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Background: Increasing evidence supports that competing endogenous RNAs
(ceRNAs) and tumor immune infiltration act as pivotal players in tumor progression
of hepatocellular carcinoma (HCC). Nonetheless, comprehensive analysis focusing on
ceRNAs and immune infiltration in HCC is lacking.

Methods: RNA and miRNA sequencing information, corresponding clinical annotation,
and mutation data of HCC downloaded from The Cancer Genome Atlas Liver
Hepatocellular Carcinoma (TCGA-LIHC) project were employed to identify significant
differentially expressed mRNAs (DEMs), miRNAs (DEMis), and lncRNAs (DELs) to
establish a ceRNA regulatory network. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene ontology (GO) enrichment pathways were analyzed to
functionally annotate these DEMs. A multigene-based risk signature was developed
utilizing least absolute shrinkage and selection operator method (LASSO) algorithm.
Moreover, survival analysis and receiver operating characteristic (ROC) analysis were
applied for prognostic value validation. Seven algorithms (TIMER, XCELL, MCPcounter,
QUANTISEQ, CIBERSORT, EPIC, and CIBERSORT-ABS) were utilized to characterize
tumor immune microenvironment (TIME). Finally, the mutation data were analyzed by
employing “maftools” package.

Results: In total, 136 DELs, 128 DEMis, and 2,028 DEMs were recognized in HCC.
A specific lncRNA–miRNA–mRNA network consisting of 3 lncRNAs, 12 miRNAs, and
21 mRNAs was established. A ceRNA-based prognostic signature was established
to classify samples into two risk subgroups, which presented excellent prognostic
performance. In additional, prognostic risk-clinical nomogram was delineated to assess
risk of individual sample quantitatively. Besides, risk score was significantly associated
with contexture of TIME and immunotherapeutic targets. Finally, potential interaction
between risk score with tumor mutation burden (TMB) was revealed.

Conclusion: In this work, comprehensive analyses of ceRNAs coexpression network
will facilitate prognostic prediction, delineate complexity of TIME, and contribute insight
into precision therapy for HCC.

Keywords: hepatocellular carcinoma, ceRNAs, prognostic prediction, tumor immune microenvironment,
immunotherapy, tumor mutation burden

Frontiers in Genetics | www.frontiersin.org 1 September 2021 | Volume 12 | Article 739975

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.739975
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.739975
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.739975&domain=pdf&date_stamp=2021-09-13
https://www.frontiersin.org/articles/10.3389/fgene.2021.739975/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-739975 September 7, 2021 Time: 13:2 # 2

Xu et al. Prognostic ceRNA Network in HCC

INTRODUCTION

Primary liver cancer is considered as one of the most aggressive
and prevalent malignancies with increasing mortality globally
(Bray et al., 2018; Forner et al., 2018; Yang et al., 2019). Based
on conventional histopathological classification, hepatocellular
carcinoma (HCC) almost take part in 75–85% of primary liver
cancer patients (Bray et al., 2018). Such underlying pathogenic
elements for HCC such as infections of aflatoxin exposure,
hepatitis virus, heavy alcohol intake, type 2 diabetes, and
obesity served as crucial players in hepatocarcinogenesis (Yang
et al., 2019; Xu et al., 2021c). Because of complex molecular
diversity like genetic and genomic alternation, HCC is a highly
heterogeneous solid tumor both in terms of intertumor and
intratumor standpoint (Schulze et al., 2016; Cancer Genome
Atlas Research Network, 2017; Liu et al., 2018; Woo and
Kim, 2018). Since HCC has considerably high heterogeneity
and sophisticated diversity of etiology, tumor–node–metastasis
(TNM) staging has been difficult in the precise prognostic
prediction of HCC patients (Edge and Compton, 2010; Marano
et al., 2015). It is of great urgency, therefore, to construct
a novel and reliable predictive indicator for clinical outcome
prediction and therapeutic efficacy estimation, further advancing
tailored strategy.

