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Individuals with congenital monocular blindness may have specific brain changes since

the brain is prenatally deprived of half the normal visual input. To explore characteristic

brain functional changes of congenital monocular blindness, we analyzed resting-state

functional MRI (rs-fMRI) data of 16 patients with unilateral congenital microphthalmia and

16 healthy subjects with normal vision to compare intergroup differences of amplitude of

low frequency fluctuations (ALFFs), functional connectivity (FC), and network topolgoical

properties. Compared with controls, patients with microphthalmia exhibited significantly

lower ALFF values in the left inferior occipital and temporal gyri, superior temporal gyrus,

inferior parietal lobe and post-central gyrus, whereas higher ALFF in the right middle and

inferior temporal gyri, middle and superior frontal gyri, left superior frontal, and temporal

gyri, such as angular gyrus. Meanwhile, FC between left medial superior frontal gyrus and

angular gyrus, FC between left superior temporal gyrus and inferior parietal lobe and post-

central gyrus decreased in the patients with congenital microphthalmia. In addition, a

graph theory-analysis revealed increased regional network metrics (degree centrality and

nodal efficiency) in the middle and inferior temporal gyri and middle and superior frontal

gyri, while decreased values in the inferior occipital and temporal gyri, inferior parietal

lobule, post-central gyrus, and angular gyrus. Taken together, patients with congenital

microphthalmia had widespread abnormal activities within neural networks involving the

vision and language and language-related regions played dominant roles in their brain

networks. These findings may provide clues for functional reorganization of vision and

language networks induced by the congenital monocular blindness.

Keywords: monocular blindness, congenital microphthalmia, resting-state functional MRI, amplitude of low

frequency fluctuation, brain network
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INTRODUCTION

Although visual function integrity is considered essential to the
development and efficacy of cognitive function (1), congenitally
blind individuals overall present perceptual, cognitive, and
social skills comparable with those of sighted ones (2).
Findings from neruoimaging studies have contributed to
understand not only the cross-modal plastic changes that
occur in the “visual” regions when deprived of vision,
but also the role of visual experience on the development
of the brain morphological and functional architecture (2).
Abundant evidence supports that an early and prolonged
absence of vision induces an adaptive reshaping of the
brain that spreads beyond the visual areas (3–5). The plastic
rearrangements occur outside the visually deprived occipital
cortex, such as cortical, subcortical, and white matter (WM)
structures (6).

Monocular blindness occurring early in life could be due
to genetic anomalies, tumor or injury to the developing visual
system, which results in premature loss of stereoscopic binocular
vision and a decrease in peripheral visual fields. Challenges
of monocularity are imposed on patients both physically and
emotionally (7, 8). The impact of unilateral blindness on the
functional status and wellbeing is more subtle and less well-
understoodwhen compared with bilateral blindness (9). Research
on the structural and physiological consequences following early
monocular enucleation found that losing binocularity early leads
to a dissociation in form perception and motion processing.
Low- to mid-level of visual spatial abilities get enhanced,
whereas the high-level face perception, motion processing, and
oculomotor behavior tend to be adversely affected suggesting
that they are intrinsically linked to the binocularity (10–12).
These differential effects may be due to a number of factors,
such as plasticity through recruitment of resources to the
remaining eye; the absence of binocular inhibitory interactions;
and/or years of monocular practice (10). Aside from visual
system effects, the monocular deprivation recruits cross-modal
adjustments in the auditory system that support improved sound
localization and integrates auditory and visual components of
multisensory events optimally (13, 14). Structurally, people with
one eye show an asymmetry in morphology of the anterior
visual system, with an overall decrease in the lateral geniculate
nucleus volume (15). In addition, early monocular enucleation
not only increases the surface area and gyrification in visual,
auditory, and multisensory cortices, but also has long-term
effects on WM structure in the visual pathway and auditory
tracts subcortically (16–19). Mechanisms that could support
such morphological changes subsequent to long-term survival
from early eye loss include Wallerian degeneration, neural
recruitment of deafferented cells, corticothalamic feedback, and
synaptic pruning (17). To date, however, alterations in functional
networks at the whole-brain level remain largely unknown in
early monocular deprivation.

