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Abstract
Visual analysis is the most commonly used method for interpreting data from single-
case designs, but levels of interrater agreement remain a concern. Although structured
aids to visual analysis such as the dual-criteria (DC) method may increase interrater
agreement, the accuracy of the analyses may still benefit from improvements. Thus, the
purpose of our study was to (a) examine correspondence between visual analysis and
models derived from different machine learning algorithms, and (b) compare the
accuracy, Type I error rate and power of each of our models with those produced by
the DC method. We trained our models on a previously published dataset and then
conducted analyses on both nonsimulated and simulated graphs. All our models
derived from machine learning algorithms matched the interpretation of the visual
analysts more frequently than the DC method. Furthermore, the machine learning
algorithms outperformed the DC method on accuracy, Type I error rate, and power.
Our results support the somewhat unorthodox proposition that behavior analysts may
use machine learning algorithms to supplement their visual analysis of single-case data,
but more research is needed to examine the potential benefits and drawbacks of such an
approach.
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Visual analysis is the most commonly recommended method for analyzing single-case
data (Dart & Radley, 2017; Lane & Gast, 2014). This approach entails making a series
of decisions regarding changes in level, trend, variability, overlap, and immediacy
between contrasting phases in a graph (Kratochwill et al., 2010). Differences in these
dimensions of behavior across phases typically suggest a change in the dependent
variable and provide support for the existence of a functional relation. Although a
recent study found an interrater agreement of nearly 90% for a small dataset for which a
context was provided (Ford, Rudolph, Pennington, & Byiers, 2019), researchers have
typically found visual analysis to have inadequate interrater agreement (Fisher, Kelley,
& Lomas, 2003; Matayas & Greenwood, 1990; Ninci, Vannest, Willson, & Zhang,
2015). In particular, interrater agreements when evaluating AB graphs typically vary
from 60% to 75% (DeProspero & Cohen, 1979; Fisher et al., 2003; Ninci et al. 2015).

To address this issue of reliability, several researchers have developed structured aids
to improve the accuracy of visual analysis. Three common aids that can be used with
AB designs are the split-middle line for identifying trend (White & Haring, 1980), the
dual-criteria method (DC) and the conservative dual-criteria method (CDC; Fisher
et al., 2003). The split-middle method involves drawing a regression line (i.e., trend)
through the baseline data. When making comparisons across phases, the baseline trend
line is superimposed onto the subsequent treatment phase to determine if a change in
trend has occurred. The split-middle method has the advantages of not requiring
advanced calculations and is easy to implement, but it is limited insofar as it only
supplements decisions regarding trend and does not consider the other behavioral
dimensions needed in visual analysis (Manolov & Vannest, 2019).

In response to these limitations, Fisher et al. (2003) developed the DC and CDC
methods. The DCmethod uses the split-middle method as its starting point but refines it
by including a second level line that is determined by the baseline mean. These two
lines are then overlaid on the treatment condition. If a specified number of data points
fall above or below these lines in the desired direction of change, the visual analyst
concludes that a change in the dependent variable has occurred. The CDC method is a
more conservative version of the DC method that shifts the height of the two criterion
lines by 0.25 standard deviations from the baseline data. The CDC method was created
to compensate for the high rate of Type I errors made by the DC method when
autocorrelation was present in the datasets.

In a demonstration of effectiveness, Fisher et al. (2003) had novice raters evaluate
simulated graphs using the DC method. Interrater agreement increased from 71% to
95% following training on the DC method. Moreover, Lanovaz, Huxley, and Dufour
(2017) reported that the DC method provided adequate control over Type I error rate
with nonsimulated data. In a recent study, Wolfe, Seaman, Drasgow, and Sherlock
(2018) evaluated the rate of agreement between the CDC method and expert visual
analysts on 66 AB tiers from published multiple baseline graphs. Their findings show
that mean agreement between the CDC method and expert visual analysts was 84%,
indicating that the CDC method may still yield incorrect classifications in one of six
cases. Another limitation is that the DC and CDC methods do not directly address
issues related to the variability and immediacy of behavior changes.

Manolov and Vannest (2019) developed the visual aid implying an objective rule
(VAIOR) method. The VAIOR provides objective operational rules to determine if
contrasted phases in a graph demonstrate changes while considering, trend, variability,
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overlap, and immediacy. This new structured aid to visual analysis eliminates the need
for subjective decision making, but agreement with expert visual analysts remains
unknown. In addition, the procedure may not be as useful when baseline data contain
too much variability to fit a meaningful trend line. A major drawback of VAIOR is that
it produces high levels of Type I errors with datasets having fewer than 10 data points in
each phase, which are common in single-case designs.