The recently improved therapeutic efficacy by immune
checkpoint blockade (ICB) therapy, eliciting anticancer effect by
blocking cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)
and programmed cell death protein 1 and its ligand (PD-1/PD-
L1), has made a breakthrough in malignant cancers (Brahmer
et al., 2015; Weber et al., 2015; Cella et al., 2016; Reck et al.,
2018). Clinical trials presented that almost 31% of HCC cases
experienced durable benefits from immunotherapy, suggesting
their encouraging potential in lifesaving (El-Khoueiry et al.,
2017; Xu et al., 2021b). Accumulating evidence supported
that coordination of the immunological regulators acts as a
pivotal role in cancer development and sensitivity to treatment
(Nishida and Kudo, 2017). An independent study reported
that exhaustion of CD4 + T cells resulted in acceleration of
HCC (Ma et al., 2016; Xu et al., 2021a). Lymphotoxin-α and
lymphotoxin-β produced by CD8 + T cells may serve as key
promoters in the progression of HCC (Finkin et al., 2015). Tumor
mutation burden (TMB), representing the somatic coding errors

Abbreviations: AUC, area under the curve; BP, biological processes; CC, cellular
components; CD274, Also known as PD-L1; CI, confidence interval; CTLA-4,
cytotoxic T-lymphocyte antigen 4; CTLs, cytotoxic T lymphocytes; DCs, dendritic
cells; DEL, deletion; DELs, differentially expressed lncRNAs; DEMs, differentially
expressed mRNAs; DEMis, differentially expressed miRNAs; FC, fold change;
FDR, false discovery rate; GO, Gene ontology; HCC, hepatocellular carcinoma;
HR, hazard ratio; ICB, immune checkpoint blockade; IDO1, indoleamine 2,3-
dioxygenase 1; KEGG, Kyoto Encyclopedia of Genes and Genomes; K-M, Kaplan-
Meier; K-W, Kruskal-Wallis; LASSO, least absolute shrinkage and selection
operator; lncRNAs, long non-coding RNAs; MF, molecular function; mRNAs,
mRNA messenger RNAs; miRNAs, microRNAs; OS, overall survival; PDCD1,
Also known as PD-1; PDCD1LG2, Also known as PD-L2; ROC, receiver
operating characteristic; TCGA, The Cancer Genome Atlas; TICs, tumor-
infiltrating immune cells; TILs, tumor infiltrating lymphocytes; TIM-3, T-cell
immunoglobulin domain and mucin domain-containing molecule-3; TIME,
tumor immune microenvironment; TMB, tumor mutation burden; TNM, tumor
node metastasis; Tregs, regulatory T cells.

such as base substitutions, deletions across, or insertions per
million bases, has been considered as an encouraging predictive
factor for immunotherapeutic effect prediction (Snyder et al.,
2014; Rizvi et al., 2015; Chan et al., 2019). High TMB was
discovered to promote antigen formation followed by immune
cells infiltration, resulting in enhanced immunotherapeutic effect
(Miao et al., 2018). Currently, a large number of researches
have highlighted the association of immunotherapy and TMB in
HCC (Hellmann et al., 2018; Chan et al., 2019). However, there
is little knowledge on the correlation of TMB with competing
endogenous RNA (ceRNA) in HCC.

The hypothesis of ceRNA proposed a novel mechanism
for interactions of non-coding RNA and mRNA, in which
long non-coding RNAs (lncRNAs), microRNAs (miRNAs),
and mRNA messenger RNAs (mRNAs) participated (Salmena
et al., 2011). In the regulatory ceRNA networks, miRNA is
able to bind to the 3′ untranslated regions (3′UTRs) of RNAs
to inhibit the translation of the target genes (Grimson et al.,
2007). lncRNAs can competitively bind miRNAs by sharing
miRNA response elements with reverse complementary binding
seed regions to indirectly affect translational regulation and
mRNA stability (Cao et al., 2018). Accumulating researches
highlighted that the ceRNA gene interaction network
served a critical role in HCC tumorigenesis, progression,
and prognosis (Jeyaram et al., 2018). For example, HULC
participated in the pathogenesis of HCC by combining with
miR-372 to influence gene expression of PRKACB (Wang
et al., 2010). Another research reported that the lncRNA
DSCR8 activated frizzled-7 by competitively sponging the
miRNA miR-485-5p to promote tumor progression (Wang
et al., 2018). However, the underlying mechanism of ceRNA
regulatory networks in prognostic prediction, tumor immune
infiltration, immunotherapy, and TMB estimation of HCC
remains elusive.

