, 38–42]. Firstly, hypoxic pressure affects
basic metabolic processes [43], resulting in the changes for
many biological functions. Secondly, hypoxia-caused car-
bonic anhydrase, which constitutes an acidic microenviron-
ment [44], is harmful to the residents at high altitude.Thirdly,
hypoxia environment disturbs the gut flora imbalance in
the residents at high altitude causing the intestinal injury
[45]. Hypobaric hypoxia will inhibit the secretion of IgG,
which is an important immune-related molecule in intestine
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Figure 3: Hierarchical cluster analysis of the altered genes in the
intestinal mucosa of IMB of Tibetans and Han Chinese. The color
code in each heat map has been lineared with green as the lowest
level formRNAand red as the highest level formRNA.The increased
genes expression was shown in green to red, whereas the decreased
genes expression was shown from red to green.

Han Chinese
Tibetans

GRB2 EGFRPTPN11
Differentially expressed genes

Re
lat

iv
e m

RN
A

 le
ve

ls

30

40

60

50

4

2

0

6

Figure 4: Validation of microarray results (the top 3 up- and down-
regulated DEGs) by qRT-PCR. The results represented quantifica-
tion of mRNA levels relative to beta-actin. Normalized expression
values were obtained by qRT-PCR (𝑛 = 10). 𝐶 = Han Chinese at
100m altitude and P = Tibetans at high altitude more than 3480m.
All the data were present as average value ± SD. 𝑃 < 0.05 via IMB of
Tibetans.

[46, 47]. Furthermore, hypobaric hypoxia also inhibits bile
secretion and decreases enterohepatic circulation, resulting
in intestinal dysfunction and bacterial overproliferation and
increasing the damage of intestinal biological barriers [48].
Especially for the first point, hypoxic pressure affects basic
metabolic processes and produces high-level ROS, which
lead to the increase of oxidative stress [49, 50]. Oxidative
stress is an important contributor for tissue injuries, including
intestine injury [18, 51].

Homo sapiens Genome Oligo Microarray has most well-
known genes for human being. All data can be comparedwith
the resourceful sequences with clear functions [52–54]. We
use the data to explore the expressing profiles of intestinal
tissues from Tibetans at high altitude. Meanwhile, the data
compared with those from Han Chinese at plain area were
analyzed using genome microarrays, in which 1137 DEGs
increased while 1436 DEGs decreased with more than two-
fold changes in the Tibetans. Based on those data, we then
studied differentially expressed genes function. Our results
indicated that IMB involves the oxidant responses.

Present findings indicated that GRB2/EGFR/PTPN11-
associated pathways were significantly downregulated (fold
change = 25, 22, and 18). As reported in previous studies,
GRB2 was related with formation of reactive and oxidative
products [55, 56]. ROS are directly involved in gastrointesti-
nal injury. High concentration of ROS in intestinal mucosa
possibly decreases mucosal organ-protective efficacy. Many
factors, such as intestinal food, are more likely to destroy
the mucosal structure when intestinal mucosa is in a fragile
condition [57]. Meanwhile, ROS increase the permeability of
small intestinal epithelial cells and lead to intestinal mucosal
injury at an early stage [58].

The inhibition of GRB2 can significantly reduce fat accu-
mulation, improve glucose metabolism, ameliorate oxidative
stress [55], and activate mitogen-activated protein kinase
pathways [59]. Additionally, GRB2 deficiency reduces cell
apoptosis by inactivating caspase-3. The decrease in GRB2
improves hepatic steatosis and glucose metabolism and
reduces oxidative stress. All these activities will improve
the intestinal injury induced by hypoxia-induced oxidative
stress.

Despite the important role of EGFR in intestinal epithelial
cells [60], the study on the effects of EGFR on the intestinal
injury is very limited. According to a previous report, the
overexpression of EGFR increases the levels of ROS, accu-
mulates DNA strand damage, and makes genome unstable.
The levels of EGFR activation are associated with oxidative
stress [61]. Therefore, inactivation of EGFR pathway will
decrease the level of ROS and reduce the oxidative stress.The
downregulation EGFR pathway will improve the protecting
functions for intestinal injury.

The role of PTPN11 pathway is seldom reported in intesti-
nal tissues. From the network, PTPN11 is closely associated
with the JAK and STAT signaling pathways (Figure 9), which
are activated by protein tyrosine kinases and phosphatases,
and is necessary in regulating cellular activities responding
various cytokines. Dysregulation of the JAK and STAT
pathways will lead to hematopoietic and immune diseases.
PTPN11 plays an important regulatory role in JAK and
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Figure 5: Validation of microarray (the top 3 up- and downregulated DEGs) results by Western Blot. The results represented quantification
of protein levels relative to beta-actin. Normalized expression values were obtained by Western Blot (𝑛 = 10). 𝐶 = Han Chinese at 100m
altitude and P = Tibetans at high altitude more than 3480m. All the data were present as average value ± SD. ∗
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Figure 6: Gene ontology (GO) analysis used for analysis of the altered genes. (a)The bar plot shows the top ten upregulated Enrichment Score
values of the significant enrichment. (b)The bar plot shows the top ten downregulated Enrichment Score values of the significant enrichment
BP.