Given these limitations, behavior analysts still need tools that reduce the subjectivity
of decision making while performing adequately with the smaller datasets that are
common in single-case research and practice (Shadish & Sullivan, 2011). One potential
solution may be to use machine learning. Machine learning, which falls within the
broad domain of artificial intelligence, involves the use of algorithms to “learn” a
model that will produce predictions based on data provided by the analyst. In the case
of AB graphs, machine-learning algorithms may train models that predict whether the
intervention introduced in Phase B produced a clear change in behavior or not, but no
research has examined this possibility. Thus, the purpose of our study was to (1)
examine correspondence between visual analysis and models derived from different
machine-learning algorithms, and (2) compare the accuracy, Type I error rate and power
of each of our models with those produced by the DC method.

General Method

Our study tested four of the most popular machine-learning algorithms: stochastic
gradient descent classifiers, support vector classifiers, random forest classifiers, and
dense neural networks. Given that the intended readers for the current article are
behavioral practitioners and researchers, we do not present the complex mathematical
formulas underpinning these algorithms. Nevertheless, the following sections provide
brief, simplified explanations on how machine-learning algorithms work. Readers who
want to learn more about machine-learning algorithms may consult the references cited
in each subsection.

Machine-Learning Algorithms

To facilitate comprehension, Table 1 provides descriptions of some machine-learning
terms used throughout the subsequent sections. To draw a parallel with behavior
analysis, supervised machine learning is similar to multiple exemplar training. The
analyst provides sets of features (exemplars) and their corresponding labels (correct
responses), which are trained using an algorithm (training procedure). The algorithm
trains a model (a learner) to predict the labels based on the features provided (like a
learner who is trained to determine whether different images are exemplars of a cat). As
in behavior analysis, the ultimate goal of machine learning is for this model to correctly
label sets of features that were never used during training (generalization to novel,
untrained exemplars).

In more technical terms, machine-learning algorithms produce models, which are
comprised of hyperparameters and parameters specific to the algorithm.
Hyperparameters are values or equations within the initial machine-learning algorithm
that are typically set and manipulated by the experimenter prior to training. The
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machine-learning algorithm then uses these hyperparameters to fit parameters (e.g.,
weights) to the data that will best predict the labels of the dataset. The values of the
parameters of the model determine its accuracy whereas the hyperparameters provide
information as how the algorithm should process the data. Table 2 presents the values
of the hyperparameters that we set and manipulated as part of the current study (see
below for explanation of each hyperparameter). To train the model, the experimenter
must also provide a dataset with features and labels. In our case, the features are
descriptive statistics extracted from the data points in the AB graphs and the label is a
binary variable (0: no clear change, 1: clear change). During testing, the model
produces an output, which are predictions based on untrained data. These predictions
have the same format as the labels (e.g., binary variable).

Stochastic gradient descent classifiers Stochastic gradient descent in machine learning
is analogous to shaping in behavior analysis. That is, the algorithm produces successive
predictions (approximations) of the labels until these predictions best matches the true
labels (terminal behavior). During training, stochastic gradient involves only keeping
the model that produces the best accuracy while discarding the others (as differential
reinforcement does with behavior). In mathematical terms, the algorithm 1) multiplies
the input (features) by weights (parameters), 2) transforms the previous products using
a function that produces predictions, and 3) updates the weights by applying a
correction related to the gradient of the error on the predictions for the next iteration

Table 1 Some Machine-Learning Terms

Term Description

Algorithm At its broadest, an algorithm is a set of instructions that provides a solution to a problem. In
the case of machine learning, these instructions are typically statistical computations that
aim to predict the value of a label.

Hyperparameter A hyperparameter is a value or a function of the algorithm that is set by the experimenter.
That said, the experimenter may compare the results produced by different combinations
of hyperparameters using a validation set in order to select the best model.

Features The features represent the input data, which are transformed by the algorithm to provide a
prediction. In the current study, the eight features were: (1) the mean of points in Phase A,
(2) the mean of points in Phase B, (3) the standard deviation of points in Phase A, (4) the
standard deviation of points in Phase B, (5) the intercept of LSRL for Phase A, (6) the
slope of LSRL for Phase A, (7) the intercept of LSRL for Phase B, and (8) the slope of
LSRL for Phase B.

Label The label is what the algorithm is trying to predict from a set of features. The current study
has a single binary label: clear change (1) or no clear change (0).

