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Fully integrated topological 
electronics
Yuqi Liu1,2,4, Weidong Cao  1,4*, Weijian Chen1, Hua Wang2,3, Lan Yang1 & Xuan Zhang1*

Topological insulators (TIs) have attracted significant attention in photonics and acoustics due to 
their unique physical properties and promising applications. Electronics has recently emerged as an 
exciting arena to study various topological phenomena because of its advantages in building complex 
topological structures. Here, we explore TIs on an integrated circuit (IC) platform with a standard 
complementary metal-oxide-semiconductor technology. Based on the Su–Schrieffer–Heeger model, 
we design a fully integrated topological circuit chain using multiple capacitively-coupled inductor–
capacitor resonators. We perform comprehensive post-layout simulations on its physical layout to 
observe and evaluate the salient topological features. Our results demonstrate the existence of the 
topological edge state and the remarkable robustness of the edge state against various defects. Our 
work shows the feasibility and promise of studying TIs with IC technology, paving the way for future 
explorations of large-scale topological electronics on the scalable IC platform.

Topological insulators (TIs) are a new quantum state of matter where a material behaves as an insulator in the 
interior yet as a conductor on the boundary1. Particularly, the conductive edge state is protected by time-reversal 
symmetry and is robust to perturbations from surface imperfections or local disorders. These materials were 
first found in the field of condensed matter physics by studying the quantum Hall Effect2. Since then, they have 
attracted significant attention from the scientific community. In the past decades, TIs have been extensively 
studied in the classical wave fields, such as photonics3–15, acoustics16–20, plasmonics21,22, and mechanics23,24. 
A number of intriguing effects and applications have been proposed and investigated, including spintronics 
devices1, superconducting proximity effect25, infrared detectors and thermoelectric applications26, purely electric 
magnetic memory writing and dissipationless electronics27, and topological quantum computing28.

Electronics29–49 has recently emerged as an excellent platform to study TIs due to its advantages in easy 
probing, reliable fabrication, and flexible tuning of electronic devices. Prior arts29–49 have reported the existence 
of topological edge-state-like behaviors in various electronic circuits, ranging from simple inductor–capaci-
tor ladders35,40–43 to complex circuit networks29,30,32,34,36–39,44–46,48. Particularly, electronic circuits based on the 
Su–Schrieffer–Heeger (SSH) model50 have been widely used to study TIs. A generic one-dimensional (1-D) SSH 
chain is shown in Fig. 1a. It consists of N cascaded cells, each of which hosts two sub-units (A and B). Intra-
cell hopping amplitude α and inter-cell hopping amplitude β describe the strength of the bonds within and 
between cells, respectively. When the inter-cell coupling β is stronger than the intra-cell coupling α , the chain 
is topologically nontrivial and possesses an edge state; otherwise, the edge state disappears and only bulk states 
are present. This edge state, protected by time-reversal symmetry, is immune to various kinds of perturbations 
and disorders51. Such a 1-D model can also be spatially extended to high-dimensional structures, such as two-
dimensional (2-D) lattice, three-dimensional (3-D) honeycomb32, breathing pyrochlore29, graphene43,52, and 
Weyl structures48.

So far, the implementations of topological electronic circuits have been limited to printed circuit boards38–49 
with discrete components. These electronic platforms are constrained by low operating frequencies at a few 
megahertz as well as excessive parasitics and have difficulty in scaling to small physical dimensions and diverse 
integrated structures. Integrated circuit (IC) technology as leading nanotechnology for electronics, is capable of 
covering a wide applied spectra ranging from DC to terahertz due to its scalability in the physical size of inte-
grated devices. In addition, IC technology supports the flexible design and provides a standard manufacturing 
process for complex 2-D or 3-D structures, making it especially attractive and promising to explore TIs. Here, 
we study topological electronics on ICs by designing a 1-D SSH circuit chain with a 130-nanometer (nm) com-
plementary metal-oxide-semiconductor (CMOS) process. We show the detailed circuitry design and perform 
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comprehensive post-layout simulations to characterize the topological properties of the chain. Our results clearly 
demonstrate the topological edge state of the chain and its robustness against various defects. Our study lays a 
foundation for exploring large-scale topological electronics with the scalable IC platform.
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Figure 1.   Illustration of the theoretical SSH model and one of its equivalent electronic circuit models. (a) A 
general theoretical 1-D SSH model consisting of N cells. Each blue/pink circle represents a sub-unit A/B in the 
ith cell. (b) The schematic of an equivalent electronic circuit (i.e., a 1-D circuit chain) for the theoretical SSH 
model. Each cell in the 1-D circuit chain consists of two LC resonators coupled by a linear capacitor Ca . Each 
cell is coupled to one another by a linear capacitor Cb . All inductance and capacitance in different LC resonators 
are the same. c, Numerical simulation of the 1-D SSH circuit chain with 20 cells. The characteristic frequency is 
fc = ωc/(2π) = 12 GHz. Ca is fixed at the designed value and Cb is varied from 0 to 5Ca . Orange dashes outline 
the bandgap edge frequencies calculated from 

