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Introduction 

The number of patients with diabetes mellitus (DM) con-

tinues to increase worldwide, and DM is the main cause 

of chronic kidney disease (CKD) and end-stage renal dis-

ease (ESRD) [1]. In Korea, the prevalence of diabetes was 

13.8% in adults older than 30 years in 2018 [2], and it was 

predicted to be 29.2% in men and 19.7% in women by 2030 

[3]. The total number of new patients who started renal re-

placement therapy (RRT) for ESRD increased from 10,000 

in 2011 to 18,642 in 2019 [4], and the proportion of patients 

With the emergence of various classes of blood glucose-lowering agents, choosing the appropriate drug for each patient is empha-
sized in diabetes management. Among incretin-based drugs, glucagon-like peptide 1 (GLP-1) receptor agonists are a promising thera-
peutic option for patients with diabetic kidney disease (DKD). Several cardiovascular outcome trials have demonstrated that GLP-1 
receptor agonists have beneficial effects on cardiorenal outcomes beyond their blood glucose-lowering effects in patients with type 2 
diabetes mellitus (T2DM). The renal protective effects of GLP-1 receptor agonists likely result from their direct actions on the kidney, 
in addition to their indirect actions that improve conventional risk factors for DKD, such as reducing blood glucose levels, blood pres-
sure, and body weight. Inhibition of oxidative stress and inflammation and induction of natriuresis are major renoprotective mecha-
nisms of GLP-1 analogues. Early evidence from the development of dual and triple combination agents suggests that GLP-1 receptor 
agonists will probably become popular treatment options for patients with T2DM. 
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with DM as the underlying cause of ESRD increased from 

19.5% in 1992 to 50.6% in 2012 [5], making DM the most 

common cause of ESRD in Korea [4]. Despite advances in 

medical technology and treatments, the need for RRT is 

increasing worldwide and is expected to more than double 

by 2030 compared with 2010 [6]. 

Diabetic kidney disease (DKD) is the main cause of 

morbidity and mortality in diabetes [7,8]. Therefore, in-

hibiting the onset and progression of DKD, in part by de-

veloping therapeutic approaches to prevent or delay it, is 

critical. Controlling blood sugar and blood pressure using 
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angiotensin-converting enzyme inhibitors or angiotensin 

receptor blockers is the current goal in DKD management 

[9], and no special drugs or other therapeutic options are 

widely used to delay DKD progression. However, several 

cardiovascular outcome trials (CVOTs) have demonstrated 

that sodium-glucose cotransporter 2 (SGLT2) inhibitors 

and glucagon-like peptide 1 (GLP-1) receptor agonists 

have beneficial effects on cardiorenal outcomes, especially 

in patients with type 2 DM (T2DM) who are at high risk for 

cardiovascular disease (CVD) [10–12]. Based on the results 

of clinical trials, the current guidelines of the American 

Diabetes Association and Korean Diabetes Association 

recommend that clinicians consider prescribing SGLT2 in-

hibitors or GLP-1 receptor agonists after metformin as part 

of the glucose-lowering regimen for patients with T2DM 

and CKD [13,14]. In this review article, we focus on GLP-1 

agonists and discuss the clinical and preclinical evidence 

for their nephroprotective effects and the potential mecha-

nisms underlying those effects.  

Physiology and metabolic effects of glucagon-like 
peptide 1 

Oral intake of glucose causes the secretion of more insulin 

than does an injection of glucose due to the presence of gut 

hormones called incretins [15]. Gastrointestinal peptide 

(GIP) and the GLPs (GLP-1, GLP-2) are incretin hormones 

produced by enteroendocrine L-cells of the distal small 

bowel and colon [16]. In humans, fasting concentration of 

total GLP-1 ranges from 5 to 10 pmol/L and can increase to 

40–50 pmol/L in response to meals [17]. Plasma concentra-

tion of biologically active, intact GLP-1 is much lower than 

that (fasting, <2 pmol/L; peak postprandial concentrations, 

5–10 pmol/L) [18]. 

GLP-1 release after a meal occurs in a biphasic manner. 

