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Abstract 
Next-generation sequencing or massively parallel sequencing have revolutionized 
genomic research. RNA sequencing (RNA-Seq) can profile the gene-expression used for 
molecular diagnosis, disease classification and providing potential markers of diseases. 
For classification of gene expressions, several methods that have been proposed are 
based on microarray data which is a continuous scale or require a normal distribution 
assumption. As the RNA-Seq data do not meet those requirements, these methods 
cannot be applied directly. In this study, we compare several classifiers including 
Logistic Regression, Support Vector Machine, Classification and Regression Trees and 
Random Forest. A simulation study with different parameters such as over dispersion, 
differential expression rate is conducted and the results are compared with two mRNA 
experimental datasets. To measure predictive accuracy six performance indicators are 
used: Percentage Correctly Classified, Area Under Receiver Operating Characteristic 
(ROC) Curve, Kolmogorov Smirnov Statistics, Partial Gini Index, H-measure and Brier 
Score. The result shows that Random Forest outperforms the other classification 
algorithms. 

Keywords: Microarray data, gene expression, support vector machine, classification, 
random forest 

Introduction 
Transcriptome is a collection of all gene readouts that are present in a cell. It is from the 
instruction that are carried out of the DNA and were needed to be read by transcribing into an 
RNA. Reading the sequence and quantities of mRNA which has a vital role of making proteins 
can determine when and where each gene will be turned on and turned off in cells and tissues of 
an organism. Transcriptome analysis (transcriptomics) is aimed to understand the expression of 
genome at the transcription level and provides the information on the respective gene structure, 
regulation of gene expression, gene product function and genome dynamics used for molecular 
diagnosis, disease classification and providing potential markers of diseases. Studies revealed 
several driver genes in breast cancer patient survival prognosis [1, 2]. Studies also found that a 
panel of genes used to predict the overall survival of prostate cancer patients [3, 4]. 
Furthermore, there are plenty applications in targeted therapy in pharmacogenomics [5, 6]. 

Currently, there are two types of technologies commonly used to measure the expression of 
thousands of genes simultaneously: microarray and next-generation sequencing (NGS) with the 
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 RNA sequencing approach. Microarray refers to a hybridization-based technology which has 
been around for over a couple of decades. It utilizes short oligonucleotide probes representing 
genomic DNA immobilized on solid surface such as glass or silicon slides, then uses fluorescent 
labeling as a method of quantification [7]. The technology has been mainly used for gene 
expression analysis, where RNAs extracted from cell or tissue samples could either be directly 
labeled, or converted to cDNA or cRNA first. 

DNA sequencing is the method to get the exact order of nucleotides (composition) in a 
DNA. The first DNA sequencing technique is Sanger sequencing developed by Frederick Sanger 
and colleagues in 1977. The next technique is NGS technology known also as massive parallel 
sequencing, which breaks the limitations of the traditional Sanger sequencing. One of the NGS 
application is RNA sequencing (RNA-Seq) which sequence the mRNA and measure the gene 
expression. The biggest advantage RNA-Seq has over microarray is that it directly accesses the 
sequence without hybridization, allowing the differential expression analysis of organisms 
without reference genome [8]. It is also more accurate, as it can suggest precisely the location of 
transcription boundaries to a single-base resolution [9]. Currently between the two, microarray 
is still generally less costly compared to RNA-Seq. Additionally, microarray is the most mature 
technology for high-throughput screening, which means that both the hardware and analytical 
tools for it have been refined over the years. 

Pathology of tumor could be better understood by investigating the comparison of gene 
expression levels between samples from diseased patients and those from healthy individuals 
[10, 11, 12, 13]. In addition, classification of gene expression based on RNA-seq can detect severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other common RNA respiratory 
viruses [14] and then to be used to identify biomarkers and therapeutic targets in managing 
coronavirus disease 2019 (COVID-19) [15].  

For classification of gene expressions, several methods that have been proposed are based 
on microarray data [16] which is a continuous scale or needs a normal distribution assumption. 
Since the RNA-Seq data do not meet those requirements, these methods cannot be applied 
directly. In addition, as the RNA-Seq creates data with over-dispersion (the variance exceeds 
the mean), it should be taken into consideration. Otherwise, it would influence the model 
performances. Many researchers have proposed alternative approaches. Anders and Huber [17] 
proposed a technique on the basis of negative binomial distribution, with variance and mean 
linked by local regression for differential expression analysis in count data. Furthermore, Tan et 
al. [18] discussed the application of, and modifications to, LR, Principal Components Analysis, 
Linear Discriminant Analysis, Support Vector Machine (SVM), and Partial Least Squares in the 
RNA-Seq data. Zararsiz et al [19] recently discussed the log transformation and Random Forest 
(RF) and SVM approach are good choice for classification for RNA-Seq data. 

Herein, we compared the performance four classification algorithms, LR, SVM, RF and 
Classification and Regression Trees (CART), on different data situations. A simulation study 
with different parameters such as overdispersion dan differential-expression rate were 
conducted and compared. To measure predictive accuracy, 10-fold cross validation and five 
performance indicators were used. 