√
1/(1+ 2α)fc and 

√
1/(1+ 2β)fc . The vertical black dash line is 

the boundary between nontrivial and trivial regimes at β/α = 1 . The edge state frequency at 
√
1/(1+ α + β)fc 

is highlighted in blue. The inset is a conceptual diagram of a TI’s energy bands. Orange curves correspond to the 
bulk bands, and the blue curves correspond to the edge states at the surface.
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Results
Theoretical model.  The 1-D SSH circuit chain corresponding to the theoretical SSH model is shown in 
Fig. 1b. It consists of multiple serially-connected inductor–capacitor (LC) cells. Each cell is composed of a pair 
of LC resonators with the same inductance L and capacitance C. Both the intra-cell hopping α and inter-cell 
hopping β are achieved by capacitive coupling. Particularly, the intra-cell coupling of a pair of resonators in a 
cell is realized by a linear capacitor with capacitance Ca while the inter-coupling between two cells is attained by 
a linear capacitor with capacitance Cb . Fig. 1c shows a numerical characterization of the 1-D SSH circuit chain 
with twenty cells by fixing L, C, Ca and changing Cb to vary β in the range of 0−5Ca (i.e., β/α ∈ (0, 5) ). It can be 
observed that the chain has two bulk bands with multiple bulk frequency modes within the band. In the case 
when β < α , there are no edge states in the band gap because the chain is topologically trivial; otherwise, the 
chain is topologically nontrivial and an edge state appears–a resonant frequency (highlighted in blue in Fig. 1c) 
emerges between the two bands. This frequency corresponds to the edge state of the SSH model. Such bulk and 
edge resonant frequencies are analogous to the energy band levels in a TI where conducting edge energy states 
emerge in the insulator bandgap (Fig. 1c inset). Therefore, the topological properties of the 1-D SSH circuit 
chain are consistent with the theoretical 1-D SSH model (Methods). Note that a more thorough characterization 
is attached in Supplementary Information (Supplementary Note 2), where the Chiral symmetry of the circuit is 
discussed.

System design.  For simplicity, we use six LC cells42 to build our topological circuit chain as a proof-of-con-
cept implementation. However, it should be noted that the number of LC cells can be readily scaled to more than 
six on the IC platform. All capacitors used in the chain are single-plate nitride metal–insulator–metal capacitors 
(mimcap). All inductors are single-layer symmetric inductors (symind). According to Fig. 1c, the edge state only 
emerges in the nontrivial regime when β > α , i.e., the capacitance value Cb is greater than Ca . In order to contrast 
with the trivial regime without the presence of the edge state, we incorporated on-chip switches into the design 
to flexibly transform between the trivial and nontrivial structure of the chain. Fig. 2a shows the detailed circuit 
schematic. We added an extra sub-unit 6-Ex to the end of the chain and placed a switch S1 between the sub-unit 
1-A and 1-B, as well as another switch S2 between 6-B and 6-Ex. By disconnecting the first sub-unit (1-A) from 
the chain (turning off S1) and connecting the extra sub-unit (6-Ex) at the end (turning on S2), the inter-cell 
coupling and intra-cell coupling are essentially swapped. These operations give rise to a chain that can operate 
in a nontrivial regime. In this case, 1-B and 6-Ex play the role of 1-A and 6-B, respectively, in the trivial chain.