In this work, normal and tumor samples of HCC were
obtained from The Cancer Genome Atlas (TCGA) database;
the DESeq2 method was employed to determine differentially
expressed mRNAs (DEMs), miRNAs (DEMis), and lncRNAs
(DELs) between tumor tissues and normal tissues. Then, Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene ontology
(GO) pathway enrichment analysis were explored to further
predict potential biological functions and activating signaling
pathways. In total, 26 mRNAs, 10 miRNAs, and 37 lncRNAs were
identified to establish regulatory ceRNA network specific to HCC.
After least absolute shrinkage and selection operator method
(LASSO)-penalized Cox regression analysis, seven ceRNAs with
significant prognostic value were identified to construct a
prognostic signature. Kaplan–Meier (K-M) survival analysis and
receiver operating characteristic (ROC) analysis were applied
for prognostic value validation. Besides, prognostic nomogram
was constructed to quantitatively measure risk, and risk score
was significantly associated with diversity of tumor immune
microenvironment (TIME). Finally, intrinsic link between risk
score with TMB was explored. Herein, comprehensive analyses
of ceRNA network will facilitate prognostic prediction, delineate
complexity of TIME, and contribute insight into precision
immunotherapy for HCC.
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MATERIALS AND METHODS

Data Collection and Differential Gene
Expression Analysis
The RNA and miRNA sequence data of the normal liver tissues
and HCC samples were obtained from TCGA database. All
file data were downloaded using the GDC Data Transfer Tool.
The demographic information (age, gender, and so on), survival
endpoint (vital status, days to last follow-up and days to death),
and clinical stage and grade of tumor of each sample were
also downloaded.

Next, four categories of somatic mutation data of HCC
patients were obtained from TCGA portal. We singled
out the mutation files, which were obtained through the
“SomaticSniper variant aggregation and masking” platform for
subsequent analysis.

Identification of Differentially Expressed
Genes (DEGs)
Then, the DESeq2 method with an adjusted p-value < 0.05 and |
log2 fold change (FC)| > 1 setting as the threshold was employed
to identify differentially expressed mRNAs (DEmRNAs),
miRNAs (DEmiRNAs), and lncRNAs (DElncRNAs) between
normal and tumor samples. Taking advantage of pheatmap
R package (Version: 1.0.12), a hierarchical cluster heatmap
representing the expression direction and intensity of
DEGs was plotted.

Construction of the ceRNA Network
Firstly, interactions between lncRNA and miRNAs were
predicted using the miRcode database1 (Jeggari et al., 2012).
After that, the TargetScan, mirTarBase, and miRDB (Hsu et al.,
2011; Wong and Wang, 2015) databases were used to retrieve
the miRNA–mRNA interaction. Finally, a ceRNA network was
visualized using Cytoscape v.3.8.0.

Functional Enrichment Analysis
The Entrez ID for each DEmRNA was obtained using R package
“org.Hs.eg.db.” To elucidate underlying mechanisms of the hub
genes related to DEmRNA in the biological process (BP), GO
and KEGG function annotations were analyzed with “ggplot2,”
“enrichplot,” and “clusterProfiler” packages.

Construction of the Risk Score System
All components of the ceRNA network associated with prognosis
were analyzed through LASSO-penalized Cox regression
to assure multifaceted models were not overfitting. Cox
proportional hazards model was established using the penalized
maximum likelihood algorithm. Ten-fold cross-validation
was utilized to derive the best lambda to minimize the mean
cross-validated error and predict the regression coefficients (β)
of the multivariate Cox regression model. Then, a prognostic
model including seven genes was developed, and risk score
was calculated with the formula below. Risk score = βgene

1http://www.mircode.org/index.php

1 × expression level of gene 1 + βgene 2 × expression level of
gene 2 + · · · + βgene n × expression level of gene n. Herein, β

was the regression coefficient in the multivariate Cox regression
analysis as described previously (Lossos et al., 2004).

Validation of the Prognostic
ceRNA-Based Signature
According to the previous risk formula, each HCC sample
obtained corresponding risk score. All samples were stratified
into high- and low-risk clusters when setting the median risk
scores as the cutoff point. To visualize the correlation of risk
score with clinicopathological variables, R “pheatmap” package
was employed and the clinical characteristics between low- and
high-risk patients were compared. Next, K-M survival curve
was plotted using R package “survival” to identify prognosis
difference. Moreover, time-dependent ROC curves were analyzed
to validate prognosis predictive performance. Then, univariate
and multivariate Cox regression analyses were performed for
validity of risk signature as an independent prognostic indicator.

Establishment and Verification of the
Nomogram
To identify the optimal prognostic indicator, risk score, age,
gender, tumor grade, and clinicopathological stage for 1/2/3-
year overall survival (OS), ROC analysis was performed (Blanche
et al., 2013). To develop a quantitative prognostic pool for
HCC patients, a nomogram plot integrating risk score and
other clinicopathological features was constructed to predict
1–, 2–, and 3-year OS rate. Then, the calibration curve,
which could present predictive validity of the nomogram,
was plotted.