Resting-state functional MRI (rs-fMRI) based on blood

oxygenation level-dependent (BOLD) signals has been
successfully applied to investigate the synchronous activity

between brain regions and identify intrinsic large-scale networks

(20). Earlier rs-fMRI studies divided human cortex into six

macro-scale networks: the visual network (VN), somatomotor
network (SMN), default mode network (DMN), attention
network, control network, and salience network (21). Among
different methods for rs-fMRI analysis, the amplitude of low-
frequency fluctuation (ALFF) reflects the regional spontaneous
brain activity at each voxel and the functional connectivity (FC)
measures brain connectivity patterns between BOLD signals in
different brain regions (22–25). The advances in the graph theory
and network neuroscience afford an opportunity to study local
and global topological properties of complex brain networks.
Specifically, the brain is conceptualized as a graph, in which
brain regions represent nodes and the relationships between the
regions signify edges connecting the nodes within the graph
(26, 27). A graph theory based-analysis can assess the importance
of brain regions at the network level and evaluate its role in brain
information transfer and integration. Thus, the above methods
are complementary to each other.

It is noteworthy that the majority of previous studies have
been done on individuals who have lost one eye during
the postnatal visual development or later in life, which is
inhomogeneous with respect to age of sensory deafferentation
and visual experience. Congenital microphthalmia is a rare
anomaly due to arrest of ocular growth and development
in the early fetal life and affects 3–11% of blind children
(28). Unilateral congenital microphthalmia offers a novel and
unique human model for exploring the consequences of
absence of binocularity and the extent to which the brain’s
functional networks rely on experience-dependent mechanisms
since the brain is prenatally deprived of half the normal
visual input (29). This study aimed to examine the changes
of intrinsic neuronal activities and functional connectivity
patterns, and further explore the graph-theoretical characteristics
of functional brain networks in patients with unilateral
congenital microphthalmia.

EXPERIMENTAL PROCEDURE

Participants
The study adhered to the tenets of the Declaration of Helsinki
and was approved by the Research Ethics Committee of Beijing
Tongren Hospital, Capital Medical University. Informed
written consent was obtained from all participants. Sixteen
patients (eight women; age 20.81 ± 4.85 years) with unilateral
isolated congenital microphthalmia (eight right and eight
left) were recruited from the Beijing Tongren Eye Center.
Exclusion criteria included age < 16 or > 40 years, any
ocular disorder other than congenital microphthalmia,
any neurological disorder (documented clinically and
instrumentally), and left-handedness. Sixteen healthy subjects
(7 women; age 24.13 ± 3.50 years) with matched age, gender,
and education status were recruited among students and
workers from university and hospital as normal controls. All
controls were right-handed and had normal neurological and
ophthalmological examinations without history of neurological
or ophthalmological disorders.
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FIGURE 1 | Brain clusters (C1–C8) exhibiting intergroup differences in ALFF between congenital microphthalmia (CM) and normal controls (NC). Blue color indicates

decreased spontaneous neuronal activity, whereas red color indicates increased spontaneous neuronal activity. The peak t-values and the corresponding MNI

coordinates were presented near the clusters. ALFF, amplitude of low-frequency fluctuation. MNI, Montreal Neurological Institute.

Data Acquisition
MRI data were acquired using a 3.0-T MR scanner (Discovery
MR750; General Electric, Milwaukee, WI, USA), with an 8-
channel head coil. Initially, a 3-dimensional (3D) brain volume
T1-weighted anatomical scan was conducted with the following
parameters: repetition time (TR) = 8.16ms, echo time (TE) =
3.18ms, inversion time (TI) = 450ms, flip angle = 12 degrees,
matrix= 256× 256, thickness= 1.0mm, gap= 0mm, 188 slices,
and voxel size = 1.0 × 1.0 × 1.0mm. A BOLD-fMRI scan was
then performed using a gradient-echo single-shot echo planar
imaging (EPI) with the following parameters: 36 axial slices, slice
thickness = 3mm, gap = 1mm, TR = 2,000ms, TE = 30ms,
flip angle = 90 degrees, field of view = 220mm × 220mm,
matrix = 64 × 64, and 180 time points. During the BOLD-fMRI
scan, all subjects were instructed to keep their eyes closed in a
relaxed state, refrain from movement, and stay awake without
concentrating on anything in particular.

Pre-processing
Preprocessing of rs-fMRI data was performed with a public
available toolbox for Data Processing and Analysis for Brain
Imaging (DPABI, http://rfmri.org/DPABI) software package (30),
running on a matrix laboratory platform named as MATLAB
R2016a (https://www.mathworks.com/products/matlab.html,
The MathWorks, Inc., Natick, MA, USA). The procedures
included DICOM-to-NIFTI format conversion, removal of first
10 volumes, slice timing correction, head motion correction,
nuisance covariates regression, standard space normalization
with resolution of 3 ×3 ×3mm and bounding box of [−90,
−126, −72; 90, 90, 108], spatial smoothing with Gaussian kernel
of 4 × 4 × 4mm full-width at half maximum (FWHM). Any
participant with a head motion more than 1.5mm translation or
1.5◦rotation on any axis was excluded. The nuisance covariates
include head motion, respiratory, and cardiac effects (30). Head
motion could introduce artifactual inter-individual difference in
R-fMRI metrics (31, 32). The head motion effects from realigned
data were regressed out by Friston 24-parameter model (33). The

respiratory and cardiac effects were reduced through regressing
out the signals fromWM and cerebrospinal fluid (CSF).