Methods 
Simulation setup 
A simulation study adopted from Zararsiz et al. [19] was carried out to evaluate the influence of 
some parameters. The simulation of gene-expression datasets was conducted under 216 
different scenarios using the following negative binomial model; 

 
Xij|yij = k~NB(sigjdkj,φ)    (1) 

 
Where gj represents the total number of mapped counts per gene (i.e, gene total), φ – the 
dispersion parameter, si – the number of mapped counts per sample, and dkj – the differential-
expression parameter of the j-th gene between classes k. 
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 The study focused only on binary classification (number of classes was 2). The simulated 
datasets consist all feasible combinations of: (1) different dispersion situations: slightly over 
dispersed, substantially over dispersed and highly over dispersed; (2) number of observations 
(n): 20, 40, 60, 80; (3) number of genes (p): 50, 100, 500; and (4) differentially expressed (DE) 
gene rates as (dkj) 1% and 50%. 

The simulation was repeated 10 times and performed on PoiClaClu [20] package of R 
software with CountDataSet function. The logarithmic transformation approach (rlog) was then 
implemented to transform the data into smaller skewed distribution and extreme values [21].  
Note that in this study we focus on binary classification and include number of genes in the 
scenario of simulation.  

Implementation of classifiers 
The classification of the simulated data is carried out using  several algorithms: LR, SVM [22], 
CART [23] and RF [24]. LR is one of mathematical model approaches for classification where 
outcome variable is a binary variable. The purpose was to evaluate the influences of multiple 
explanatory variables (categorical or numeric) on the outcome variable. LR models the 
probability of an event by a linear combination of predictor or independent variables.  

SVM was originally reported by Vapnik [22], in which this approach has been used in 
multiple classification problems. SVM is one of popular classification methods according to the 
statistical learning theory. SVM is known for its effective mathematical background, good 
generalization ability, wide range of application, and learning capability. In addition, SVM is has 
the ability to perform linear or nonlinear classification and engage with high-dimensional data. 

CART introduced in 1984 [23] and is one of the widely used tree classifiers implemented in 
broad-spectrum applications. The tree classifier is also known as Recursive Partitioning and 
Tree-Based Technique. The principle of these techniques is partitioning the space and identify 
some representative centroids. Classification trees partitioning the space in hierarchal manner. 
It is initiated with the entire space and recursively divided it into less regions, then each region 
has a class label assigned. The set of splitting rules are used to segment the predictor space can 
be summarized in a tree, known as decision tree methods. To overcome offer fitting the 
maximally grown tree was pruned. A cross-validation approach was implemented to obtain the 
optimal tree that has the lowest rate of error classification. The assignment of each terminal 
node to a class was performed by choosing the class that lower the feasibility of error 
classification. 

RF is proposed by Breiman [24] to combine numerous weak classifiers to generate a 
significantly improved as well as strong classifier. The main idea of this algorithm is to build a 
larger number of unpruned decision trees then combine them by averaging the predictions of 
individual trees in the forest. The technique is expected to be less affected by the noise and 
highly efficient on large data. The first step of RF is to “grow” many classification trees using 
ensemble approach. Then each tree gives a classification and taken as a vote towards the 
foregoing tree. The classification is based on the classification possessing the most votes over all 
the trees in the forest. 

To deal with overfitting and validate each classifier model, the 10-fold cross-validation was 
performed. The best parameters for each classifier were then selected based on the 10-fold 
cross-validation result. 

Evaluation process 
As many as 70% of the simulated data were allocated into training, and the rest (30%) – test 
sets. The entire model building processes were performed on training sets, where model 
performances were evaluated in test sets. Most of the studies rely only on single performance 
measurement. Here, we used six performance indicators which assessed different 
performances: Percentage Correctly Classified (PCC), Kolmogorov-Smirnov Statistic (KS) [25], 
Area Under ROC Curve (AUC), Partial Gini Index (PG-Index) [26], H-measure (H-m) [27], and 
Brier Score (BS) [28]. The PCC along with KS assess the correctness of categorical predictions 
[29]. AUC and PG-Index evaluate the distinguishing ability of the algorithm, whereas the H-
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 measure (H-m) is considered to overcome the shortcomings of AUC. BS evaluates the accuracy 
of the probability predictions. 

Since we have six different performance indicators to combine all indicators, for each 
performance indicator, the classification algorithms were ranked so that the best algorithm 
score highest. The average of the ranks for each algorithm were calculated and compared. The 
better the performance, the higher the rank score. 

Results 
Effect of sample size, number of gene and over-dispersion level on Percentage 
Correctly Classified (PCC)  
The most popular classification performance index is accuracy or also known as PCC. The 
results of performance of each algorithm based on PCC parameter for different sample sizes 
(20, 40 and 60) and over dispersion situations (high, medium and low) are shown in Figure 1. 
It shows that when the data is highly over dispersed (high), the accuracy tends to be smaller as 
compared to low and medium over dispersion. It shows that most of the classification 
algorithms perform well when the data is less dispersed and relatively homogeneous. 
 