An initial rapid rise in circulating GLP-1 level occurs 15 to 

30 minutes after a meal, followed by a second minor peak 

at 90 to 120 minutes [19,20]. The rapid increase in GLP-1 

secretion after meals is related to the proximal-distal loop 

regulated by neurotransmitters such as acetylcholine and 

gastrin-releasing peptide [21]. The second later peak of 

GLP-1 is believed to occur as ingested nutrients travel down 

the lumen and interact directly with distal L-cells [22,23]. 

Native GLP-1 has an extremely short half-life, less than 2 

minutes, due to cleavage by dipeptidyl-peptidase IV (DPP 

IV) enzymes and renal elimination [24]. DPP IV enzymes 

cleave the active forms of GLP-17-36 and GLP-17-37 to pro-

duce inactive GLP-19-36 or GLP-19-37, respectively, which 

have low affinity for the GLP-1 receptor [25,26]. Only 10% 

to 15% of secreted GLP-1 reaches the pancreas via systemic 

circulation [25], and both the active and inactive forms of 

GLP-1 are rapidly cleared from the circulation via the kid-

neys. Although the initial DPP IV-mediated degradation of 

GLP-1 is unaffected by impairments in renal function, GLP-

1 clearance is delayed in patients with renal insufficiency 

[24]. 

In humans, the GLP-1 receptor is expressed in the pan-

creas, lungs, brain, kidneys, stomach, and heart but not in 

the liver, skeletal muscle, or adipose tissue [27]. Binding 

between GLP-1 and its receptor activates adenylate cyclase, 

which is followed by increase in cyclic AMP level and cyto-

plasmic Ca+2 that induces insulin secretion [28]. In addition 

to GLP-1’s short-term effect of enhancing the glucose-de-

pendent stimulation of insulin secretion, continuous GLP-

1 activation also increases insulin synthesis [29], modulates 

β-cell proliferation [30], and inhibits β-cell apoptosis [31] 

and glucagon release [32]. Incretin hormones also decrease 

gastric emptying [33], inhibit food intake [34], and increase 

natriuresis and diuresis [35,36]. 

Classification of glucagon-like peptide 1 receptor 
agonists 

GLP-1 receptor agonists have two main backbone struc-

tures and are classified as exendin-4- or human GLP-1-

based compounds [37]. They are divided into short- and 

long-acting agents, and some formulations are mixed with 

insulin (Table 1). Exendin-4 is a protein isolated in 1992 

from the saliva of the Gila monster lizard (Heloderma sus-

pectum) [38]. This protein is composed of 39 amino acids 

and has 53% similarity in base sequence to native human 

GLP-1. Exenatide and lixisenatide are based on the struc-

ture of exendin-4. Exenatide is a recombinant form of the 

peptide exendin-4 and was the first GLP-1 receptor agonist 

to be developed for T2DM treatment. Lixisenatide is an 

exendin-4 analog with an additional six lysines attached to 

the C-terminus, which gives it a longer half-life than exen-

atide. These exendin-4-based agents have relatively short 

half-lives (~3 hours) and strongly inhibit gastric emptying 

[39], which can cause gastrointestinal side-effects such as 
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(Table 2). 

The first CVOT for a GLP-1 receptor agonist was the 

ELIXA (Evaluation of Lixisenatide in Acute Coronary Syn-

drome) trial, the results of which were published in 2015 

[42]. A total of 6,068 participants with T2DM, history of 

myocardial infarction or unstable angina, average baseline 

HbA1c of 7.7%, and a median follow-up of 25 months was 

enrolled. Although renal events were not investigated in 

the primary ELIXA trial, an exploratory analysis of renal 

outcomes was performed [43]. After a median follow-up of 

108 weeks, lixisenatide reduced progression of the urinary 

albumin-to-creatinine ratio (UACR) in macroalbuminuric 

patients and was associated with a lower risk of new-on-

set macroalbuminuria after adjustment for baseline and 

on-trial HbA1c and other traditional renal risk factors. No 

significant differences in eGFR decline were identified be-

tween treatment groups. This study had a short follow-up 

period of 2 years, a high percentage of participants on sta-

tin therapy, and low compliance with the medication com-

pared with the other trials in Table 2. 

