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Abstract: Berry cell death assessment can become one of the most objective parameters to assess
important berry quality traits, such as aroma profiles that can be passed to the wine in the winemaking
process. At the moment, the only practical tool to assess berry cell death in the field is using portable
near-infrared spectroscopy (NIR) and machine learning (ML) models. This research tested the NIR
and ML approach and developed supervised regression ML models using Shiraz and Chardonnay
berries and wines from a vineyard located in Yarra Valley, Victoria, Australia. An ML model was
developed using NIR measurements from intact berries as inputs to estimate berry cell death (BCD),
living tissue (LT) (Model 1). Furthermore, canopy architecture parameters obtained from cover
photography of grapevine canopies and computer vision analysis were also tested as inputs to
develop ML models to assess BCD and LT (Model 2) and the intensity of sensory descriptors based
on visual and aroma profiles of wines for Chardonnay (Model 3) and Shiraz (Model 4). The results
showed high accuracy and performance of models developed based on correlation coefficient (R) and
slope (b) (M1: R = 0.87; b = 0.82; M2: R = 0.98; b = 0.93; M3: R = 0.99; b = 0.99; M4: R = 0.99; b = 1.00).
Models developed based on canopy architecture, and computer vision can be used to automatically
estimate the vigor and berry and wine quality traits using proximal remote sensing and with visible
cameras as the payload of unmanned aerial vehicles (UAV).

Keywords: near-infrared spectroscopy; computer vision; sensory analysis; machine learning; berry
cell death

1. Introduction

In grapevines, berry cell death (BCD) occurs from 90–100 days after anthesis within
the mesocarp tissue of berries ([1]. It has been proposed that this process may be linked
to an evolutionary trait to improve seed spreading [2]. However, it also has implications
for winemaking since, when the berry mesocarp cells die, internal cellular compounds
from different compartments may mix (vacuole and cytoplasm), potentially producing
desirable flavors and aromas, among other processes, which are passed to the final wine [3].
Flavor and aroma are critical quality traits for berries and wine, along with different
characteristics, such as berry softening, to increase the efficiency of berry crushing [4,5].
Previous research has shown that different grapevine cultivars present different patterns of
BCD, and the final percentage is associated with levels of berry shriveling, which may be
related to the development of specific characteristics or styles of the final wines [3,6]. Hence,
monitoring BCD could be a novel tool to assess the effects of management practices and the
environment on berry maturity and wine quality. On the contrary, for table grapes, the final
BCD is minimal or non-existent, which may be related to artificial selection processes of
their different cultivars for fresh consumption, with required berry characteristics, such as
high juiciness, fruity aromas, sweet flavor, crunchiness, and turgidity, among others [1,3].
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Environmental factors are also linked to changes in the slope of BCD, such as higher
ambient temperatures [7] and water deficits [5], which can produce steep seasonal BCD
slopes, which can be exacerbated as a direct result of climate change forecasts [8]. Further-
more, microclimatic characteristics at the fruit zone level, given by canopy vigor, structure,
and architecture, may also play a role in cell death rates throughout the season [9].

Assessing BCD currently involves time-consuming berry collections and specialized
personnel for laboratory analysis using fluorescent stains of the mesocarp and microscopy
imaging coupled with computer vision algorithms to obtain percentages of BCD and
living tissue (LT) [6]. Sensor technology involving impedance measurements through the
berries linked to BCD has been proposed to make the assessment more expedited and
practical [10]. However, these measurements were performed in the laboratory without a
proposed portable device for in-field assessment capabilities, making it less practical and
able to measure sentinel berries on specific vines only. On the other hand, recent research
has focused on the non-destructive measurements of berries using portable near-infrared
(NIR) spectrometers to estimate BCD and LT in Pinot Noir grapes using machine learning
modeling techniques [3]. From the latest research, accurate models were developed with
NIR readings within the 1600–2500 nm range that included some of the signal (overtones)
related to hydrogen peroxide (H2O2 between 1420–1650; [11]), which can be directly linked
to the BCD process [12].