Inflammatory bowel diseases
Myeloperoxidase
ROS production

Apoptotic cell death
Biochemical activities

Tissue damage
Interleukin-1 alpha

Interleukin-1 beta
Oxidative modification

Cystic fibrosis

2 4 6 80
Enrichment score (−log10(P value))

(a) Sig pathway of upregulated genes

T cells (thymus cells) activity
B cells activity

Natural killer cells activity
Stem cells differentiate

Differentiation of lymphocytes
Serine protease inhibitor

Tumor suppressor
Phagocytosis
Coagulation
Fibrinolysis

2 4 6 80
Enrichment score (−log10(P value))

(b) Sig pathway of downregulated genes

Figure 7: Pathway analysis of DEG. (a) The bar plot shows the top ten upregulated Enrichment Score values of the significant enrichment
pathway. (b) The bar plot shows the top ten downregulated Enrichment Score value of the significant enrichment pathway.

STAT signaling pathways [62]. The JAK2 and STAT path-
ways have been reported in cell protection and injury. The
JAK2 inhibitor and overexpression of its dominant negative
JAK2 protein improve endothelial cells against peroxide and
superoxide anion. Inactivation of JAK2 has been proved to

be a potential method for endothelial cells against oxidative
stress-induced death [63]. Parthenolide has been reported to
inhibit JAK1 and STAT3 activity. ROS product will inhibit
STAT3 signaling pathway by targeting JAK1 [64]. From the
network, PTPN11 can regulate JAK and STAT pathways, and
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Figure 8:Whole-chromosome bird-view of expression levels of the 400 top DEGs located to 23 chromosomes.The color of each circle stands
for the relative level of one DEG. Expression levels are normalized to six grades (low-up/4–6-fold, up/7–10-fold, and high up/more than
10-fold; low-down/4–6-fold, down/7–10-fold, and high down/more than 10-fold).

its inhibition will contribute to prevent oxidative-induced
injury for the intestine of Tibetans. On the other hand,
there is also different report for PTPN11. Gain of function
mutations of PTPN11 in hematopoietic cells caused cytokine
hypersensitivity by enhancing the levels of ROS. PTPN11
mutations will improve mitochondrial aerobic metabolism
via the interaction with a new molecule. The mutation of
PTPN11 has a therapeutic benefit by improving antioxidant
activities [65].

One question should be paid here. There were 1336
downregulated genes but only three downregulated genes
GRB2/EGFR/PTPN11 were selected. Three top-changed
genes were analyzed because all of them were more than
20-fold downregulated while the left is less than 10-fold
downregulated. Furthermore, the three genes were closed
associated with the ROS production. The generation of ROS
is tightly regulated by GRB2 in colorectal tumorigenesis [56].
ROS production will be beneficial to EGFR activation [66]. A
conditionally deleted allele of PTPN11will result in lowerROS
levels [67]. Thus, the three genes were analyzed in the work.

From above results, it is easy to find that the three
pathways have similar functions for controlling ROS levels

and inhibiting oxidative-induced injury for human tissues
or cells. Furthermore, our network also shows the close
relationship among GRB2, EGFR, and PTPN11 pathways
(Figure 9), which is accordant with previous reports [68, 69]
except of PTPN11 pathway. Further work is needed to confirm
the detailed relation among the three pathways.

There are some limitations for present study: (1) we
only recruited a few participants from each group (living
at altitude versus not). This is not remotely representative
of the larger human population living within this region.
To avoid the values bias caused by small sample size, the
results were confirmed by using qRT-PCR in 10 Han Chinese
at 100m altitude and 10 Tibetans at high altitude more
than 3480m and were stable when compared with those
of microarray analysis (Figure 4). (2) Present results only
reflect one aspect for the differences noted in the study.
There are still other molecular mechanisms existed, such as
phenotype differences between Tibetans and Han Chinese or
fundamentally different lifestyles. It would have been more
relevant to study the same individualsmoving from the plains
into Tibet and vice versa. To address this issue, we tried
such work for many times and always failed finally. The main
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Figure 9: Gene network of top downregulated and upregulated DEGs from PCR microarray data. Significantly regulated genes were shown
as purple and green, respectively. The size of circle represented the expression level.

reason was caused by the fact that most persons from plain
cannot stay longer at high-altitude places. Furthermore, to
reduce the disturbance, the lifestyle (similar daily activity,
food calorie intake, and so on) and occupation (office
workers) are similar between groups. Actually, Tibetan and
Han Chinese populations diverged less than 3,000 years [70],
suggesting that most genes are stable.

5. Conclusions

Present findings are obtained by comparing the gene express-
ing profiles of the participants from high altitude and plain
area, providing clues to the molecular pathogenesis of this
condition. Genome-wide transcriptional analysis suggests
that hypoxia-induced oxidative stress leads to the intestinal
injury of Tibetans via the inhibition of GRB2/EGFR/PTPN11
pathways. The study provides important information for the
molecular mechanism causing IMB injury at high altitude
and lays a foundation for subsequent gene validation and
functional researches.
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