To test the robustness of our chain, we placed extra switches between each sub-unit from 3-A to 6-A and the 
ground to flexibly introduce short-circuits (i.e., defects)40,42,46 on demand. The switch schematic is shown in the 
subset of Fig. 2a. These switches are delicately designed with standard transistors in order to minimize parasitics. 
One single NMOS switch is sufficient to pass the small sinusoidal signals intended in our system characterization. 
The core physical layout of our 1-D SSH circuit chain is shown in Fig. 2b. It occupies an area of 1.5 mm × 1.5 mm 
in a 130 nm CMOS process. Wide metal traces on the thick aluminum metal layer are used for routing to reduce 
unwanted parasitic resistance of the physical layout. All results reported below except those in Fig. 4b–d are 
obtained from performing post-layout simulations on the physical layout of the 1-D SSH circuit chain.

IC physical layout (also known as IC mask layout, or mask design) is the representation of an IC in terms of 
planar geometric shapes corresponding to the different stacked physical layers (e.g., metal, oxide, or semiconduc-
tor) during the fabrication process. A semiconductor foundry uses this physical layout information to generate 
the photomasks required by the photo-lithographic process for chip fabrication. The post-layout simulations 
can accurately extract the precise parasitics from an IC physical layout and are therefore considered a golden 
standard to verify its function. For analog IC designs (e.g., our 1-D SSH circuit chain) which are sensitive to 
parasitic effects, the post-layout simulation results from a high-fidelity simulator often match well with the 
measured results from a fabricated chip. In our work, we use Cadence Spectre, an industry-standard design tool 
for IC design, and foundry provided process design kit (PDK) which contains accurate device and parasitics 
models, to ensure reliable simulation results.

Demonstration of topological edge state.  To thoroughly show the existence of the topological edge 
state, we performed multiple simulations to study the reflection and transmission properties of the chain40–43,45,46. 
First, we simulated the reflection spectrum of the chain, which directly relates to the chain’s input impedance 
(Eq. 8 in Methods). The resonance at the edge state can significantly alter the input impedance of the chain42,43,45. 
Therefore, obtaining the reflection spectrum can characterize the existence of the edge state. To attain the reflec-
tion spectrum, we treated the chain as a one-port network. A transmission line (TL) with a characteristic imped-
ance of 50� was attached to the port. The port locations are labeled as “T” and “NT” in Fig. 2a for the trivial and 
the nontrivial setup, respectively. We then sourced a frequency-varying sinusoidal signal into the chain via the 
TL and simulated the reflection spectrum at the port. Fig. 3a shows the reflection spectra of the chain for the two 
different set-ups. For the trivial set-up, the reflection spectrum exhibits slight dips at two bulk state frequencies 
(7.89 GHz and 8.57 GHz). However, for the nontrivial set-up, the reflection spectrum shows only one sharp dip 
at the edge state frequency (8.31 GHz) that does not appear in the trivial counterpart. The comparison suggests 
that the impedance at the edge state frequency is remarkably different from the one at the bulk states, confirming 
the existence of the topological edge state. Note that due to the nonidealities (e.g., parasitics) of devices (Sup-
plementary Note 2) and the slight difference between bulk mode frequencies, most bulk state frequencies are 
overlapped and we mainly observed two bulk state frequencies during the simulations.

Second, we simulated the transmission spectrum of the chain. During the simulation, we sourced a frequency-
variable sinusoidal signal into the chain via the TL and monitored the voltage magnitude of the transmitted 
wave at the edge site, i.e., 1-A (1-B) for the trivial (nontrivial) chain in Fig. 2a. Fig. 3b shows the transmission 
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spectra (Eq. 9 in Methods) of the chain for the two set-ups. The magnitude at the edge state frequency (8.31 GHz) 
of the nontrivial chain shows a high peak; while the magnitudes at the bulk state frequencies (7.89 GHz and 
8.57 GHz) of the trivial chain exhibit multiple slight peaks. The ratio between these peaks is as large as 13, and 
can be attributed to the localized wave function at the edge site in the SSH model53.