In the LEADER (Liraglutide Effect and Action in Diabe-

tes: Evaluation of Cardiovascular Outcome Results) trial 

published in 2016 [44], participants with T2DM were either 

50 years of age or older with at least one cardiovascular 

condition or 60 years or older with at least one cardiovas-

cular risk factor. A total of 9,340 participants with a median 

follow-up of 3.8 years was enrolled, and the average base-

line HbA1c was 8.7%. Approximately 23% of participants 

had moderate-to-severe CKD, suggesting a very high-risk 

population. Of note, this trial included 220 individuals 

with an eGFR of 15–30 mL/min/1.73 m2. Liraglutide de-

creased the risk of the secondary composite renal endpoint 

(new-onset macroalbuminuria, sustained serum creatinine 

duplication, initiation of RRT, or renal death) by 22% (haz-

ard ratio, 0.78; 95% confidence interval [CI], 0.67–0.92; p = 

0.003) [45]. This finding was driven primarily by a reduc-

tion in new-onset persistent macroalbuminuria. That study 

was the first to show that a GLP-1 agonist had cardiovascu-

lar benefit, although it might not apply in patients with low 

cardiovascular risk. 

The SUSTAIN-6 (Trial to Evaluate Cardiovascular and 

Other Long-term Outcomes with Semaglutide in Subjects 

with Type 2 Diabetes) was the next CVOT, also published in 

2016 [46]. A total of 3,297 patients was randomly assigned, 

and 3,232 patients completed the trial over a median fol-

nausea. But they also have robust postprandial antihyper-

glycemic effects and could potentially replace rapid-acting 

mealtime insulin [39]. These shorter-acting agents are less 

effective at decreasing fasting glucose levels because of 

their short half-lives. 

Human GLP-1–based agents are more structurally simi-

lar to native GLP-1 than to those based on exendin-4. They 

have 90% to 97% amino-acid homology to endogenous 

human GLP-1 and an extended half-life conferred by DPP 

IV resistance and noncovalent binding to serum albumin. 

These longer-acting agents lead to a greater reduction 

of fasting plasma glucose and hemoglobin A1c (HbA1c) 

levels than the shorter-acting agents [39,40]. The human 

GLP-1 compounds are liraglutide, albiglutide, dulaglutide, 

and semaglutide, all of which are injectable agents. Albi-

glutide and dulaglutide are large molecules conjugated to 

large proteins, which extends their half-life and enables 

once-weekly administration. Semaglutide is available in 

both injectable and oral forms. With withdrawal of albiglu-

tide from the market for commercial reasons, liraglutide, 

dulaglutide, and semaglutide (oral and subcutaneous) are 

the currently available, approved human GLP-1 receptor 

agonists. 

Table 1 shows the recommended uses of GLP-1 receptor 

agonists according to estimated glomerular filtration rate 

(eGFR). Human GLP-1–derived dulaglutide, liraglutide, 

and semaglutide are not excreted via the kidneys and can 

be used down to an eGFR of 15 mL/min/1.73 m2; there is 

insufficient experience to recommend using those agents 

for eGFR values lower than that [41]. Conversely, exenati-

de and lixisenatide, which are eliminated by the kidneys, 

are contraindicated below an eGFR of 30 mL/min/1.73 m2 

due to the risk of accumulation and toxicity [24]. Exenatide 

should be used with caution in patients with an eGFR of 

30–50 mL/min/1.73 m2 (Table 1). 

Renal effects of glucagon-like peptide 1 receptor 
agonists in patients with type 2 diabetes mellitus 

Several CVOTs have examined GLP-1 receptor agonists; 

however, none have focused on the primary endpoint of re-

nal events; renal outcomes have been reported as second-

ary outcomes after primary cardiovascular outcomes. This 

section focuses on the renal outcomes of GLP-1 receptor 

agonist treatment reported by randomized controlled trials 

Yu, et al. GLP-1 receptor agonists in diabetic kidney disease
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low-up of 2.1 years. Eighty-three percent of participants 

had established CVD, CKD, or both, and the mean HbA1c 

of the total study population was 8.7%. Once-weekly 

semaglutide effected a 36% reduction (HR, 0.64; 95% CI, 

0.46–0.88; p = 0.005) in the secondary combined renal end-

point (new-onset macroalbuminuria, doubling of serum 

creatinine, eGFR of <45 mL/min/1.73 m2, initiation of RRT, 

or renal death). This result was mainly driven by a reduc-

tion in new-onset macroalbuminuria. Across the SUSTAIN 

1–7 trials [47], semaglutide lowered albuminuria compared 

with placebo beginning as early as 16 weeks and lasting 

over the entire treatment period. 