Model A model refers to a specific algorithm with fixed hyperparameters and parameters.

Parameters The parameters are the values that are fit to the training data (e.g., weights).

Test set A set of features and labels that are never used in fitting the parameters or fixing the
hyperparameters. This set is used to test for generalization.

Training set A set of features and labels used during training to fit the best parameters to the model.

Validation set A set of features and labels that are used to compare the accuracy of different combinations
of hyperparameters. The validation set is not used during training to set the parameters. It
simply allows the selection of the model that produces the best generalization.

Note: LSRL = Least squares regression line
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(Witten, Frank, Hall, & Pal, 2017). The algorithm runs in a loop and updates its
parameters at the end of each iteration (i.e., one epoch) to minimize the error of the
predictions. In our models, the function that produced the predictions was a logistic
regression and we manipulated the magnitude of the correction applied to the gradient
across each epoch (learning rate). If the stochastic gradient descent were to run
indefinitely, the error would eventually reach zero (i.e., perfect prediction). On the
other hand, running too many epochs may produce models that fail to generalize to
novel (untrained) data (i.e., overfitting). To address this issue, we varied the number of
epochs to select the model that produced the best generalization to the validation set
and added a penalty hyperparameter, ElasticNet, which is designed to minimize
overfitting.

Support vector classifiers A support vector classifier works by producing a hyperplane
in a higher-dimensional space to split the dataset according to the categorization of the
initial labels (Witten et al., 2017). Figure 1 shows a simple example of how a
hyperplane may separate the data in two categories. The upper graph depicts the values
of two categories (i.e., closed point and opened points) with two features (i.e., x1 and
x2). It is clear that a simple linear equation (i.e., a straight line) cannot efficiently
separate the two categories. The support vector classifier uses a function to separate the
data in a higher dimension (see lower panel). Now, a plane can separate the data
depicted into two categories: the closed points are below the plane whereas the opened
points are above. When this separation is conducted in higher dimensions (as in the
case when having multiple features), we refer to these planes as hyperplanes. Support
vector classifiers attempt to maximize the distance between the hyperplane and the data
in each category. One hyperparameter for support vector classifiers is the kernel, which
is a set of functions that transforms the data to allow separation. The radial basis
function kernel, which we used as part of the current study, also has two
hyperparameters: the C penalty term and gamma. The C penalty term modifies the

Table 2 Constant and Variable Hyperparameters for Each Machine-Learning Algorithm

Algorithm Hyperparameters

Constant Values Values Tested

SGD Loss: Logistic regression
Penalty: ElasticNet

Learning rate: 10-5–10-2

Epochs: 5–1,000 by 5

SVC Kernel: Radial basis function Penalty C term: 1, 10, 100
Gamma: 10-5–10-1

Random forest Estimators: 10–190 by 10

DNN Early stopping: No improvement in loss
function for 30 epochs

Learning rate optimizer: Adam
Loss: Binary cross entropy
Neuron activation function: ReLu
Output activation function: Sigmoid

Neurons: 23–26

Hidden layers: 0, 1, 2, 4, 6

Note: SGD = stochastic gradient descent; SVC = support vector classifier; DNN = dense neural network
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margin of the separation of the hyperplane whereas gamma influences the weight of a
single training exemplar. Both hyperparameters are manipulated together to minimize
overfitting.

Random forest classifiers Random forests are made up of a series of decision trees that
are constructed during training (Breiman, 2001). As an example, assume that you are
conducting discrete trial instruction with a child with autism and that you consider that the
child has mastered a target when she responds correctly onmore than 90% of trials for two
consecutive sessions. The output (y) is whether the child has mastered the target (y = 1) or
has not mastered the target (y = 0). The model has two features: x1 represents the
percentage of correct responding of the child on the next-to-last session and x2 the same
measure on the last session. Figure 2 depicts the process as a decision tree. Random
forests are similar except that the trees are automatically produced by algorithms contain-
ing a randomizing component (and not by some conceptual logic). Random forests create
decision trees by taking a random sample with replacement of examples from the training
set, selecting randomly permutated features at each decision node, and choosing the
feature that produces the most homogeneous groups following the split. Then, the

Fig. 1 The upper panel shows a two-dimensional graph representing two features: x1 and x2. Closed points
represent one category and opened points a different category. The lower panel depicts the addition of a higher
dimension (z) and a linear plan that separates the two categories
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algorithm selects a new group of examples to sample a new tree and the process repeats
itself. The algorithm produces many independent trees, which are referred to as a forest.
The final classification is either the average prediction of all trees in the forest or the
prediction that occurs most often. When developing a random forest classifier model, the
number of trees in the forest are a hyperparameter known as estimators.