 
Figure 1. Accuracy of four algorithms based on Percentage Correctly Classified (PCC) parameter 
on different sample sizes and over-dispersion levels.  

 
Figure 2. Accuracy of four algorithms based on Percentage Correctly Classified (PCC) on 
different number of genes and differentially expressed (DE) genes.  
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 The impact of number of genes (variables) on the classification accuracy (PCC) is presented 
in Figure 2. It can be seen that large number of genes (variables) do not seem to affect the 
accuracy. Accuracy is expected to increase when more variables are into account, with 
overfitting as the prices. The cross validation has worked well to prevent overfitting due to large 
number of variables (Figure 2). 

There are limitations of accuracy as performance indicator, e.g., unbalanced cases. Hence it 
is better to use other indicators. 

The effect of sample size and overdispersion on average of the ranks of six 
indicators  
The performance of the classification algorithms based on the average of the ranks of six 
indicators (PCC, KS, AUC, PG-Index, H-m and BS) are presented in Figure 3. The average of 
the ranks for each algorithm is plotted for different classification approaches, sample sizes and 
over dispersion situations.  

  
Figure 3. Average ranks of six indicators (PCC, KS, AUC, PG-Index, H-m and BS) of four 
classification approaches with different sample sizes and levels of over-dispersion. 

 
Figure 4. Average ranks of six indicators (PCC, KS, AUC, PG-Index, H-m and BS) of four 
classification approaches with different sample sizes and percentage of differentially expressed 
genes.  
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The effect of sample size and percentage of differentially expressed (DE) gene 
on average of the ranks of six indicators  
The effect of sample size and percentage of DE gene on average ranks of six indicators (PCC, KS, 
AUC, PG-Index, H-m, and BS) of four classification algorithms are presented in Figure 4. Two 
percentages of DE gene (1% and 5%) were assessed. The results suggested that the higher 
percentage of DE genes leaded to an increase in the classification performance (Figure 4).  

Discussions 
The results shows that in general, larger sample size increases the classification accuracy. 
Providing more information (i.e., number of samples) would improve the power to detect 
differences. On the other hand, having more variables (i.e., genes) would result on overfitting 
and complexity thus it impacts the classification accuracy and machine learning efficiency. 
Furthermore, the result shows that overfitting occurs due to the addition of large number of 
genes can be solved by performing k-fold cross validation. This finding suggests that researchers 
need to perform feature selection before the modeling to decrease the quantity of genes leading 
the elevation of the discrimination power [31]. Although the gene filtering and feature selection 
have been carried out, normally there are plenty number of genes remaining. In this case, 
performing k-fold cross validation in the modeling would increase the classification 
performance. 

A common complication in the data generated from RNA-Seq is overdispersion, where the 
observed variation exceeds that predicted from the binomial distribution. The results show 
overdispersion influence the classification performances. The higher the overdispersion, the 
lower the classification accuracy. More biological replicates would increase the sparseness of the 
data (i.e., increasing overdispersion) which reduce the classification power [19,30]. 

Comparing the performance of four classification algorithms in all conditions suggest that 
the algorithm RF has higher accuracy and average ranks of six performance indicators. The 
larger average ranks of performance indicators show the better classification predictions. 

In addition, RF can handle the overdispersion relatively better than the other algorithms. 
RF is one of ensemble methods which aggregates multiple machine learning models with the 
aim of decreasing both bias and variance [32,33]. Hence, the result from an ensemble method 
such as RF will be better than any of individual machine learning model. The result also shows 
that adding and combining more significant genes on class conditions is similar to combining 
their abilities to forecast can increase in the classification performance. In general, in all 
simulated datasets, the classification performance of RF outperforms the CART, LR and SVM. It 
is in line with the previous studies [31, 32,33]. RF algorithm had been previously shown to 
perform outstanding in several bioinformatics tasks [34]. 

Overall, the accuracy of classifiers on RNA-Seq data depends on the number of samples, 
number genes used and the variation of the data (overdispersion). High variability of gene 
expression is expected due to the differences of sample and library preparation, type of 
sequencers and biological samples variation [31]. To obtain the best classification performance, 
researcher must set standard or protocols of wet lab preparation to minimize the variation, then 
performing feature selection, gene filtering before implementing the classification algorithms. 
Implementing RF with K-fold cross validation would provide best classification accuracy. 

Conclusions 
Several situations of RNA-Sequencing data and compared several algorithms to perform binary 
classification was simulated. The classification performance is measured by several indicators, 
measuring different type of classification performances. Our simulations show that data with 
less overdispersion, large sample size and have more differentially expressed genes could 
improve the discriminatory ability and the accuracy of the classifiers. In overall assessment, the 
RF algorithm works better on classification than CART, LR and SVM. 
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