The next trial, published in 2017, was the EXSCEL (Ex-

enatide Study of Cardiovascular Event Lowering) trial to 

evaluate the effect of once-weekly exenatide extended-re-

lease (ER) on cardiovascular outcomes in participants with 

T2DM [48]. A total of 14,752 patients, of whom 73.1% had 

previous CVD, was followed for a median of 3.2 years. Ex-

enatide ER had no significant effects on renal outcomes in 

an additional analysis of EXSCEL trial data [49]. Twice-dai-

ly exenatide also did not affect eGFR or albuminuria com-

pared with insulin glargine over the 52-week study period 

[50]. 

The cardiovascular effects of albiglutide were evaluated 

in patients with T2DM and CVD in the HARMONY trial 

(NCT02465515) [51], published in 2018. A total of 9,463 

participants with a median HbA1c of 8.7% was enrolled; 

this was a relatively high-risk population with high base-

line glucose levels. After a median of 1.6 years of follow-up, 

albiglutide conferred no significant benefit in slowing the 

rate of eGFR decline. 

The renal outcomes of dulaglutide treatment were in-

vestigated in two representative trials. The first study was 

the AWARD-7 trial (NCT01621178), published in 2018 [52]. 

Five hundred seventy-seven participants with T2DM and 

moderate-to-severe CKD were included in this trial. A 

once-weekly injection of dulaglutide was associated with 

a significantly smaller decline in eGFR compared with 

insulin glargine over 52 weeks. The mean eGFR decline 

with 1.5-mg dulaglutide was about 10% of that observed 

with insulin glargine (–0.5 mL/min/1.73 m2 in the 1.5-mg 

dulaglutide group compared with –5.5 mL/min/1.73 m2 

in the insulin glargine group). This association between 

dulaglutide and reduced eGFR decline was most evident 

in participants with macroalbuminuria. Another study of 

the effects of injectable dulaglutide on cardiovascular out-

comes in T2DM was the REWIND (Researching Cardiovas-

cular Events with a Weekly Incretin in Diabetes) trial [53,54], 

published in 2019. This study was designed to demonstrate 

superiority, unlike the previous trials. A total of 9,901 par-

ticipants with T2DM was followed up for a median of 5.4 

years, a longer period than in the previous trials. This trial 

was unique in that the participants were low risk, with an 

average baseline HbA1c of 7.2%, median eGFR of 74.9 mL/

min/1.73 m2, baseline prevalence of CVD of 31.5%, and 

baseline prevalence of albuminuria of 35.0%. The compos-

ite renal outcome occurred significantly less frequently in 

the dulaglutide group than in the placebo group (HR, 0.85; 

95% CI, 0.77–0.93; p = 0.0004), and the largest effect was a 

reduction in the development of macroalbuminuria in the 

dulaglutide group (HR, 0.77; 95% CI, 0.68–0.87; p < 0.0001). 

The PIONEER 6 (Peptide Innovation for Early Diabetes 

Treatment) trial was designed to evaluate the cardiovascu-

lar outcomes from once-daily oral semaglutide in T2DM 

patients at high cardiovascular risk [55], and its results were 

published in 2019. This study recruited 3,183 participants 

who were followed up for a median of 15.9 months, which 

is the shortest duration of the trials listed in Table 2. How-

ever, no renal endpoint was predefined for assessment in 

this trial. 

The most recent CVOT for GLP-1 agonists was the AM-

PLITUDE-O (Effect of Efpeglenatide on Cardiovascular 

Outcomes) trial in patients with T2DM and a history of 

either CVD or CKD [56]; the results were published in 

2021. Once-weekly injectable efpeglenatide is a new exen-

din-4-based GLP-1 receptor agonist. A total of 4,076 partic-

ipants was enrolled and followed up for a median of 1.81 

years. Compared with placebo, efpeglenatide led to a 32% 

lower risk of a composite renal outcome event (incident 

macroalbuminuria, increase in UACR of ≥30% from base-

line, sustained decrease in eGFR of ≥40%, initiation of RRT, 

or sustained eGFR of <15 mL/min/1.73 m2), independently 

of baseline use of SGLT2 inhibitors or metformin and base-

line eGFR (HR, 0.68; 95% CI, 0.57–0.79; p < 0.001). However, 

a kidney function outcome event, defined as a composite 

of a decrease in eGFR of at least 40% for ≥30 days, ESRD, 

or death from any cause, did not differ between the efpe-

glenatide group and the placebo group (HR, 0.77; 95% CI, 

0.57–1.02; p = 0.07).  
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Suggested nephroprotective mechanisms of 
glucagon-like peptide 1 receptor agonists  