Dense neural networks Dense neural networks are artificial neural networks in which
neurons are arranged in fully connected layers. In the context of machine learning, a
neuron is a decision-making unit that receives some input and transforms it into some
output using an activation function (Goodfellow, Bengio & Courville, 2016). Figure 3
shows an example of a dense neural network. A dense neural network contains an input
layer (i.e., the features), hidden layers with neurons, and an output layer (i.e., prediction).
The hidden layers transform the data received from the input (or from other hidden
layers) before outputting them to the next layer in the network. These hidden layers
allow the algorithm to model complex relationships between features in the dataset. In a
dense neural network, each neuron in a layer is connected to and receives input from
every neuron in the layer preceding it. The activation function is a hyperparameter that
produces a nonlinear transformation of the data between the layers and prior to produc-
ing the final output. During each epoch, the parameters of the model (i.e., weights) are
updated by the loss function that computes the error and retropropagates it by an amount
proportional to the learning rate (akin to a stochastic gradient descent with many layers
of weights). Both the loss function and learning rate optimizer are hyperparameters. Our
dense neural network models also included an early stopping hyperparameter, which
instructs the network at which epoch it should stop training.

Study 1: Correspondence with Visual Analysis

As behavioral researchers and practitioners may be unfamiliar with machine-learning
procedures, we provide a step-by-step tutorial to replicate our study on the
OpenScience Framework (OSF).1 The tutorial also includes explanations on how to

Fig. 2 A decision tree where the percentage of correct responding in the next-to-last (x1) and last (x2) sessions
are used to decide whether a concept is mastered (y = 1) or not mastered (y = 0)

1 The link to the repository is: https://osf.io/6wcty/. To access the tutorial, simply click on tutorial.ipynb.
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analyze single or multiple graphs using the best models from this study. Our code,
datasets, and best models are also available in the same repository.

Datasets

Complete nonsimulated dataset For our initial study, we limited our analyses to graphs
with three points in phase A and five points in phase B because (1) graphs with fewer
points are typically more difficult to analyze visually and statistically (Manolov &
Vannest, 2019) and (2) this arrangement represents the minimum number of points
under which the DC method performs satisfactorily (Lanovaz et al., 2017). Our graphs
all came from a dataset previously described by Lanovaz, Turgeon, Cardinal, and
Wheatley (2019). The Lanovaz et al. (2019) dataset contained a total of 501 ABAB
graphs extracted from theses and dissertations.

To obtain AB graphs from the original dataset, we coded R to first split each
ABAB graph into three AB graphs (i.e., first A phase with first B phase, first B
phase with second A phase, second A phase with second B phase) and recorded
the expected direction of change (i.e., increase or decrease) for each graph. Albeit
theoretically a BA graph, we also refer to the middle graph (i.e., first B phase with
second A phase) as an AB graph; however, we reversed the expected direction of
change when compared to the two other AB graphs extracted from the same
ABAB design. The program rejected AB graphs that contained fewer than five
points in the second phase. When graphs contained more data points than the
required number (i.e., three in Phase A and five in Phase B), we used only the last
three points of Phase A and the first five points of Phase B so that the points on
either side of the phase change lines remained consistent. In total, our extraction
yielded 1,070 AB graphs for training, validation, and testing.

Nonsimulated dataset with agreements only As described below, two observers
independently categorized the graphs as either showing a clear change or no clear
change. In the dataset with agreements only, we only kept graphs for which the two
raters agreed on the labels to examine whether a consensus-based approach would train

Features
(input)

Hidden layer 1
(4 neurons)

Hidden layer 2
(4 neurons)

Prediction
(output)

Fig. 3 Dense neural network with four features, two hidden layers with four neurons each and a prediction
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more accurate models. Because the interrater agreement was 91%, this dataset
contained 970 graphs.

Procedures

Labeling the nonsimulated dataset The first author, a professor and doctoral-level
certified behavior analyst who conducts single-case research, independently visually
analyzed each of the 1,070 nonsimulated AB graphs by conducting a qualitative analysis
of trend, immediacy of change, level change, and variability (Kratochwill et al., 2010).
This analysis was conducted prior to applying the machine-learning algorithms. For
each graph, he responded to the following question: “Would the change observed from
Phase A to Phase B be indicative of functional control of the behavior in the planned
direction (i.e., increase or decrease) if it were reversed and replicated?” A positive
response led to the graph being categorized as displaying a clear change. Otherwise, the
AB graph was categorized as showing no clear change. Figure 4 (upper panels) shows
an example of a graph showing a clear change and another graph showing no clear
change. Overall, the first author categorized 49% of graphs as showing no clear change
and 51% as showing a clear change. The second author, also a professor and doctoral-
level certified behavior analyst who conducts single-case research, independently
checked interrater agreement by categorizing all 1,070 graphs using the same proce-
dures. As indicated earlier, the agreement between the two raters was 91%.