This paper aimed to develop machine learning (ML) models based on NIR spec-
troscopy and canopy architecture parameters as inputs to predict the BCD, LT of berries,
and potential wine acceptability by consumers for two of the most important cultivars
in Australia: Shiraz and Chardonnay. Specifically, ML Model 1 was developed using the
NIR absorbance values of berry samples (1596–1919 nm; Model 1) and canopy architecture
parameters (Model 2) as inputs to predict living (LT) and dead tissue (BCD). On the other
hand, Models 3 and 4 were constructed using canopy architecture parameters, obtained
from upward pictures of canopies and computer vision algorithms as inputs to predict the
intensity of sensory descriptors for Chardonnay (Model 3) and Shiraz (Model 4).

Implementing these models close to harvest to predict the BCD, LT, and final wine
quality traits may offer a more comprehensive berry maturity assessment to target the
specific wine quality or style that characterizes a particular region. The assessment of
canopy architecture parameters required for these models can be obtained from smartphone
applications such as VitiCanopy [13] or aerial and high-resolution satellite imagery [14].
Furthermore, by relating canopy architecture parameters with berry quality, it may be
possible to target canopy management practices to obtain more uniform berry quality traits
within the vineyards.

2. Materials and Methods
2.1. Site and Grapevine Cultivars Description

Samples were collected from the Coombe vineyard in Coldstream, Victoria, Australia
(−37◦41′42.468′′ S, 145◦24′31.068′′ E) at an elevation of 83 m. The commercial vineyard is
located in the Yarra Valley with a total extension of 49 Has. The region is characterized by
an oceanic climate with an average maximum temperature of 20.5 ◦C and a mean January
temperature (MJT) of 28.1 ◦C with an average annual rainfall of 732.3 mm (Bureau of
Meteorology, Australia). Samples were obtained from two different cultivars: Chardonnay,
clone Schwarzmann from Block B and Shiraz clone R99 in Block F (Figure 1), which used the
vertical shoot positioning (VSP) training system. Berry and canopy data from Chardonnay
vines were gathered on two different dates towards the end of the season at 98 days after
anthesis (DAA98) and 101 days after anthesis (DAA101). On the other hand, for Shiraz,
data were obtained on three different dates at 94 days after anthesis (DAA94), 97 days after
anthesis (DAA97), and 108 days after anthesis (DAA108). To obtain the variability required
for modeling purposes, three plants from a low, medium and high canopy vigor based
on the leaf area index (LAI) measured using the VitiCanopy App [13] were selected and
marked per cultivar (n = 9 plants per cultivar; 18 in total) (Figure 1).
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Figure 1. Location of trial sites and blocks for Chardonnay (yellow magnification) and Shiraz (red
magnification) and respective vines monitored.

2.2. Canopy Imaging and Digital Measurements

For canopy vigor analysis based on imaging, an iPhone 11 (Apple Inc., Cupertino,
CA, USA; resolution: 12 megapixels) was mounted on a selfie stick. Two upward-looking
images (Figure 2) at ground level were obtained at ~70–80 cm from each side of the canopy
per plant (one at each side of the trunk) for nine grapevines per cultivar (n = 18 per cultivar;
36 total per date). Images were analyzed using a customized Matlab® R2020b code [15,16]
(Mathworks Inc., Natick, MA, USA), which is capable of obtaining canopy architecture
parameters such as the LAI, effective LAI (LAIe), crown cover (ff), canopy cover (fc), crown
porosity (Φ), and Clumping Index (Ω) as described in previous publications [3,13,14,16,17].
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Figure 2. Example of (A) an upward-looking digital image from a grapevine canopy and (B) bina-
rization for gap analysis to obtain canopy architecture parameters.