Indirect effects by improving conventional risk factors for 
diabetic kidney disease 

Hyperglycemia plays a critical role in the pathogenesis of 

DKD [57,58], and GLP-1 receptor agonists have potent glu-

cose-lowering effects [59–62]. The Kidney Disease: Improv-

ing Global Outcomes (KDIGO) 2020 clinical practice guide-

lines recommend GLP-1 receptor agonists as an excellent 

option for patients with DKD who have not achieved their 

glycemic target or as an alternative for patients unable to 

tolerate metformin or an SGLT2 inhibitor [63]. Although 

glucose-independent mechanisms are also emphasized, 

the antihyperglycemic effects of GLP-1 receptor agonists 

are thought to contribute to their nephroprotective effects 

in patients with DKD. Furthermore, GLP-1 receptor ago-

nists induce reduction in body weight, blood pressure, and 

dyslipidemia, which could also contribute to their antial-

buminuric effects [64,65]. 

In the LEADER trial [44], the liraglutide group showed 

a 0.4% reduction in HbA1c compared with the placebo 

group. Weight loss was 2.3 kg higher and systolic blood 

pressure was 1.2 mmHg lower in the liraglutide group than 

in the placebo group. In the REWIND trial [54], participants 

in the once-weekly 1.5-mg dulaglutide group had a 0.61% 

lower HbA1c, 1.46 kg lower body weight, and 1.7 mmHg 

lower systolic blood pressure than participants in the pla-

cebo group. In the SUSTAIN-6 trial [46], the mean HbA1c 

level was 1.0 percentage point lower, mean body weight 

was decreased by 4.3 kg more, and mean systolic blood 

pressure was 2.6 mmHg lower in the group receiving 1.0 

mg of semaglutide once weekly than in the placebo group. 

In the PIONEER 5 trial [55], once-daily oral semaglutide 

(14 mg) was superior to placebo at reducing HbA1c and 

body weight in patients with T2DM. However, statistical 

correction for on-trial HbA1c level, blood pressure change, 

and bodyweight decrease did not significantly alter the 

observed decreases in albuminuria induced by GLP-1 re-

ceptor agonists in several CVOTs [66], suggesting that the 

renal protective effects of GLP-1 receptor agonists are not 

entirely due to improvements in risk factors. 

In addition to its actions on body weight, blood pressure, 

and glucose, GLP-1 also regulates lipid metabolism. Dys-

lipidemia is a strong risk factor for both CKD and DKD. 

Experimental studies have provided data to support the 

notion that lipid abnormalities contribute to initiation and 

progression of glomerular disease [67]. A systematic review 

and meta-analysis of 35 trials showed that GLP-1 recep-

tor agonists are associated with reductions in total and 

low-density lipoprotein cholesterol and triglyceride levels 

[68]. GLP-1 inhibits gastric lipase secretion [69] and intes-

tinal lipoprotein and chylomicron production in humans 

[70]. GLP-1 receptor signaling reduces hepatic triglyceride 

content and impairs lipogenesis in the liver by stimulating 

the AMP-activated protein kinase pathway [71,72]. It also 

increases peripheral use of triglyceride-rich lipoproteins 

through increased burning of fat and activation of brown 

adipose tissue function [73,74]. However, it is uncertain 

whether those actions directly contribute to the nephro-

protective effects of GLP-1 receptor agonists. 