Flip Images
Considering the potential confounding effects of affected sides,
we swapped the hemisphere of the left affected patients making
the affected sides of all subjects kept in right. The flip
was implemented via flip_lr.m of a MATLAB toolbox called
“Tools for NIfTI and ANALYZE image.” Therefore, the right
side is ipsilateral side of affected eye, whereas the left is
contralateral side.

ALFF Analysis
Amplitude of low frequency fluctuation measures the total power
of the BOLD signal within a certain low-frequency range and
has been widely applied to study the regional brain activity and
functional segregation (34). The brain areas with a high ALFF
may correspond to an increased spontaneous neuronal activity.
The fast Fourier transform was used to compute ALFF as the
average of the power spectrum’s square root in the 0.01–0.08Hz
frequency bandwidth. The ALFF value of each voxel was further
standardized by z-score to obtain the zALFF value. The two-
sample t-test within gray matter mask was conducted to compare
the zALFF values between two groups with age and gender as
covariates. The Alphasim (p < 0.005 and number of voxels >37
of 26 Neighborhood) embed in DPABI was used for correction.

Region of Interest-Based FC Analysis
Functional connectivity refers to the temporal correlation in
spontaneous BOLD fluctuations between brain regions and may
reflect the inter-regional correlations in neuronal variability. The
altered brain regions (clusters with significant ALFF differences
between microphthalmic subjects and controls) were selected as
seed regions of interest (ROIs) for FC analysis. For each ROI
of each subject, correlation coefficients between the mean time
series of the seed ROI and the other ROIs were computed. The
correlations were then converted into z scores by Fisher’s r-to-z
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TABLE 1 | Brain regions with intergroup differences in amplitude of low-frequency

fluctuation (ALFF) between congenital microphthalmia (CM) and normal controls

(NC). Clusters 1–8 correspond to the 8 clusters in Figure 1.

Brain regions # voxels Coordinates

in MNI

Peak

t-values

CM > NC

Cluster 1 (C1) 75 [63, −57, −18] 5.6798

BA20_R/BA21_R 36/22

Temporal_Mid_R (AAL) 34

Temporal_Inf_R (AAL) 31

Cluster 3 (C3) 50 [−6, 66, 6] 6.0234

BA10_L 41

Frontal_Sup_Medial_L (AAL) 38

Cluster 5 (C5) 55 [−33, −69, 27] 6.4373

BA39_L 39

Angular_L (AAL) 18

Superior temporal gyrus 17

Cluster 6 (C6) 96 [33, 24, 36] 5.5423

BA8_R/BA7_R/BA46_R 34/24/14

Frontal_Mid_R (AAL) 51

Frontal_Sup_R (AAL) 43

Middle frontal gyrus 54

Cluster 8 (C8) 80 [−12, 15, 63] 5.5541

BA6_L/BA8_L 34/26

Supp_Motor_Area_L (AAL) 39

Superior frontal gyrus 68

CM < NC

Cluster 2 (C2) 53 [−36, −66, 3] −6.3571

BA37_L 48

Temporal_Inf_L (AAL) 10

Occipital_Inf_L (AAL) 10

Cluster 4 (C4) 38 [−57, −15, 9] −5.1355

BA22_L/BA48_L 15/17

Temporal_Sup_L (AAL) 37

Cluster 7 (C7) 37 [−42, −24, 36] −4.7642

BA3_L 16

Parietal_Inf_L (AAL) 15

Postcentral_L (AAL) 12

The location of each cluster was defined via the automated anatomical labeling (AAL) atlas

and Brodmann area (BA). MNI, Montreal Neurological Institute.

transformation to normalize the FC values by DPARSF in DPABI.
The two-sample t-test was applied to compare the correlations
of ROIs between patients with congenital microphthalmia and
normal controls. To visualize the FC values on each ROI of
each group, the mean FC of the ROI and the other ROIs
were computed.