2.3. Near-Infrared Spectroscopy

Before undergoing the living/death tissue assessment described below, Intact berries
were measured using a near-infrared spectroscopy device microPHAZIR™ RX Analyzer
(Thermo Fisher Scientific, Waltham, MA, USA). This apparatus can measure within a
spectral range between 1596 and 2396 nm. For each measurement, the whole berry was
placed on the nose of the device, covering the entire reading area. Three NIR readings were
taken per berry (n = 216 each cultivar), rotating the berry a third after each measurement.
For data analysis, the first derivative based on Savitzky–Golay was calculated using
Unscrambler X ver. 10.3 (CAMO Software, Oslo, Norway) software to enhance the peaks
in the hydrogen peroxide (H2O2) range (1420–1650; [11]).
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2.4. Living and Dead Tissue Analysis from Berries

From each of the nine plants marked of each cultivar, two bunches were marked from
the east and west sides. From each bunch, six berries were collected from the middle of
the bunches (n = 216). All berries collected were halved using a sharp blade longitudinally
through the pericarp at the highest diameter. One half was used to measure total soluble
solids (◦Brix) using an Alla France REFBX010 optical refractometer (Alla France Sarl,
Chemillé-Melay, France). The other half was used for staining with fluorescein diacetate
(FDA) to acquire fluorescent microscopy images. The staining and fluorescence imaging
followed the method described by Fuentes et al. [6]. The fluorescent microscope used for
this measurement was a Leica DMC2900 (Leica, Wetzlar, Germany), and samples were
viewed under a Leica M205 FA camera (Leica, Wetzlar, Germany).

Images were obtained using the Leica Application Suite (LAS) software (Leica, Wet-
zlar, Germany) color cooled digital camera with the same gain and exposure settings
for all images (Figure 3A). Berry images were analyzed using a code written in Matlab®

R2020b (Mathworks Inc., Natick, MA, USA) [3,6], which can recognize the berry shape
automatically (Figure 3B). Binarized images were obtained, representing the living tissue
(LT) within berries (Figure 3C, white). If seeds were seen in the image, which is surrounded
by LT, a cropping selection was made manually to extract the seed to avoid over-estimating
BCD (Figure 3C, blue region). Finally, a BCD binary image is obtained by inverting the LT
binary image (Figure 3D). All berry images and BCD images were automatically saved as
Joint Photographic Group (JPG) files.
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Figure 3. Example of fluorescent image (A) and analysis using computer vision algorithms for a
Shiraz berry to obtain the berry contour and dimensions through edge recognition (B), living tissue,
and seed extraction (C), and cell death quantification and patterns (D).

2.5. Winemaking and Descriptive Sensory Analysis

Bunches of berries from each plant and cultivar were collected at harvest for micro-
vinification. Three batches (referred as groups in results) of wine from each cultivar were
made using berries from each group of plants, which were the same used for BCD and
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canopy architecture analysis. Wines were made in the servery area from the sensory labo-
ratory at the Faculty of Veterinary and Agricultural Sciences (FVAS) from the University of
Melbourne (UoM). For both cultivars, bunches were destemmed (~3–3.5 kg) and crushed,
followed by their transfer to 5 L carboys. For Chardonnay, Saccharomyces cerevisiae Enart-
isFerm Vintage White yeast (0.25 g L−1; Enartis Pacific, Malvern East, VIC, Australia) was
added to undergo fermentation, whilst for Shiraz, Saccharomyces cerevisiae EnartisFerm
Vintage Red yeast was used (0.25 g L−1) for alcoholic fermentation, all batches were stored
at 20 ◦C for 2 weeks.

For descriptive sensory analysis, a total of 11 trained panelists participated in the
Quantitative Descriptive Analysis (QDA®) sensory session. Due to the lockdown in 2020
as a result of the COVID-19 pandemic, the sensory session was conducted remotely in
the panelists’ residences. For this purpose, the wine samples were poured into 30 mL
plastic test tubes, labelled with 3-digit random codes and mailed to the participants as
express delivery in boxes with foam insulating material so that they received them within
1 day to avoid the wines from developing any off-aromas. For safety issues, panelists were
asked to assess the visual and aroma characteristics of the wines only. Prior to the sessions,
participants were asked to read and sign a consent form (Ethics ID: 1953926.4). Participants
were asked to join a Zoom meeting (Zoom Video Communications, San Jose, CA, USA)
and open a link to RedJade software (RedJade Sensory Solutions, LLC, Martinez, CA, USA)
with the questionnaire. Participants were also asked to place the samples in front of them.
The questionnaire consisted of assessing the intensity of visual parameters, aromas, and
perceived quality (Table 1), which were rated using a 15 cm non-structured scale; both
cultivars had a different questionnaire due to the distinct aromas they have.