Potential direct mechanisms accounting for the renal pro-
tective effects of glucagon-like peptide 1 receptor agonists

The GLP-1 receptor is expressed in the renal cortex and 

vasculature, as well as proximal tubular cells [75,76], 

although uncertainties remain regarding receptor local-

ization in the kidney due to lack of antibodies with high 

sensitivity and specificity. Inhibition of oxidative stress and 

inflammation, induction of natriuresis, and reduction of 

intraglomerular pressure are potential direct mechanisms 

underlying the renal protective effects of GLP-1 analogues 

(Fig. 1). Systemic oxidative stress increases the stage of 

incipient DKD [77]. A study in diabetic rats revealed that 

recombinant human GLP-1 attenuated oxidative stress in 

the glomeruli and in glomerular microvascular endothelial 

cells by inhibiting protein kinase C and activating protein 

kinase A (PKA) [78]. Liraglutide also reduced oxidative 

stress and albuminuria in streptozotocin-induced type 1 

DM rats via PKA-mediated inhibition of renal nicotinamide 

adenine dinucleotide phosphate oxidases [79]. Exendin-4 

was shown to activate the Nrf2 signaling pathway, which 

plays a key role in preventing oxidative stress and main-

taining redox homeostasis, in vascular smooth muscle cells 

[80,81]. 

Inflammation plays a central role in the development 

of DKD. Accumulating experimental data suggest that 

anti-inflammatory activity underlies the nephroprotec-
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Figure 1. The mechanisms underlying the nephroprotective 
effects of GLP-1 receptor agonists.
GLP-1, glucagon-like peptide 1.

GPL-1 receptor agonists

Renal protection

Indirect effects

· Hyperglycemia
· Hypertension
· Obesity
· Dyslipidemia

Direct effects

· Oxidative stress
· Inflammation
· Natriuresis
· Glomerular hypertension

tive effects of GLP-1. GLP-1 receptor agonists decrease 

the production of proinflammatory cytokines, adhesion 

molecules, and profibrotic signaling [82–84]. Liraglutide 

inhibited renal tumor necrosis factor (TNF)-α-mediated 

nuclear factor kappa B (NF-κB) activation and mitogen-ac-

tivated protein kinase pathway activation in the glomerular 

podocytes of an obesity-related glomerulopathy mouse 

model [82]. Exendin-4 attenuated albuminuria, glomerular 

hyperfiltration, glomerular hypertrophy, and mesangial 

matrix expansion without lowering blood glucose level in 

diabetic rats by inhibiting oxidative stress and NF-κB acti-

vation [83]. In humans, exenatide reduced reactive oxygen 

species generation and expression of NF-κB, TNF-α, inter-

leukin-1β, c-Jun N-terminal kinase-1, toll-like receptor-4, 

and suppressor of cytokine signaling 3 in obese patients 

with T2DM, independent of weight loss [84]. Exenatide also 

reduced high-sensitivity C-reactive protein by 61% [85] and 

reduced urinary transforming growth factor-β1 and type IV 
collagen excretion in patients with T2DM [86]. Liraglutide 

treatment was associated with decreased levels of inflam-

matory cytokines and an increase in serum adiponectin 

level in obese patients with T2DM [87]. Liraglutide also 

improved oxidative stress by increasing glutathione con-

centration and decreasing serum lipid hydroperoxides and 

heme oxygenase-1 levels in subjects with T2DM, indepen-

dent of its glucose-lowering effects [88]. 

The natriuretic effect of GLP-1 receptor agonists has been 

proposed to underly the GLP-1–induced reduction in blood 

pressure reported in large CVOTs. GLP-1–mediated natri-

uresis and diuresis appear to involve redistribution and 

reduction of Na+/H+ exchanger 3 (NHE3) activity, which is 

located at the brush border of renal proximal tubules [89]. 

GLP-1 receptor agonists phosphorylated NHE3 at the PKA 

consensus sites Ser552 and Ser605, reducing its activity 

[36]. GLP-1 receptor agonists also increased natriuresis and 

diuresis by increasing renal blood flow in rats [90]. Human 

studies have shown that GLP-1 infusion reduces proximal 

tubular sodium reabsorption and decreases plasma angio-

tensin II concentration [91]. In addition, a single subcuta-

neous injection of liraglutide increased sodium excretion 

in people with T2DM [92]. Inhibition of NHE3 by GLP-1 

could also affect glomerular hemodynamics by activating 

tubuloglomerular feedback. The increase in sodium deliv-

ery to the macula densa due to low NHE3 activity results in 

afferent arteriolar vasoconstriction and lower glomerular 

hyperfiltration and pressure. Liraglutide is associated with 

an acute reduction in eGFR and subsequent stabilization 

over time, suggesting that GLP-1 has renal hemodynamic 

effects [93]. 