To further verify the localized wave function of the edge state, we simulated the voltage amplitude of each 
sub-unit (i.e., each LC resonator in a cell) in the chain. The voltage amplitude distribution of all sub-units under 
a sinusoidal excitation at the edge or bulk state frequency reflects the wave function at that particular state40–43,46. 
To obtain such an amplitude distribution, we adopted a method similar to the previous reflection/transmission 
spectrum simulation. Instead of using a frequency-varying sinusoidal source, we applied an amplitude-varying 
sinusoidal source with a fixed frequency to this simulation. We sourced the amplitude-varying sinusoidal signal 
into the chain via the TL and monitored the wave amplitude at each sub-unit. At the trivial setup (Fig. 3c), the 
chain was excited at the two bulk state frequencies (7.89 GHz and 8.57 GHz); whereas at the nontrivial setup 
(Fig. 3d), the chain was excited at the edge state frequency (8.31 GHz). Simulated voltage distributions of both 
the trivial and the nontrivial setup under sinusoidal inputs with a 200 mV amplitude are shown in Fig. 3e, f. 

Figure 2.   Implementation of the 1-D SSH circuit chain. (a) Schematic of the six-cell 1-D SSH circuit chain. In 
each LC resonator, L = 1 nH and C = 163 fF. Intra-cell coupling capacitance is Ca = 34 fF and inter-cell coupling 
capacitance is Cb = 16 fF. The trivial and nontrivial setups are probed at the points T and NT, respectively. 
Sinusoidal signals are sourced into the chain via the transmission lines (TLs). The inset shows the schematic of 
the on-chip switch. (b) Core physical layout of the six-cell 1-D SSH circuit chain with labeled dimensions and 
exemplary components (i.e., capacitor, inductor, and switch).



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13410  | https://doi.org/10.1038/s41598-022-17010-8

www.nature.com/scientificreports/

L

1-A

C

Sinusoidal excitation (7.89 GHz or 8.57 GHz)

TL
Cb

LC LC

Ca Ca

1-B

C L

6-A 6-B

LC LC LC LC

Ca Cb Cb

1-B 2-A 6-B 6-Ex

Sinusoidal excitation (8.31GHz)

TL

A
1V

B
1V

A
6V B

6V

A
1V

B
1V

A
6V B

6V

Trivial chain

Nontrivial chain

c

d

e

f

0.2

0.4

0.6

0.8

1.2

1.4

0.0

1.0

T
ra

ns
m

is
si

on

6.5 7.5 8.5 9.5 10.5 11.56.0 7.0 8.0 9.0 10.0 11.0 12.0
Frequency (GHz)

6.5 7.5 8.5 9.5 10.5 11.5
Frequency (GHz)

0.85

0.95

1.00

0.80

0.90

6.0 7.0 8.0 9.0 10.0 11.0

R
ef

le
ct

io
n

12.0

6 8 10 12

0.985

0.995

0.990

0.980
6 8 10 12

0.04
0.06
0.08

0.12
0.14

0.10

8.31 GHzNontrivial
Trivial

Nontrivial
Trivial

13

7.89 GHz

8.57 GHz

7.89 GHz

8.57 GHz

a b

8.31 GHz

Figure 3.   Demonstration of the existence of the edge state. (a) Reflection spectra of the nontrivial and trivial 
chain. (b) Transmission spectra of the nontrivial and trivial setup. In (a) and (b) the insets zoom in the result of 
the trivial setup. Arrows indicate the frequency location of the edge state and bulk state frequencies. (c, d) Trivial 
and nontrivial setup for the simulation of voltage profiles. (e, f) Voltage profiles of each sub-unit in the 1-D SSH 
circuit chain under a sinusoidal excitation with a 200 mV amplitude at two bulk state frequencies for the trivial 
setup and at the edge state frequency for the nontrivial setup. The color map inset shows the voltage amplitude 
across all sub-units in a log scale. Based on these voltage profiles, the IPR, a quantitative measurement of the 
degree of localization for each simulation is also calculated and labeled in each sub-figure. A larger IPR of the 
nontrivial chain shows a more localized profile.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13410  | https://doi.org/10.1038/s41598-022-17010-8

www.nature.com/scientificreports/

Based on these voltage distributions, the inverse participation ratio (IPR, a quantitative measurement of the 
degree of localization, see Eq. (6) in Methods) for the edge or bulk state frequency is also calculated and labeled 
in Fig. 3e, f. A larger IPR indicates a more localized profile. Compared to the trivial chain, the voltage distribu-
tion of the nontrivial chain is strongly localized at the edge unit and decays rapidly into the bulk units, verifying 
the presence of the edge state.