Table 1. Descriptors presented in the descriptive sensory questionnaire for wine samples of Chardon-
nay and Shiraz cultivars.

Descriptor Label Anchors

Chardonnay

Clarity Clarity Turbid-Brilliant

Color Color Colorless-Green-yellow-
Yellow-Golden-brown

Aroma Floral AFloral Absent-Intense
Aroma Citrus ACitrus Absent-Intense
Aroma Spicy ASpicy Absent-Intense
Aroma Oak AOak Absent-Intense

Aroma Smoke ASmoke Absent-Intense
Aroma Sweet ASweet Absent-Intense

Aroma Cut Hay ACut Hay Absent-Intense
Overall Quality OQuality Unacceptable-Extraordinary

Shiraz

Clarity Clarity Turbid-Brilliant
Color Color Purple-Ruby-Garnet-Tawny

Aroma Floral AFloral Absent-Intense
Aroma Red Fruits ARedFruits Absent-Intense

Aroma Black Fruits ABlackFruits Absent-Intense
Aroma Sweet ASweet Absent-Intense

Aroma Pepper APepper Absent-Intense
Aroma Oak AOak Absent-Intense

Aroma Mushrooms AMushrooms Absent-Intense
Overall Quality OQuality Unacceptable-Extraordinary

2.6. Statistical Analysis and Machine Learning Modeling

Canopy architecture and sensory data were analyzed using ANOVA (p < 0.05) and
the Tukey test (α = 0.05) in XLSTAT 2020.3.1 (Addinsoft, New York, NY, USA) to assess
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significant differences between samples. The mean and standard error (SE) values were
also calculated for all parameters.

Four ML regression models based on artificial neural networks (ANN) were developed
using a code written in Matlab® R2020b that automatically assesses 17 training algorithms
to find the best model based on accuracy, slope, and performance. Hence, Model 1 was
developed using the Bayesian Regularization algorithm with the first derivative of the NIR
absorbance values (1596–1919 nm) as inputs to predict (i) living tissue (LT) and (ii) dead
tissue (DT). Data were randomly divided, with 75% of the samples used for the training
stage and 25% for testing using the mean squared error (MSE) as performance algorithm.
Models 2–4 were developed using the Levenberg–Marquardt training algorithm. Model
2 was constructed using the canopy architecture parameters (i) LAI, (ii) LAIe, (iii) fc, (iv)
ff, (v) ϕ, (vi) Ω as inputs to predict (i) LT and (ii) DT. On the other hand, Models 3 and 4
were developed using the canopy architecture variables as inputs to predict the intensity of
sensory descriptors (Table 1) for Chardonnay (Model 3) and Shiraz (Model 4). For Models
2–4, the data were randomly divided as 60% of the samples for the training stage, 20% for
validation with MSE performance algorithm, and 20% for testing. Neuron trimming was
performed using 3, 5, 7, and 10 neurons to find the best and most efficient models with no
under- or overfitting, obtaining the best models with three neurons for Models 1 and 4, ten
neurons for Model 2, and five neurons for Model 3 (Figure 4). A diagram of the full process,
including methods to obtain inputs, is shown in Supplementary Materials (Figure S1).
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Figure 4. Diagrams representing the artificial neural network (ANN) two-layer feedforward models
with a tan-sigmoid function in the hidden layer and a linear transfer function in the output layer.
(a) Model 1 developed using the near-infrared absorbance values as inputs to predict living and
dead tissue; (b) Model 2 developed using the canopy architecture parameters to predict living and
dead tissue; (c) Model 3 using the canopy architecture parameters to predict the intensity of sensory
descriptors of Chardonnay; (d) Model 4 using the canopy architecture parameters to predict the
intensity of sensory descriptors of Shiraz. Abbreviations: W: weights; b: bias. Abbreviations from
(c,d) are shown in Table 1.