Risk Score in Characterization of TIME
To elucidate the potential role of risk score in TIME contexture,
seven methods including TIMER, XCELL, MCPcounter,
QUANTISEQ, CIBERSORT, CIBERSORT-ABS, and EPIC were
employed to estimate immune infiltration. Spearman correlation
analysis was performed to investigate the association of risk score
with TIME characterization.

Prediction of Response to
Immunotherapy of the Patients
Based on published studies, expression levels of ICB-related
genes exhibited intimate interaction with immunotherapeutic
efficacy (Goodman et al., 2017). Herein, six ICB-related genes
were extracted: PD-1 (also known as PDCD1), PD-L1 (also
known as CD274), PD-L2 (also known as PDCD1LG2),
T-cell immunoglobulin domain and mucin domain-containing
molecule-3 (TIM-3, also known as HAVCR2), indoleamine 2,3-
dioxygenase 1 (IDO1), and cytotoxic T-lymphocyte antigen 4
(CTLA-4) (Kim et al., 2017; Nishino et al., 2017; Zhai et al., 2018).
To reveal the underlying players of risk score in immunotherapy,
correlation analysis of risk score with these ICB-related genes
expression levels was performed.
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Collection and Preprocess of Epigenetic
Mutation Data
The corresponding somatic alteration information of The Cancer
Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC)
cohort was obtained from the TCGA dataset. TMB was defined
as the number of somatic, coding, base replacement, and insert–
deletion mutations per megabase of the genome examined using
non-synonymous and code-shifting indels under a 5% detection
limit. The “maftools” R package (Mayakonda et al., 2018) was
employed to detect the number of somatic non-synonymous
point mutations within each sample.

Statistical Analysis
The Wilcoxon test was employed to compare two groups,
whereas the Kruskal–Wallis test was carried out to compare
more than two groups. Survival curves were analyzed by
the K-M log rank test. The chi-square test was performed
to correlate the risk score subgroups with somatic mutation
frequency, and the Spearman analysis computed the correlation
coefficient. Results of CIBERSORT algorithm with p < 0.05 were
adopted in the subsequent analysis. Two-tailed p < 0.05 deemed
statistical significance. R software (version 4.0.3) was used for all
statistical analyses.

RESULTS

Identification of Different Expressed
Genes
DElncRNAs, DEmiRNAs, and DEmRNAs were analyzed between
374 HCC tissues and 50 adjacent normal liver samples in the

TCGA database. After setting an adjusted p-value < 0.05 and
| log2 FC| > 1 as cutoff threshold, a total of 136 lncRNAs
(104 upregulated and 32 downregulated; Figure 1A), 128
miRNAs (107 upregulated and 21 downregulated; Figure 1C),
and 2,028 protein-coding genes (1,222 upregulated and 806
downregulated; Figure 1E) were differently expressed between
HCC samples and normal tissues. Clustering analysis of
DElncRNAs, DEmiRNAs, and DEmRNAs suggested that HCC
samples may be distinguished from normal samples according to
expression profiling of DEmRNAs, DEmiRNAs, and DElncRNAs
(Figures 1B,D,F). The detailed information of DElncRNAs,
DEmiRNAs, and DEmRNAs are listed in Supplementary Table 1.

Construction of ceRNA Regulatory
Network and Enrichment Analysis
The interactions among DEmRNA, DElncRNA, and DEmiRNAs
were predicted using different databases to construct the ceRNA
regulatory network. A ceRNA regulatory network was established
including 36 genes (3 lncRNAs, 12 miRNAs, and 21 mRNAs). All
these genes made up the interactions of 14 lncRNA–miRNA pairs
and 31 miRNA–mRNA pairs (Figure 2A and Supplementary
Table 1). To explore the potential role of DEmRNAs in
physiological process, GO and KEGG pathway enrichment were
analyzed (Supplementary Tables 3, 4). For KEGG analysis, the
top enriched terms were Cell cycle, Biosynthesis of cofactors, and
Complement and coagulation cascades (Figure 2B). The result of
the GO enrichment pathways presented that the DEmRNAs were
primarily enriched in small-molecule catabolic process, organelle
fission, and nuclear division in BPs; chromosomal region,
microtubule, and collagen-containing extracellular matrix in
cellular components (CCs); and coenzyme binding, tubulin