Ongoing studies and candidate drugs under 
development 

The FLOW trial (NCT03819153) to evaluate the effect of 

once-weekly semaglutide on progression of renal impair-

ment is currently in progress. The primary renal outcome 

comprises a persistent ≥50% reduction in eGFR or a per-

sistent eGFR of <15 mL/min/1.73 m2, initiation of RRT, or 

death from kidney disease or CVD. This study recently be-

gan recruiting more than 3,000 T2DM patients with mod-

erate/advanced CKD and albuminuria, and its estimated 

completion date is 2024. This trial will be the first to inves-

tigate the effects of a GLP-1 receptor agonist on primary 

kidney outcomes. 

In addition, the SOUL trial (NCT03914326) is a currently 

ongoing CVOT to evaluate the hypothesis that oral sema-

glutide lowers the risk of cardiovascular events in T2DM 

patients at high risk for CVD. In this trial, the composite 

renal endpoint is a secondary outcome consisting of a per-

sistent ≥50% reduction in eGFR or a persistent eGFR of <15 

mL/min/1.73 m2, initiation of RRT, and renal death. Oral 
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semaglutide received the approval of the U.S. Food and 

Drug Administration in September 2019. 

Polypharmacology refers to the combination of several 

structurally related hormones into a single entity. Treat-

ment with GLP-1/glucagon dual agonists produced weight 

loss and antihyperglycemic efficacy superior to that of 

GLP-1 selective agonists alone in mice with diet-induced 

obesity [94]. GLP-1 and glucagon are structurally similar, 

and glucagon also acts on the GLP-1 receptor [95], raising 

expectations that a combination of the two drugs could 

be more efficacious than the use of either drug on its own. 

Several phase 2 clinical trials of GLP-1/glucagon dual ago-

nists are currently in progress. In addition, dual GLP-1/GIP 

agonists have prolonged half-lives due to fatty acylation or 

PEGylation. A once-weekly GLP-1/GIP co-agonist, named 

tirzepatide (LY3298176), was superior to dulaglutide in 

terms of weight loss and improved HbA1c level in a phase 2 

study of patients with T2DM [96]. Phase 1 clinical trials for 

GLP-1/glucagon/GIP triple combination agents have been 

performed by Hanmi Pharmaceuticals (HM15211) and 

Novo Nordisk (NNC9204-1706). 

GLP-1-based combination therapies have been found 

to offer metabolic benefits greater than those achieved by 

treatment with either compound alone. Based on the im-

proved efficacy of GLP-1/glucagon and GLP-1/GIP co-ag-

onists, it is reasonable to determine whether dual or triple 

agonists might provide greater efficacy than the respective 

mono-agonists. Various possible combinations are GLP-1 

with GLP-2 [97], leptin [98], gastrin [99], amylin [100], pep-

tide YY [101], cholecystokinin [102], insulin [103], adreno-

medullin [104], fibroblast growth factor 21 [105], estrogen 

[106], dexamethasone [107], a proprotein convertase sub-

tilisin/kexin type 9 antibody [108], melanocortin-4 agonist 

[109], farnesoid-x [110], or an SGLT2 inhibitor [111]. Future 

studies are required to evaluate whether any of these com-

binations of agents have nephroprotective effects superior 

to those of GLP-1 mono-agonists in DKD patients. 

Conclusions and future perspectives 

GLP-1 receptor agonists are promising therapeutic options 

for patients with DKD, with benefits beyond their blood 

glucose-lowering activity. These agents seem to predom-

inantly affect macroalbuminuria, whereas their effects on 

hard renal endpoints are less clear. Although these agents 

can be used in CKD patients with an eGFR down to 15 mL/

min/1.73 m2, the safety of GLP-1 receptor agonists in DKD 

patients with stage 5 CKD needs to be investigated. In terms 

of future research direction, more studies similar to the on-

going FLOW trial should be conducted to evaluate the pri-

mary kidney outcomes of GLP-1 receptor agonist treatment. 

In addition, it is necessary to explore whether combination 

treatment with GLP-1 receptor agonists and other classes of 

agents with beneficial effects on the kidney will have syner-

gistic renoprotective effects in patients with DKD. 
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