Graph Theory-Based Network Analysis
GRETNA (www.nitrc.org/projects/gretna/), a Matlab-based,
open-source graph theoretical network analysis toolbox for
imaging connectomics, was employed to construct the functional
brain network (35). Various topological properties of a network

or graph were calculated from global metrics (small world,
network efficiency, rich club, assortativity, synchronization, and
hierarchy) and nodal metrics (clustering coefficient, shortest path
length, nodal efficiency, local efficiency, degree centrality, and
betweenness centrality). The pipeline options were as follows:
absolute FC values were applied to construct the binarized
networks; sparsity was selected as the threshold metrics with
the thresholds ranging from 0.05 to 0.5 (interval = 0.05);
random network generation number was set to 100; for the
community index, the modularity algorithm was set to modify
greedy optimization. The network sparsity was chosen as a
thresholding method.

RESULTS

Intergroup Differences of ALFF
Compared with the control group, the microphthalmia group
had significantly altered ALFF in the 8 brain clusters (C1–
C8) (Alphasim correction with p voxel < 0.005, number of
voxels >37) (Figure 1, Table 1). The patients with congenital
microphthalmia showed decreasedALFF in the C2 encompassing
left inferior occipital gyrus and inferior temporal gyrus (BA37),
C4 located in the left superior temporal gyrus (BA22/48), and C7
encompassing left inferior parietal lobule and post-central gyrus
(BA3). On the other hand, increased ALFF was found in the C1
encompassing right middle temporal gyrus (BA21) and inferior
temporal gyrus (BA20), C3 located in the left medial superior
frontal gyrus (BA10), C5 dominated by left BA39 containing the
angular gyrus in the superior temporal gyrus, C6 covering the
right middle and superior frontal gyri (BA7/8/46), and C8 located
in the left superior frontal gyrus, such as supplementary motor
area (BA6/8).

Intergroup Differences of ROI-Based FC
The averaged ROI-based FC values after Fisher’s r-to-z
transformation of CM and NC are shown as in Figure 2.
Compared with the control group, the microphthalmia group
had significantly declined FC between the left medial superior
frontal gyrus (C3) and angular gyrus (C5), as well as FC
between left superior temporal gyrus (C4) and inferior parietal
lobule, post-central gyrus (C7) (p < 0.005). The changes
indicate weakening of information transmission between these
brain regions.

Intergroup Differences of Network
Properties
There were no obvious differences between the microphthalmia
group and control group in terms of global network metrics.
As for the regional network metrics, significant differences
were found in degree centrality (Figure 3) and nodal efficiency
(Figure 4; p < 0.05). Degree centrality calculates the number of
direct connections a given node has, reflecting its information
communication ability in the functional network. Patients with
microphthalmia displayed higher degree centrality values on C1,
C6, and C8, whereas lower values on C5 and C7. Nodal efficiency
measures the average shortest path length between a given node
and all of the other nodes in the network, which stands for
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FIGURE 2 | The averaged region of interest (ROI)-based functional connectivity (FC) values after Fisher’s r-to-z transformation of CM and NC groups were shown as in

image (A,B), respectively. Each cluster was taken as one ROI for FC computation. The FC values between C3 and C5, and FC values between C4 and C7 [indicating

by * in image (A,B)] were significantly altered between CM and NC. The significantly reduced FC values were presented in image (C). The FC values between all 8

clusters of CM (red dots) and NC (blue dots) (D). The green dots indicate mean FC values. *p < 0.005.

the ability of the node in communication transfer within a
network. Nodal efficiency values of patients with microphthalmia
increased on C1, C6, and C8, while reduced on C2, C5, and C7.

DISCUSSION

The present study investigated the intrinsic neuronal activity and
network topological properties across the whole brain in patients
with congenital monocular blindness. Unilateral congenital
microphthalmia represents an exceptional opportunity to explore
experience-dependent reorganization when deprived of half
natural inputs prior to birth. The unique visual experience
plays an important role in shaping neural circuits, function,
and ultimately behavior. The findings may improve our
understanding of how early monocular deprivation influences
the brain development.

Patients with microphthalmia exhibited attenuated

spontaneous brain activities in the left inferior occipital
and temporal gyri, superior temporal gyrus, inferior parietal

lobule and post-central gyrus when compared with healthy

subjects. The inferior occipital and temporal gyri lie within

the ventral stream of visual processing known to be associated

with object recognition (“what” pathway) (36, 37). A strong

contralateral retinotopic bias was confirmed present throughout
the occipitotemporal network (36). Meanwhile, the inferior

occipital gyrus and the fusiform gyrus (BA37) of the inferior
temporal gyrus are identified as face-specific regions (38).