FIGURE 1 | The DEGs between HCC samples and normal liver tissues. (A) Volcano plots of the expression levels of DELs. (B) Heatmaps of the expression levels of
DELs. Red represents upregulated expression, and green represents downregulated expression. (C) Volcano plots of the expression levels of DEMis. (D) Heatmaps
of the expression levels of DEMis. (E) Volcano plots of the expression levels of DEMs. (F) Heatmaps of the expression levels of DEMs.
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FIGURE 2 | (A) lncRNA–miRNA–mRNA ceRNA network in HCC. Green, red, and blue represent lncRNAs, miRNAs, and mRNAs, respectively. (B) KEGG enrichment
analysis of DEMs. (C–E) GO enrichment analysis of DEMs: BPs, CCs, and MF.

binding, and organic acid binding in molecular function (MF;
Figures 2C–E).

Construction of Prognostic Risk
Signature
With the help of univariate Cox analysis, 19 ceRNA genes
were identified with significant prognostic value (p < 0.05,
Supplementary Table 5). In order to avoid overfitting the risk
score model, LASSO Cox regression was conducted on the
abovementioned hub genes and then recognized 11 ceRNA
genes associated with prognosis in HCC (Figure 3A), and
the optimal values of the penalty parameter were determined
by 10-round cross-validation (Figure 3B). Next, multivariate
Cox regression was performed, seven ceRNA genes (RNF24,
HMMR, RAP2A, ARL2, S100A10, hsa-miR-421, and hsa-miR-
326) were determined as the hub genes, all of which were
considered as unfavorable prognostic indicator (all HRs > 1;
Figure 3C, Supplementary Table 6). Furthermore, survival
analysis showed that abnormal mRNA expression of most
hub genes resulted in significant different OS times between
low- and high-gene-expression subgroups (all p < 0.05;
Figures 3D–J).

Subsequently, these seven hub genes were incorporated into
a risk score model, and risk score was computed as follows:
risk score = (0.3039 ∗ expression value of HMMR) + (0.1663
∗ expression value of RNF24) + (0.2488 ∗ expression value of
RAP2A) + (0.1732 ∗ expression value of S100A10) + (0.175 ∗
expression value of ARL2) + (0.224 ∗ expression value of hsa-
miR-326) + (0.1399 ∗ expression value of hsa-miR-421). Finally,

each HCC sample with corresponding risk score was clustered
into high-/low-risk subgroups.

Validation of Risk Prognostic Signature
First, the distributions of these seven genes with corresponding
groups and samples were delineated in Figure 4A. The
distributions of dot pot and risk score of survival status suggested
that low-risk patients had longer OS time (Figures 4B,C).
Besides, K-M survival curve demonstrated that high-risk samples
presented significantly shorter OS time than patients with low-
risk (p < 0.001; Figure 4D). Additionally, ROC curves were
plotted, and AUC values for the 1–, 2–, and 3-year OS reached
0.784, 0.691, and 0.7, respectively (Figure 4E). Then, univariate
Cox analysis pointed out that the hazard ratio (HR) of the
risk score was 1.501 (95% confidence interval (CI): 1.368-1.647;
Figure 4F). The results of the multivariate Cox proportional
hazards model (HR = 1.469, 95% CI: 1.322–1.632; Figure 4G)
supported the risk score performed as an independent prognostic
indicator in HCC. These results suggested an excellent capacity of
our multigene signature for clinical outcome prediction.

Risk Score in Clinical Features
Firstly, the distribution of clinical variables with corresponding
risk subgroups was visualized (Figure 5A). For early-grade
samples and late-grade samples, risk score presented a higher
trend in late-grade samples (Figure 5B). We also observed that
patients with advanced stage also exhibited a significant increase
in risk score (Figure 5C). Similarly, risk score was significantly
elevated in T3-4 status (Figure 5D).
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FIGURE 3 | Establishment of the prognostic risk signature. (A) LASSO coefficient profiles of 36 candidate genes. A vertical line is drawn at the value chosen by
10-fold cross-validation. (B) Ten-time cross-validation for tuning parameter selection in the LASSO regression. The vertical lines are plotted based on the optimal
data according to the minimum criteria and 1-standard error criterion. The left vertical line represents the 11 genes finally identified. (C) Forest plots showing the
relationships of each gene subsets with OS. The unadjusted HRs are presented with 95% CIs. (D) K-M curve analysis presenting difference of OS between the
high-HMMR and low-HMMR groups. (E) K-M curve analysis presenting difference of OS between the high-RNF24 and low-RNF24 groups. (F) K-M curve analysis
presenting difference of OS between the high-RAP2A and low-RAP2A groups. (G) K-M curve analysis presenting difference of OS between the high-S100A10 and
low-S100A10 groups. (H) K-M curve analysis presenting difference of OS between the high-ARL2 and low-ARL2 groups. (I) K-M curve analysis presenting
difference of OS between the high-hsa-miR-326 and low-hsa-miR-326 groups. (J) K-M curve analysis presenting difference of OS between the high-hsa-miR-421
and low-hsa-miR-421 groups.