3. Results

For LT and LAIe at harvest, it was found that Chardonnay had lower LT and higher
LAIe than Shiraz (Figure S2). According to the ANOVA, there were non-significant differ-
ences (p > 0.05) between the three groups of samples for LT in both cultivars. For LAIe, there
were non-significant differences (p > 0.05) between the groups of samples for Chardonnay,
but there were significant differences (p < 0.05) for Shiraz. For the latter, Group 3 (0.91)
presented significant differences from Group 1 (1.44).

Table 2 shows the mean values, and ANOVA results from the canopy architecture
parameters. It can be observed that for Chardonnay, there were non-significant differences
(p > 0.05) between samples. For Shiraz, there were significant differences (p < 0.05) for all
parameters except for Ω. Group 3 of Shiraz presented significantly higher LAI (2.00), fc
(0.68), and ff (0.84) than Group 1 (LAI: 1.27; fc: 0.49; ff: 0.67). On the other hand, Group 3
was significantly lower in ϕ (0.19) than Group 1 (0.28) and 2 (0.21).
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Table 2. Means (top values) and standard error (bottom values) of canopy architecture parameters of
the three groups of samples of Chardonnay and Shiraz.

LAI Canopy
Cover (fc)

Crown
Cover (ff)

Crown
Porosity (φ)

Clumping
Index (Ω)

Chardonnay NS

Group 1 2.13 0.67 0.80 0.16 0.75
±0.06 ±0.01 ±0.02 ±0.01 ±0.02

Group 2 1.99 0.64 0.78 0.18 0.76
±0.24 ±0.04 ±0.05 ±0.03 ±0.05

Group 3 1.93 0.66 0.81 0.19 0.80
±0.12 ±0.03 ±0.04 ±0.01 ±0.03

Shiraz

Group 1 1.27 b 0.49 b 0.67 b 0.28 a 0.78 NS
±0.17 ±0.05 ±0.06 ±0.02 ±0.02

Group 2 1.61 ab 0.57 ab 0.72 ab 0.21 a 0.75
±0.07 ±0.02 ±0.02 ±0.01 ±0.02

Group 3 2.00 a 0.68 a 0.84 a 0.19 b 0.82
±0.07 ±0.02 ±0.02 ±0.01 ±0.02

Different letters a,b represents significant differences between groups based on ANOVA (p < 0.05) and Tukey post
hoc test (α = 0.05). NS: non-significant differences.

For the intensity of sensory descriptors of the three groups of Chardonnay and Shiraz
wines, according to the ANOVA and Tukey test, there were non-significant (p > 0.05)
differences between the groups of samples for any of the sensory attributes in wines from
both cultivars (Table S1).

Table 3 shows that Model 1 had high accuracy based on the overall correlation co-
efficient (R = 0.87) to predict living and dead tissue using the NIR absorbance values
from 1596 to 1919 nm. However, Model 2 presented higher overall accuracy (R = 0.98)
when using canopy architecture parameters as inputs. For both models, the MSE values
of training (Model 1: MSE = 35.2; Model 2: MSE = 8.9) were lower than testing (Model 1:
MSE = 106.5; Model 2: MSE = 11.4), which is a sign of no under- or overfitting; furthermore,
in Model 2, the validation and testing MSE values (MSE = 11.5 and 11.4, respectively)
were similar, which is another sign of no under- or overfitting for Levenberg–Marquardt
training algorithms.

Table 3. Statistical data for each stage of the artificial neural network regression Models 1 and 2.

Stage Samples Observations R Slope Performance
(MSE)

Model 1: inputs: near-infrared absorbance; targets: living and dead tissue

Training 324 648 0.91 0.82 35.2
Testing 108 216 0.77 0.81 106.5
Overall 432 864 0.87 0.82 -

Model 2: inputs: canopy architecture; targets: living and dead tissue

Training 260 520 0.98 0.95 8.9
Validation 86 172 0.98 0.91 11.5

Testing 86 172 0.98 0.91 11.4
Overall 432 864 0.98 0.93 -

Abbreviations: R: correlation coefficient; MSE: means squared error.

Figure 5 shows the overall regression models; it can be observed that Model 2 pre-
sented fewer outliers (4.17%; 36 out of 864) than Model 1 (4.98%; 43 out of 864) according
to the 95% prediction bounds. Furthermore, most of the outliers in Model 1 were from
Chardonnay samples.
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both to predict living and dead tissue. Abbreviations: T: targets; R: correlation coefficient.