Preparing the data Prior to training, validating, and testing the models, we normalized
the data and extracted features as each graph used different types of measures with
ranges that varied widely. Figure 5 shows a sequence of the steps involved in
normalizing the data and extracting the features from each graph. The data in the
example are from the graph depicted in the left panel of Fig. 4. First, we extracted the
data from the graph, which had already been done in a previous study (see Lanovaz

Fig. 4 Graphs showing a clear change and no clear change (upper panels) and applications of the dual-criteria
method (bottom panels)

Perspectives on Behavior Science (2020) 43:21–38 29



et al., 2019). If the purpose of the intervention depicted on the graph was to reduce the
target, the program multiplied all values by -1 so that all trends and patterns were
reversed. Next, our program normalized the data so that each graph now had a mean of
0 and a standardized deviation of 1. Finally, our code produced a feature vector for the
data. The eight features extracted were: 1) the mean of points in Phase A, 2) the mean
of points in Phase B, 3) the standard deviation of points in Phase A, 4) the standard
deviation of points in Phase B, 5) the intercept of the least squares regression line
(LSRL) for Phase A, 6) the slope of LSRL for Phase A, 7) the intercept of LSRL for
Phase B, and 8) the slope of LSRL for Phase B. We used the previous eight features,
rather than the actual values of the data points, because it allowed us to use our models
with phases of varying lengths (see Study 2).

Training the models To train the models and conduct the analyses, the first and third
authors wrote programs in Python, which made use of the Scikit-Learn and Tensorflow
machine-learning packages. Our program randomly divided each nonsimulated dataset
into three subsets: the training set, the validation set, and the test set. The training sets
contained 50% of the nonsimulated data (535 graphs for the complete dataset and 485
graphs for the dataset with agreements only), which were used to adjust the parameters

Step 1 – Extract graph data

A A A B B B B B
7.0 3.2 10.1 1.1 0.2 2.1 2.1 2.1

Expected direction of change: -1 (decrease)
Label: 1 (clear change)

Step 2 – Multiply by -1 (as expected direction of change is to decrease)

A A A B B B B B
-7.0 -3.2 -10.1 -1.1 -0.2 -2.1 -2.1 -2.1

If the expected direction of change is to increase, skip this step (or multiply by 1).

Step 3 – Normalize the data by subtracting the mean (-3.49) and then dividing the
difference by the standard deviation (3.13)

A A A B B B B B
-1.12 0.09 -2.11 0.76 1.05 0.44 0.44 0.44

Now, the graph data has a mean of 0 and a standard deviation of 1.

Step 4 – Extract eight features from the normalized data

Mean A Mean B SD - A SD - B Intercept A Slope A Intercept B Slope B
-1.05 0.63 .90 0.24 -0.55 -0.50 1.25 -0.12

Important note: The function normalizeData in the script AnalysisFunctions.py carries out steps
3 and 4 automatically.

Step 5 – Randomly assign to training, validation or test set

The eight features as well as the label are assigned to the same set.

Fig. 5 Normalization of graph data and extraction of features prior to training, validation, and testing
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of the model during training. We provided these data to each algorithm along with the
labels established by the first author (i.e., clear change vs. no clear change) or the labels
on which both raters agreed. The validation sets involved 25% of the datasets (267
graphs for the complete dataset and 242 for the dataset containing agreements only).
Each algorithm computed accuracy on the validation sets for different combinations of
hyperparameters (see Table 2 for values tested). Then, our program only kept the model
with the hyperparameters that produced the highest accuracy on the validation sets. The
procedure with the validation sets was designed to select models that did not overfit the
training data. Finally, the test sets contained 25% of the original nonsimulated datasets
(268 graphs for the complete dataset and 243 graphs on the dataset containing
agreements only). We never used the test sets during training or validation. In behavior
analytic terms, the test sets checked for generalization.

Testing the models Following training, we only kept themodels with the combinations of
hyperparameters and parameters that produced the best accuracy on the validation tests.
Then, we applied these models to the test sets to examine whether they could accurately
identify changes in behavior on data never seen by the algorithms. Our analyses examined
whether the results produced by each model corresponded with visual analysis.