Robustness of the topological edge state.  To demonstrate the robustness of the edge state, two kinds 
of defects were used. First, sub-units were short-connected to the ground to intentionally introduce defects into 
the chain40,42,46. In the simulation, we alternately short-connected sub-unit 3-A, 4-A, 5-A, and 6-A to the ground 
by turning on the corresponding switch as shown in Fig. 2a. Simulations were then performed on the nontrivial 
chain to obtain the reflection and transmission spectra at its input port. The edge state was clearly observed as 
significant depths or peaks across different defective locations (Fig. 4a). Moreover, even with the presence of 
these defects, the edge state still existed with ignorable frequency change, exhibiting strong robustness.

Second, IC inherently suffers from imperfect manufacturing processes, giving rise to the random variations 
of fabricated devices. Such random device variations introduce disorders into our SSH circuit chain. They are 
treated as the second kind of defect imposed on the components in our chain. To study the effect of such a defect 
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Figure 4.   Demonstration of the robustness of the edge state. (a) The reflection and transmission spectra of 
the nontrivial chain when different sub-units are short-connected to the ground. The top/bottom inset shows 
the zoomed-in view of the transmission/reflection spectra of the circle region that covers the neighbor of 
the edge state frequency. The tiny variations of the reflection and transmission spectra across different short-
connected positions indicate that the presence of defects almost does not affect the behavior of the chain. (b) 
The variation coefficients obtained from 500 rounds MC simulation for each frequency point in a sweeping 
range of 8.0–12.0 GHz that covers the edge state frequency. The asterisk and the circle indicate the reflection and 
transmission, respectively. The rectangular box here shows the frequency range where the variation coefficients 
are significantly larger than that of other frequency ranges. (c, d) The reflection and transmission spectra of 500 
rounds of MC simulation in the frequency range highlighted by the rectangular box in (b). These spectra almost 
do not differ from each other, indicating the ignorable effect from the random device variations resulted by the 
practical fabrication process.
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on the edge state, we performed Monte-Carlo (MC) simulation on the nontrivial circuit chain. Analogous to 
random variations introduced in hopping amplitudes51, we applied variations to all components within and 
connected to units 3–6. MC simulation is a circuit-level simulation that can mimic practical fabrication varia-
tions by randomly sampling device parameters from their statistical distributions. In our study, 500 rounds of 
MC simulation were used to obtain the reflection and transmission spectra of the nontrivial chain around the 
edge state frequency. At each frequency point, we calculated the standard deviation σ and mean µ for both the 
reflection and transmission magnitude based on the 500 rounds of MC simulation. We then defined a varia-
tion coefficient as the ratio between the standard deviation σ and mean µ (Eq. 7 in Methods) to represent the 
robustness of the edge stage frequency against the random device variations. Note that for the MC simulations 
here, we adopt pre-layout simulation (without considering parasitics) for fast characterizations. Each round of 
post-layout simulation (considering parasitics) takes tens of minutes, making it time-consuming to obtain results 
of 500 rounds of MC simulation.

Fig. 4b shows the variation coefficient at each frequency point in the sweeping range from 8.0 to 12.0 GHz 
that covers the edge state frequency. Note that without considering parasitics, the edge state frequency shifts to 
a higher frequency, i.e., 9.84 GHz. For all rounds of MC simulation, the maximum variation coefficient for the 
reflection spectra magnitude is 0.05% and 0.15% for the transmission spectra magnitude. The rectangular box 
in Fig. 4b indicates the frequency range where the variation coefficients are significantly larger than that of other 
frequency ranges. Fig. 4c, d highlight the reflection and transmission spectra of the 500 rounds of MC simula-
tion in the frequency range labeled by the rectangular box. The results suggest that these spectra almost overlap 
with each other. Their variations cause negligible effect. Such small variation coefficients show that the edge state 
frequency almost remains unchanged even with the presence of random device variations. Conventionally, the 
manufacturing variations could often lead to the deviation of a fabricated device value from its nominal value 
by ± 10%54, giving rise to significant performance degeneration of circuits. For example, the variation coefficient 
for the frequency response of a resonator built upon the LC sub-unit of our chain could be up to 10.2% due to 
the device variations55. And there are limited ways to overcome these downsides brought by the manufacturing 
variations. Our study shows that topological protection could provide a new avenue to effectively conquer these 
limitations by maintaining the resonant frequency. Further results we have obtained again confirm the robustness 
of the topological edge state frequency to temperature variations (Supplementary Note 5).