Table 4 shows that both Models 3 (Chardonnay) and 4 (Shiraz) presented the same
overall accuracy (R = 0.99) to predict the intensity of sensory ten descriptors (Table 1) using
the canopy architecture parameters as inputs. Both models presented very high slopes
(~1.00) and no signs of under- or overfitting as the training MSE values are lower than the
testing, and the latter is the same as validation MSE.

Table 4. Statistical data for each stage of the artificial neural network regression Models 3 and 4 devel-
oped using canopy architecture parameters as inputs to predict the intensity of sensory descriptors.

Stage Samples Observations R Slope Performance
(MSE)

Model 3: Chardonnay

Training 130 1300 0.99 0.99 0.04
Validation 43 430 0.99 0.99 0.06

Testing 43 430 0.99 0.99 0.06
Overall 216 2160 0.99 0.99 -

Model 4: Shiraz

Training 130 1300 0.99 0.99 0.03
Validation 43 430 0.99 1.00 0.05

Testing 43 430 0.99 1.00 0.05
Overall 216 2160 0.99 1.00 -

Abbreviations: R: correlation coefficient; MSE: means squared error.

Figure 6 shows the overall regression models of Chardonnay (Figure 6a) and Shiraz
(Figure 6b). According to the 95% prediction bounds, both models presented the same
number of outliers (5%; 108 out of 2160).
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4. Discussion
4.1. Dynamics of Berry Cell Death and Berry Composition

Berry dynamics in terms of BCD for Shiraz followed trends close to BCDs for the same
cultivars reported earlier at harvest (Figure S2), which are also supported by previous
studies on Shiraz grapevines from the Barossa Valley in South Australia [5,7]. It has also
been shown that BCD inversely correlates with berry shrivel (positive correlation with LT)
for Shiraz and other grapevine cultivars [6]. However, Chardonnay does not shrivel as
much at harvest [5]. Furthermore, strong inverse correlations are expected between BCD
and sugar concentration in berries (Brix); however, these two processes are not coupled, and
they can be managed differentially using either canopy management strategies or cooling
down the microclimate of bunches through shading [5] or misting [9]. The latter techniques
have been investigated as methods to ameliorate the negative effects of climate change
(mostly higher temperatures and lower rainfall) on berry shriveling and excessive sugar
accumulation in berries, which lead to issues such as high alcohol content in wine [18–20].

4.2. Proximal Near-Infrared Spectroscopy of Berries and Machine Learning Modeling

Previous studies have shown that the light source used with the NIR spectrometer can
penetrate the skin, pericarp, and part of the mesocarp up to around 3–4 mm in depth of
intact berries [21]. The NIR instrument may measure through BCD and LT from any part
of the edge of the berry. This capability supports the multitarget (BCD and LT) for machine
learning modeling used in this study (Figure 5a).

Most of the NIR overtones related to sugar content in berries can be found between
650–1200 nm [22,23]. Considering that there is an apparent but not coupled relationship
between the BCD and sugar content in berries, using NIR data linked to that particular
NIR range may introduce bias into the ML developed targeting BCD. Hence, the latter
NIR range should be avoided to prevent overfitting related to sugar-related artifacts in
estimating BCD and LT [3]. For this research, ML models were tested using the Microphazir
NIR range as an input to predict total soluble solids (TSS) and resulted in low accuracy
(training: R = 0.46; validation: R: 0.46; testing: R = 0.05; overall: R = 0.39) and performance
(training: MSE = 1.45; validation: MSE: 1.37; testing: MSE = 2.61), demonstrating the
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unlinked NIR range to TSS used to estimate BCD and LT. Within the range selected for ML
modeling (1300–1830 nm), it also includes overtones for H2O2 concentrations [11] related
to dead tissue in berries [12]. In this same range, other distinct overtones related to flavor
and aroma can be found, which has the potential to model these parameters associated
with BCD and LT, as demonstrated in previous studies [3].