Analysis

In the first study, we measured correspondence between visual analysis and different
models trained using (1) the complete dataset and (2) the dataset containing agreements
only. In particular, our Python code computed the proportion of time the prediction of
each model matched the result of the visual analysis for each dataset by adding the
number of agreements between the visual analyst and the model, and dividing this sum
by the total number of graphs. Our program computed three values: one for all test
graphs, one for test graphs showing a clear change only, and one for test graphs
showing no clear change only (according to the visual analysts).

To compare the values to a well-established aid to visual analysis, we also applied
the DC method algorithm to each graph. We chose the DC method over the CDC as the
former tends to produce higher power. As described earlier, the DC method involves
tracing a continuation of the mean and trend lines from Phase A into Phase B (see
bottom panels of Fig. 4). Because the purpose of the intervention on Fig. 4 was to
reduce the behavior, we counted the number of points that fall below both lines. In this
case, all points fall below both lines for the graph in the left panel and three points fall
below both lines in the right panel. The cut-off value based on the binomial distribution
is five. Therefore, only the left graph shows a clear change according to the DC
method. In contrast with all other models, the DC method was applied to the original
data (see Step 1 of Fig. 5) as it did not require the normalization of the data.

Results and Discussion

Table 3 presents the hyperparameters of the best models, which were used to make the
predictions. Table 4 shows the correspondence between visual analysis and the different
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models for the two datasets. For the complete dataset, overall correspondence with visual
analysis for the DC method was approximately 87% whereas all models derived from
machine learning produced overall correspondence above 90%. By far, the DC method
had the lowest correspondence with visual analysis for datasets showing a clear change in
the complete dataset. The stochastic gradient descent and the support vector classifiers
produced higher correspondence with graphs showing a clear change whereas the random
forest and dense neural networks produced better correspondence for graphs showing no
clear change. A further analysis indicated that the majority of graphs on which visual
analysis andmachine learning disagreedwere also graphs onwhich visual analysis and the
DC method disagreed (i.e., 78% for stochastic gradient descent, 74% for the support
vector classifiers, 85% for random forest, and 79% for dense neural networks). That said,
machine-learning algorithms produced considerably fewer disagreements overall.

For models trained with the dataset containing agreements only, all algorithms pro-
duced higher correspondence with visual analysis than the models trained with the
complete dataset. The DC method still produced the lowest correspondence with visual
analysis, but the difference was not as large as the one observed for the complete dataset.

Table 3 Hyperparameters of Best Model for Each Dataset

Algorithm Hyperparameter Complete
nonsimulated dataset

Nonsimulated dataset
with agreements only

SGD Learning rate .0001 .00001

Epochs 60 215

SVC Penalty Term 10 100

Gamma .1 .01

Random Forest Estimators 30 180

DNN Neurons 16 16

Hidden Layers 6 2

Note: SGD = stochastic gradient descent; SVC = support vector classifier; DNN = dense neural network

Table 4 Correspondence between Visual Analysis and Models Derived from Different Machine Learning for
Test Sets Showing Clear Change and No Clear Change

Algorithm Models trained with complete nonsimulated
dataset

Models trained with nonsimulated dataset with
agreements only

Overall Clear change No clear change Overall Clear change No clear change

DC method .869 .822 .914 .942 .948 .937

SGD .914 .930 .899 .951 .948 .953

SVC .929 .938 .921 .959 .948 .969

Random forest .902 .868 .935 .947 .948 .945

DNN .925 .899 .950 .963 .957 .969

Note: DC = dual-criteria; SGD = stochastic gradient descent; SVC = support vector classifier; DNN = dense
neural network
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Although the results seem to suggest that the dataset with agreements only produced better
models, the differential characteristics of the graphs in each dataset prevent us from
reaching this conclusion. Because the agreement-only dataset excluded all disagreements
between the two raters, graphs with ambiguous patterns weremost likely left out of the test
set. As such, we tested the agreement-only models on graphs that showed clearer, more
stable patterns than those in the complete dataset (i.e., the graphs in the agreement only
dataset may have been easier to analyze). Therefore, we kept themodels derived from both
datasets for our subsequent analyses to conduct additional comparisons.

Study 2: Accuracy, Type I Error Rate, and Power of Models

One issue with examining control with nonsimulated data is that the labels need to be
established by an expert human rater. However, one can never be certain that the effects
detected on the nonsimulated data represent true effects. Therefore, we conducted
further analyses with simulated datasets, which were never used during training.