Stratification analysis was employed to validate whether risk
score still could identify difference of prognosis when HCC
patients were subgrouped into clinical variable groups. When
patients were divided based on age, we found that our risk
score was still predictive of patient outcomes, with higher scores
indicating poorer outcomes (Supplementary Figures 2A,B).
Likewise, risk score presented powerful prognostic ability for
male or female patients (Supplementary Figures 2C,D), 1–2
or 3–4 clinical grade patients (Supplementary Figures 2E,F),
patients in early and late stage (Supplementary Figures 2G,H),
patients in T1-2 or T3-4 status (Supplementary Figures 2I,J),
patients in N0 category (Supplementary Figure 2K), and patients
in M0 category (Supplementary Figure 2L). The above findings,
combined with the results of univariable and multivariable
regression analyses, emphasized that our risk score was indeed
an outstanding prognostic predictor independent from other
clinical parameters.

Construction of Prognostic Nomogram
To further investigate whether risk score was the best predictive
factor among multiple clinicopathological variables, age, gender,

clinical staging, tumor grade, T status, and N status were listed
as candidate prognostic indicators. These clinical variables were
incorporated to perform the AUC analysis for 1–, 2–, and 3-year
OS, and risk score exhibited the most AUC value (Figures 6A–C).
Then, a prognostic nomogram consisting of clinical stage and
risk score was developed for quantitative prognosis prediction
(Figure 6D). Gender, stage, grade, T status, and N status were
excluded out of nomogram given, of which AUC values were
less than 0.6. In addition, calibrate curves suggested excellent
prognosis predictive performance of the nomogram model
(Figures 6E–G).

Correlation of Risk Signature With
Immune Cells Infiltration
Since HCC progression and infiltration immune cells had
intrinsic and intimate connection, we further explored the
potential contribution of risk signature in diversity and
complexity of TIME. The result presented that risk score
was remarkably and negatively correlated with populations of
resting NK cells and resting memory CD4 + T cells, whereas
positively related with infiltration of cancer associated fibroblast,
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FIGURE 4 | Validation of the prognostic value of risk signature. (A) Heatmap presents the expression pattern of three hub genes in each sample, where the colors of
yellow to blue represented alterations from high expression to low expression. (B) Distribution of multigene signature risk score. (C) The survival status and interval of
HCC patients. (D) K-M curve analysis presenting difference of OS between the high-risk and low-risk groups. (E) Areas under the curve (AUCs) of the risk scores for
predicting 1–, 2–, and 3-year OS time. (F) Univariate Cox regression analyses of OS. (G) Multivariate Cox regression analyses of OS.

FIGURE 5 | Clinical significance of the prognostic risk signature. (A) Heatmap presents the distribution of clinical feature and corresponding risk score in each
sample. Comparison of risk score among different subgroups classified by clinical characteristics: (B) WHO grade, (C) clinical stage, and (D) T status.
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FIGURE 6 | Validation of prognostic efficiency of risk signature. (A–C) AUCs of the risk scores for predicting 1–, 2–, and 3-year OS time with other clinical
characteristics. (D) Nomogram was assembled by stage and risk signature for predicting survival of HCC patients. (E) One-year nomogram calibration curves.
(F) Two-year nomogram calibration curves. (G) Three-year nomogram calibration curves.

M2 macrophage, and T regulatory cells (Tregs; Supplementary
Figures 3–6). Furthermore, Spearman correlation of risk score
with immune infiltration was further analyzed (Figure 7), and the
detailed results are provided in Supplementary Table 7.