4.3. Canopy Architecture, Berry Cell Vitality and Machine Learning Modeling

In grapevines, canopy architectures that achieve appropriate fruit and leaf exposure
and a balance between the vegetative and reproductive organs allow growers to achieve
the targeted quality traits of grapes and the resulting wines. Hence, it is necessary to
have rapid, cost-effective, and accurate tools to monitor canopy architecture, potentially
serving as a basis for modelling specific berry and wine quality traits. Cover photography
has been applied successfully to monitor canopy architecture parameters for eucalyptus
trees [24–26], apple trees [27], cherry trees [17,28] and grapevines [13,16,29,30]. From the
latter studies, a computer application (App) was developed (VitiCanopy), which can use the
camera and GPS capabilities of smartphones to obtain digital images and process them to
obtain canopy architecture parameters [13]. The VitiCanopy App has been tested to assess
vineyard variability [31], the effect of canopy management [29,30], and the effect on grape
and wine quality [32]. Other research has found a direct impact of canopy architecture
parameters in the aroma profile of produces, such as fermented cocoa beans using machine
learning modeling from aerial imagery, automatic identification of individual plants and
applying equations 1–6 to each sub-image [14].

Water deficit strategies can be used to control the canopy vigor and modify the
microclimate in grapevines [33,34] to delay lower-canopy vigor close to harvest, which is
consistent with the start of the senescence process [35]. There is an evident effect of canopy
architecture and vigor on the microclimate, berry composition, and flavour and aroma
development. The machine-learning model based on canopy architecture carried out in
this study (Model 2; Figure 5b), with its high accuracy (Table 3) in the estimation of both
LT and BCD, could mean that imagery collected using smartphone applications, such as
the VitiCanopy App, might be used to predict the levels of berry cell death development
in berries [36]. Further machine learning models based on BCD and LT could relate
these parameters to berry and wine quality traits, such as aroma profiles [3], achieved in
Models 3 and 4 (Figure 6a,b).

The main advantage of this model based on canopy architecture is that historical
high resolution (e.g., satellite data) available from a specific wine region could be used to
apply the model and obtain wine quality trait targets from available wine libraries [37].
Many wineries preserve a library of their wines from different vintages (vertical vintages),
which can be used for chemical and sensory analysis to obtain targets for machine learning
validation in other wine regions.

5. Conclusions

The implementation of AI in viticulture and winemaking offers powerful tools to
assess berry quality traits, such as potential aroma profiles of wines based on berry cell
death. Canopy architecture parameters used as ML inputs can be easily acquired through
cover imagery or unmanned aerial vehicles (UAV), making the applications and models
presented in this paper very practical to assess the spatial and temporal variability of quality
traits. Furthermore, the canopy architecture model (Model 2) showed higher accuracy
and better performance to Model 1 produced using NIR spectroscopy to predict LT and
BCD. However, NIR instrumentation within the range required for the models can be
economically prohibitive for small and medium vineyards, requiring know-how for the use,
download and management of data. In the case of canopy architecture inputs, they have
been already automated and can be easily incorporated as inputs to ML models developed.
These models can be used as objective maturity assessments of berries in the field using
precision viticulture tools and potentially assess wine quality traits if specific winemaking
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processes are incorporated within the ML procedure. Further research is required to
model other cultivars and winemaking techniques. The results from this research can
be incorporated into the models developed here by using the learning capabilities of
ANN modelling techniques to acquire a universal model applicable to different regions
and cultivars. Specific deployments of machine learning models developed should be
determined according to the wine style from different wine producers and feed new
relevant data into the models for retraining purposes. The latter procedure will not
require an entirely new experiment but enough site-specific data for models to learn the
variations required.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21217312/s1: Figure S1. Diagram depicting the methods to obtain inputs to feed the
proposed models to obtain the specific outputs; Figure S2. Means of living tissue and effective leaf
area index of the three groups of samples of Chardonnay (green) and Shiraz (red) at harvest time.
Error bars depict the standard error. Different letters represent significant differences between groups
based on ANOVA (p < 0.05) and Tukey post hoc test (α = 0.05); Table S1. Means (top values) and
standard errors (bottom values) of sensory descriptors of the three groups of samples of Chardonnay
and Shiraz wines.
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