Datasets

Simulated dataset with a constant number of points We used R code to generate
20,000 AB graphs with three points in Phase A and five points in Phase B. The R code
generated an eight-point data series for each graph using the equation:

xt ¼ axt−1 þ εt þ c

where x was the univariate times series, t an index of time (i.e., one to eight), a the
autocorrelation value, ε a normally distributed error term with a mean of 0 and a
standard deviation of 1, and c a constant of 10 to avoid graphs with negative values.
The autocorrelation value varied across graphs according to a normal distribution with
a mean of .20, a standard deviation of .15, and a maximum of .80, which are based on
the values reported by Shadish and Sullivan (2011) for single-case research. The
program produced graphs in pairs that shared an autocorrelation value. For one of the
graphs in each pair, our program added a standardized mean difference (SMD) to the
last five points (i.e., points from Phase B) to simulate a treatment effect. The SMD is a
measure of the magnitude of mean change from baseline to treatment (see Pustejovsky,
2018). Like the autocorrelation term, the SMD varied across graphs using a normal
distribution with a mean of 6.27, a standard deviation 2.37, and minimum of 1.00. We
based the SMDmean and standard deviation on the median and the fifth percentile rank
observed in the nonsimulated dataset. We used nonparametric estimators because the
distribution of SMDs was highly skewed. In the end, our simulated dataset included
10,000 graphs simulating no effect (true label = 0) and 10,000 graphs simulating a
treatment effect (true label = 1). In other words, the graphs with no SMD added were
considered as showing no clear change whereas those to which we added SMD were
categorized as showing a clear change.

Simulated dataset with a variable number of points To examine the generality of our
procedures, we programmed R to generate 20,000 additional graphs. The procedures
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remained the same as those described for the simulated dataset with a constant number
of points. The only exception was that the number of points per phase varied randomly
(based on a uniform distribution) between 3 and 6 for Phase A, and between 5 to 10 for
Phase B.

Analysis

To examine generalization to simulated datasets, we used the best models as trained and
validated using the nonsimulated data (i.e., the same models as Study 1) to make our
predictions. In particular, our analyses monitored accuracy, Type I error rate, and power.
Accuracy represents to what extent the predictions match the true labels of the datasets
(i.e., clear change vs. no clear change). Computing accuracy involved adding the
number of agreements between the true labels and the predictions of the models (i.e.,
clear change or no clear change) and dividing the sum by 20,000. Type I error rate
represents false positives. In the analysis of single-case design, a false positive occurs
when a behavior analyst erroneously concludes that a graph shows a clear change when
no real change occurred (i.e., the variations are the result of chance). Computing Type I
error rate consisted of dividing the number of disagreements between the true labels and
the predictions of the models on the graphs showing no clear change (according to the
true labels) by 10,000. Power represents the extent to which a prediction identifies an
effect that is present. In our case, power is the proportion of time the model detects a
clear change when a real change did occur. To compute power, our program divided the
number of agreements between the true labels and the predictions on the graphs showing
a clear change (according to the true labels) by 10,000.

Results and Discussion

Table 5 presents the results for the simulated dataset with a constant number of points.
Regardless of the models used, accuracy and power were consistently higher for the

Table 5 Accuracy, Type I Error Rate and Power of the DC Method and Models Derived from Different
Algorithms on Simulated Data with Three Points in Phase A and Five Points in Phase B

Algorithm Models trained with complete
nonsimulated dataset

Models trained with nonsimulated dataset with
agreements only

Accuracy Type I error Power Accuracy Type I error Power

DC method .909 .059 .878 .909 .059 .878

SGD .948 .064 .959 .949 .050 .972

SVC .943 .063 .949 .944 .054 .942

Random forest .940 .054 .933 .937 .059 .932

DNN .946 .051 .943 .935 .067 .938

Note: DC = dual-criteria; SGD = stochastic gradient descent; SVC = support vector classifier; DNN = dense
neural network
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models derived from machine-learning algorithms than for the DC method. Type I error
rates remained at 5% or 6% for all methods. The models trained with the complete
dataset and those trained with agreements only produced similar outcomes. Table 6
presents the accuracy, Type I error rate and power on simulated data with variable
number of points. All models derived from machine-learning algorithms produced
better accuracy, Type I error rates, and power than the DC method. The DC method
produced a power of 90% and a Type I error rate of 7% whereas all models produced
power ranging from 92% to 95% and Type I errors rates lower than 3%. The models
trained with the complete dataset consistently produced marginally better accuracy than
the ones trained with the agreements only. Thus, the differential results observed across
the two datasets in Study 1 appears to have been an artifact of the procedures. When
models trained with different datasets were tested on similar simulated data, the
differential outcomes in favor of the dataset containing agreements only disappeared.