Predicting Clinical Outcome of Patients
to Immunotherapy
Given that the information on immunotherapy was not available
in the TCGA-LIHC dataset, further analysis was explored
for response to immunotherapy. Firstly, correlation of ICB-
related gene (CD274, PDCD1, PDCD1LG2, IDO1, HAVCR2,
and CTLA-4) (Kim et al., 2017; Nishino et al., 2017; Zhai et al.,
2018) mRNA expression level with risk score was performed
(Figure 8A). It was discovered that risk score was significantly
and negatively correlated with CD274 (r = 0.19; p = 0.00028),
CTLA4 (r = 0.26; p = 5.1e–07), HAVCR2 (r = 0.22; p = 2.3e–05),
IDO1 (r = 0.12; p = 0.024), PDCD1 (r = 0.14; p = 0.0057), and
PDCD1LG2 (r = 0.14; p = 0.0094; Figures 8B–G), suggesting that
patients with high risk score may be more blocked by immune
checkpoint administration.

The Association Between the Risk
Signature With TMB
Mounting researches have highlighted that tumor burden
mutation (TMB) was associated with upregulation of CD8 + T
cell infiltration, which could identify cancer cells and then execute
antitumor response (Rizvi et al., 2015; McGranahan et al., 2016;

Chan et al., 2019). For that, we speculated that TMB might
act as a non-negligible prognostic factor of responsiveness
to antitumor immunotherapy and aimed to investigate the
potential interaction between risk score and TMB to uncover
the hereditary variations of risk score subtype. Firstly, the TMB
level was detected both in low- and high-risk score subgroups.
There was no significant distinction of TMB level between
the low-risk score subgroup and the high-risk score subgroup
(p = 0.73, Supplementary Figure 3A). Then, the patients were
assigned into distinct subtypes on the line of the TMB immune
set point, as stated before (Cristescu et al., 2018). Survival
curve demonstrated that high TMB value significantly suggested
shorter OS time (p < 0.001, Figure 9A). Subsequent correlation
analysis further validated that the TMB was positively but
not significantly correlated with the risk score (R = 0.027,
p = 0.61; Supplementary Figure 3B). To further explore the
validity of consistent prognostic significance of risk score and
TMB, we validated the cooperative effect of two indicators in
prognostic prediction of HCC. As demonstrated in stratified
survival curve, there was no interference of TMB status with risk
score prognostic predictive performance. Risk score subgroups
exhibited evident prognosis distinctions in both low and high
TMB status subtypes (p < 0.001; Figure 9B). In summary, these
findings indicated that risk score could act as an independent
predictor and hold the potential to evaluate the clinical outcome
of antitumor immunological treatment.

Besides, we explored and visualized the distribution of
gene mutation in both the high-and low-risk score subtypes.
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FIGURE 7 | Estimation of tumor-infiltrating cells. Patients in the high-risk group were more positively associated with cancer associated fibroblast, M2 macrophage,
and T cell regulatory, whereas they were negatively associated with resting NK cells and resting memory CD4 + T cells, as shown by Spearman correlation analysis.

The comprehensive landscape of somatic variants visualized
the mutation patterns and clinicopathological features of
the top 20 driver genes with the most frequent alteration

(Figures 9C,D). These findings might contribute novel
insight into the intrinsic connection of ceRNA and somatic
variants in HCC.
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FIGURE 8 | Correlation between prognostic risk signature with hub immune checkpoint genes. (A) Correlation analysis between immune checkpoint inhibitors
(CD274, PDCD1, PDCD1LG2, CTLA4, HAVCR2, and IDO1) with prognostic risk signature. (B) Correlation between prognostic risk signature and CD274.
(C) Correlation between prognostic risk signature and CTLA4. (D) Correlation between prognostic risk signature and HAVCR2. (E) Correlation between prognostic
risk signature and IDO1. (F) Correlation between prognostic risk signature and PDCD1. (G) Correlation between prognostic risk signature and PDCD1LG2.

FIGURE 9 | The correlation between the risk score and TMB. (A) K-M curves for high and low TMB groups. (B) K-M curves for patients stratified by both TMB and
risk score. The oncoPrint was constructed using low-risk score (C) and high-risk score (D).

DISCUSSION

Hepatocellular carcinoma is the one of most malignant and
common tumors globally (Bray et al., 2018; Forner et al., 2018;