Face perception is a unique visual ability which is considered

anatomically and functionally at higher level and critical for
normal social functioning. Kelly et al. demonstrated that

early monocular deprivation from enucleation selectively
disrupts the neural development of face perception and thus

impair face processing (11, 12). In addition, left BA37 is

involved in visual-language associations, such as semantic
categorization, word retrieval, and word generation (39).

Superior temporal gyrus is the site of auditory association
cortex and the left part is considered as a shared substrate

for auditory short-term memory and speech production (40).
The inferior parietal lobule is a multimodal association area

which situated at the junction of the visual, auditory, and
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FIGURE 3 | The CM group showed significantly increased degree centrality values on C1 (at thresholds of 0.2, 0.25, 0.3, 0.35), C6 (at thresholds of 0.2, 0.25, 0.3,

0.35), and C8 (at thresholds of 0.15 and 0.2), and decreased degree centrality values on C5 (at thresholds of 0.2) and C7 (at thresholds of 0.15, 0.2, and 0.25). *p <

0.05. (A–H) All the vertical coordinates of subfigures are degree centrality, and all the horizontal axis were thresholds. The symbol * at each subfigure indicates that the

degree centrality of the cluster was significantly changed at the corresponding threshold.

FIGURE 4 | Nodal efficiency values of CM significantly increased on C1 (at thresholds of 0.2 and 0.25), C6 (at thresholds of 0.2, 0.25, and 0.3), and C8 (at thresholds

of 0.15, 0.2, and 0.25), and significantly decreased on C2 (at thresholds of 0.35 and 0.4), C5 (at threshold of 0.2) and C7 (at thresholds of 0.15, 0.2, and 0.25). *p <

0.05. (A–H) All the vertical coordinates of subfigures are nodal efficiency, and all the horizontal axis were thresholds. The symbol * at each subfigure indicates that the

nodal efficiency of the cluster was significantly changed at the corresponding threshold.

somatosensory cortices. It contributes to aspects of receptive
language, such as phonology, reading, and spelling, particularly
in the language-dominant hemisphere. The post-central gyrus
corresponds to the primary somatosensory cortex and it
perceives various somatic sensations from the body, such as

touch, pressure, temperature, and pain. Previous studies have
uncovered robust correlation between the visual cortex and
post-central gyrus in sighted people, which was involved in
the combining process of spatial visual and somatosensory
information (41).
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On the contrary, enhanced intrinsic brain activities were
observed in a set of brain regions of patients with congenital
microphthalmia. The middle and inferior temporal gyri subserve
language and semantic memory processing, visual perception,
and multimodal sensory integration. The angular gyrus (BA39)
situates at the junction among the occipital, temporal, and
parietal lobes and resembles a cross-modal integrative hub
linking different subsystems (42). In addition to being associated
with semantic processing, the left angular gyrus has been
identified as part of the default network (43). Themedial superior
frontal cortex is implicated in motor and cognitive control,
among which the eye movement is thought to be a critical vision-
related function (44, 45). The supplementary motor area (BA6)
occupying the posterior one-third of the superior frontal gyrus is
responsible for planning of complex movements of contralateral
extremities and also suggested to have superordinate control
functions during speech communication and language reception
(46, 47). The middle frontal gyrus is regarded as a key integration
cortical hub for both dorsal and ventral streams of language (48).
Adjacently, the frontal eye field (BA8) plays an important role in
the control of visual attention and saccadic eye movements.

Our results showed increased average capability of
information communication (degree centrality) and efficiency of

information transfer (nodal efficiency) in regions, such as middle
and inferior temporal gyri and middle and superior frontal

gyri of the microphthalmic patients. However, these capabilities
declined in the regions, such as inferior occipital and temporal

gyri, inferior parietal lobule, post-central gyrus, and angular
gyrus. From the above, brain regions with more importance
in the brain functional network of patients with congenital
monocular blindness predominantly belong to the speech and

language neural network.
Potential limitations of the current study should be noted.

First, as a pilot study, neuropsychological tests and visual tasks

have not been included. Despite the fact that changes detected in

the regions are associated with cognitive functions, it is difficult
to confirm whether these altered ALFF values are correlated with

cognitive changes. A visual task is vital for the future work to
capture the characteristics of local brain activities during visual

processing of congenital microphthalmia. Second, the sample

size was modest and our results require replication with larger
sample sizes.

In conclusion, individuals with unilateral congenital
microphthalmia presented remarkable alterations of regional
brain functions mainly in the vision and language related
networks. Our data shed light on functional reorganizations
of the brain network induced by congenital monocular
blindness and lend further support to the involvement of
cross-modal plasticity.
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