Conclusion
We have reported a 1-D SSH circuit chain based on a 130 nm CMOS technology. Multiple high-fidelity post-
layout simulations have been performed to study the topological properties of the chain. We first show the 
existence of the edge state from different aspects, i.e., scattering coefficients (refection and transmission spectra) 
and transient behaviors (voltage amplitude distribution). We then demonstrate the robustness of the topological 
edge state by introducing different defects into the chain. Particularly, we show that the topological edge state is 
robust against the inherent manufacturing fabrication variations. This finding could open a new way to maintain 
IC performance resulted by the imperfect fabrication process which still remains a challenge for conventional 
methodologies to tackle. Given the scalability of IC technology in both physical size and spatial structure, the 
simple 1-D chain could be readily extended to more complex structures with more advanced technology, e.g., 
2-D array and 3-D lattice29,38,43,44, to further reveal the interesting more advanced topological phenomena in a 
higher-frequency domain. Our work shows the promise of applying the scalable IC platform to study TIs, pav-
ing ways to enable more explorations such as non-Hermiticity topological electronics56,57 and large-scale active 
topological electronics as well as a number of novel on-chip applications, such as topological wave generation.

Methods
Theoretical Su–Schrieffer–Heeger model and the corresponding circuit chain.  The Hamiltonian 
of the theoretical SSH model is expressed as a matrix form as below

By grouping the wave functions ψi on all sub-unit i as a vector, the following matrix equation characterizes 
this chain, where E is the eigenenergy.

The 1-D SSH circuit chain has the following parameters: two alternating coupling capacitances Ca and Cb ; 
inductance L and capacitance C in each LC resonator. We denote the characteristic angular frequency of each 
resonator as ωc = 1/

√
LC and the voltage amplitude on ith sub-unit A(B) as VA

i  ( VB
i  ). Given that Cb is the inter-

cell and Ca is the intra-cell coupling capacitance, we can define the corresponding hopping amplitude β ( α ) as 
the ratio between the coupling capacitance Cb ( Ca ) and the resonator capacitance C: β = Cb/C ( α = Ca/C ). 
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By applying Kirchoff ’s Law to the chain (Supplementary Note 1), the SSH chain preserves angular frequency 
modes ω (i.e., angular frequency of the topological trivial or nontrivial modes) governed by the following matrix 
equation

where I is the identity matrix. If β > α , the chain is in the nontrivial regime and the edge state emerges in the 
band gap53. The frequency of the edge state can be characterized by the following equation:

And the edges of the bulk frequency bands are obtained as

Frequency mode calculation.  The frequency modes are numerically calculated from the matrix equation 
Eq. (3) using MATLAB.

Inverse participation ratio calculation.  The inverse participation ratio (IPR) is calculated based on the 
following formula:

Variation coefficient calculation.  The variation coefficient vc, is defined to be the ratio between the 
standard deviation σ and mean µ:

Circuit simulations.  The circuit is designed with GlobalFoundries 130 nm CMOS technology library (See 
Supplementary Table S1 and S2 for more details on component parameters). All simulation results in Figs. 1, 
2, 3 and 4 are obtained from the Cadence design suite which is an industry-standard design tool for IC design. 
Three simulations manners, ac, tran, and sp in Cadence Spectre are used. Particularly, transmission spectra are 
obtained from ac simulation, which is a time-harmonic analysis where the voltage amplitudes on the probed 
nodes under a sinusoidal input are returned. Transient simulation (tran analysis) records the 1-D SSH circuit 
chain’s response over time, where the voltage waveforms on each sub-unit node under a sinusoidal input are 
obtained. The MC simulation is performed with ac and sp simulation. sp simulation returns the reflection coef-
ficient defined as below

where ZL is the impedance of the chain looking into the input port; Z0 is the impedance of the transmission line 
connected to the chain, which value is set to be 50 � . ac simulation returns the voltage transmission coefficient 
between probed nodes and the input source, which is defined as
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