Yang et al., 2019). Such genetic alternation as alternative splicing,
TP53 mutation, regulation of non-coding RNA, and DNA
methylation served as critical players in progression of HCC
(Cancer Genome Atlas Research Network, 2017; Xu et al., 2017;
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Kahles et al., 2018; Wong et al., 2018). Increasing studies have
highlighted the crucial role of immune infiltration in tumor
development, especially HCC (Hinshaw and Shevde, 2019; Lu
et al., 2019). Immunotherapy with encouraging clinical success
has recently emerged as a promising therapeutic strategy in
anticancer administration (Yang, 2015). Despite the growing
worldwide enthusiasm, several serious challenges remain for
HCC immunotherapy, like only 20% of advanced HCC patients
presented objective response to immunotherapy (Fu et al.,
2019). Such biomolecules as ICB-related targets were not reliable
indicators for precise prognostic prediction. As such, predicting
prognosis precisely is critical for therapeutic benefit optimization
and clinical outcome improvement (Nishino et al., 2017; Mushtaq
et al., 2018; Ng et al., 2020). Mounting evidence has supported the
suggestion that such non-coding RNAs as lncRNAs and miRNAs
played indispensable roles in transcriptional interference and
gene regulation (Guttman and Rinn, 2012). Based on the ceRNA
hypothesis, a large number of studies have revealed that lncRNA,
miRNA, and mRNA interact with each other as corresponding
ceRNA networks during cancer occurrence and progression
(Schmitt and Chang, 2016; Zhao et al., 2020). Among them, the
potential role of ceRNAs in prognostic prediction and tumor
microenvironment of HCC caught our eyes. Nevertheless, there
is little to know about them before.

Under this background and hypothesis, lncRNA, miRNA,
and mRNA data from HCC samples were obtained from
the TCGA-LIHC project. In an initial step, DElncRNAs,
DEmiRNAs, and DEmRNAs were recognized and integrated
by comparing normal tissues with HCC samples. After
predicting the lncRNA–miRNA interactions and miRNA–
mRNA interactions based on these DEGs, a ceRNA regulatory
network composed of 3 lncRNAs, 12 miRNAs, and 21 mRNAs
was established to further explore the underlying molecular
mechanism of the ceRNAs. In addition, to investigate the
potential role of the DEmRNAs in BPs, KEGG and GO
pathway enrichment analyses were performed, from which
we discovered that DEmRNAs were mostly enriched in
cell cycle, biosynthesis of cofactors, and complement and
coagulation cascades.

To further validate prognostic value of these genes, we
fetched the sequencing profile and clinical information from
the TCGA-LIHC project. Subsequently, we conducted univariate,
LASSO, and multivariate Cox analyses to identify seven hub
genes, and then computed risk score and constructed prognostic
signature. The excellent prognostic performance of the risk
model was validated by K-M analysis and ROC curves.
We demonstrated that risk signature performed well as an
independent prognostic predictor by using both univariable and
multivariable regression analyses. Additionally, risk signature
retained powerful prognostic predictive ability in stratified
survival curves based on clinical variables. These results
suggested that our seven-gene risk signature could be used
as an independent prognostic predictor in HCC. Additionally,
prognostic nomogram including risk score and stage was
developed to facilitate clinical practice.

Given immune infiltration was a crucial driving factor in
HCC, we further investigate the underlying players of risk score

in TIME features and immunotherapy. These findings showed
that risk score was negatively correlated with abundance of
resting immune cell (i.e., resting memory CD4 + T cells, etc.),
whereas it was positively correlated with immunosuppressive
cells (i.e., cancer-associated fibroblast, Tregs, etc.), indicating
low-risk score patients were immune resting phenotype,
whereas high-risk score represents immunosuppressive tumor
microenvironment. Moreover, risk score was positively and
significantly related with the immunotherapy-related genes (i.e.,
PDCD1, etc.), highlighting high-risk patients might present with
a better response for immunotherapy, which needed further
exploration in the future.

Currently, several clinical data pointed out a correlation
between genetic alternations with responsiveness to
immunological treatment (Burr et al., 2017; George et al.,
2017). We calculated and determined the TMB, which is a
predictive indicator of sensitivity to immunological treatment.
Subsequent stratified survival curve demonstrated that risks score
held prognostic predictive capability, which was independent
of TMB, suggesting that TMB and risk score represent different
aspects of immunobiology. Besides, risk score together with
mutation data revealed the significant distinction of gene variant
frequency between the high- and low-risk score group from the
level of transcriptome.

In conclusion, we constructed an lncRNA–miRNA–mRNA
ceRNA regulatory coexpression network from a multiomics
perspective by using comprehensive bioinformatic analysis.
Besides, the distinction of ceRNA-based risk score was
demonstrated to contribute to clinical outcome prediction, TIME
heterogeneity, and immunotherapeutic response difference.
Furthermore, we pointed out the synergistic effect of risk score
and TMB value in prognostic prediction. Further experimental
and clinical validations are required for these findings at different
centers and with larger cohort.
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