General Discussion

Overall, our proof of concept indicates that different models developed using machine-
learning algorithms may produce higher accuracy than the commonly used DCmethod.
On the nonsimulated datasets, the models derived from machine-learning algorithms
consistently showed better correspondence with visual analysis than the DCmethod. All
our models yielded higher accuracy and power than the DC method on nonsimulated
datasets. Moreover, the models produced their best outcomes on all measures when
analyzing graphs with varying phase lengths. Each machine-learning algorithm per-
formed differently across datasets with no one consistently outperforming the others.

To our knowledge, our study is the first to examine the validity of using machine
learning to analyze single-case data. The analyses clearly showed that the learned models
produced generally acceptable control over potential errors in interpretation. It is interest-
ing that our models produced the best accuracy and lowest Type I error rate on the
simulated dataset with phases of variable lengths. This observation is consistent with other
studies that have shown that graphs with more points per phase produce more accurate

Table 6 Accuracy, Type I Error Rate and Power of the DC Method and Models Derived from Different
Algorithms on Simulated Data with Varying Number of Points Per Phase

Algorithm Models trained with complete
nonsimulated dataset

Models trained with nonsimulated dataset with
agreements only

Accuracy Type I error Power Accuracy Type I error Power

DC method .913 .074 .901 .913 .074 .901

SGD .963 .025 .952 .962 .018 .942

SVC .961 .024 .947 .960 .020 .940

Random forest .953 .022 .928 .947 .028 .923

DNN .960 .017 .937 .954 .027 .935

Note; DC = dual-criteria; SGD = stochastic gradient descent; SVC = support vector classifier; DNN = dense
neural network
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interpretations (e.g., Lanovaz et al., 2017; Levin, Ferron, & Kratochwill, 2012; Manolov
& Vannest, 2019). From a practical standpoint, these findings support the generalizability
of our results to AB designs containing three or more points in Phase A and five or more
points in Phase B. Our results also extend prior research on the use of the DC method for
the analysis of single-case data. Agreement between the expert rater and the DC method
was .869, which is a value consistent with recent research on the topic (Wolfe et al., 2018).

As more research is conducted, practitioners and researchers may eventually use
machine learning to supplement visual analysis. As observed in the current study,
machine-learning models may produce more accurate interpretations of data than the
DC method. If the labels were established by a group of experts using consensus, the
models could potentially be used as tools to train future practitioners and researchers on
analyzing single-case data. Another potential use for our machine-learning models is as
decision-making tools in mobile health apps designed to teach or reduce behavior
(Knight, McKissick, & Saunders, 2013; Zapata, Fernández-Alemán, Idri, & Toval,
2015). For example, an app may prompt a user to collect data prior and during the
implementation of an intervention and then automatically detect whether the technolog-
ical intervention was effective or ineffective, which could lead to personalized
recommendations.

Despite the promising nature of our results, our study has some limitations that should
be noted. First, we restricted our algorithms to basic machine-learning models and
manipulated only a limited number of hyperparameters as the purpose of our study was
to examine whether machine learning could produce higher accuracy than a well-
established structured aid to visual analysis. Future research should examine how accuracy
can be further improved by manipulating other hyperparameters or using more advanced
neural networks (e.g., recurrent neural networks, convolutional networks; Chung,
Gulcehre, Cho, & Bengio, 2014; Krizhevsky, Sutskever, & Hinton, 2012). Second, we
did not examine the differential effects of autocorrelation and specific phase lengths on
accuracy (e.g., Fisher et al., 2003; Lanovaz et al., 2017). As a next step, researchers should
conduct parametric analyses of autocorrelation and phase length while also comparing the
results with other structured or statistical aids for the analysis of AB or multiple baseline
designs (Ferron, Joo, & Levin, 2017; Giannakakos & Lanovaz, 2019; Krueger, Rapp, Ott,
Lood,&Novotny, 2013;Manolov&Vannest, 2019). A final limitation is the large amount
of data, or exemplars, required to train machine-learning models. Our results indicate that
the size of our nonsimulated dataset was sufficient to outperform the DC method.
Nonetheless, more data would be needed to further increase power and reduce Type I
error rate. In the end, machine-learning algorithms may be innovative tools to support
behavior analysts in both research and practice, but researchers need to conduct further
studies to better identify the potential benefits and drawbacks of such an approach.
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