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Infections during pregnancy can seriously damage fetal neurodevelopment by aberrantly
activating the maternal immune system, directly impacting fetal neural cells. Increasing
evidence suggests that these adverse impacts involve alterations in neural stem cell
biology with long-term consequences for offspring, including neurodevelopmental
disorders such as autism spectrum disorder, schizophrenia, and cognitive impairment.
Here we review how maternal infection with viruses such as Influenza A, Cytomegalovirus,
and Zika during pregnancy can affect the brain development of offspring by promoting the
release of maternal pro-inflammatory cytokines, triggering neuroinflammation of the fetal
brain, and/or directly infecting fetal neural cells. In addition, we review insights into how
these infections impact human brain development from studies with animal models and
brain organoids. Finally, we discuss how maternal infection with SARS-CoV-2 may have
consequences for neurodevelopment of the offspring.

Keywords: maternal infections, virus, cytokines, neuroinflammation, neurodevelopmental disorders, cortical
development, SARS – CoV – 2, zika virus
INTRODUCTION

The mother’s health and her environment can strongly influence the brain development of her
offspring (1–3). For example, viral infection of the mother during pregnancy has been linked to
increased risk of neurodevelopmental defects in the offspring, such as microcephaly, autism
spectrum disorder (ASD), epilepsy, and schizophrenia (4–33). These effects on the offspring may
Abbreviations: ASD, autism spectrum disorder; BBB, blood-brain-barrier; CDn, cluster of differentiation CMV,
Cytomegalovirus; CNS, central nervous system; COVID-19, coronavirus disease 2019; CSF, cerebral spinal fluid; IFNn,
interferon; IL-1b, interleukin 1 beta; IL-6, interleukin 6; IL-17A, interleukin 17A; iPSC, inducible pluripotent stem cells, NPCs,
neural stem/precursor cells; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; THn, T helper; TMPRSS2,
transmembrane protease serine 2; TNF-a, tumor necrosis factor alpha; ZIKV, Zika virus.
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be a consequence of the mother’s systemic immune response
against infection, which includes production of maternal
cytokines that can interfere with fetal neural stem/precursor
cells (NPCs) and microglia (34–37). Viruses can also infect the
placenta and thereby pass vertically from mother to fetus,
entering NPCs, microglia, and neural cells in the developing
fetal brain (38, 39).

Viruses and pro-inflammatory cytokines can damage the
nervous system by inhibiting the genesis of NPCs, which are
self-renewing, multipotent stem cells capable of giving rise to
neurons, astrocytes, and oligodendrocytes (40). Normally the
number and fate of NPCs are determined by a balance between
their maintenance as NPCs and their differentiation and
commitment to form parts of neural circuits. However, viruses
and cytokines can throw off this balance, resulting in
neurodevelopmental disorders or cortical defects (41, 42).
These factors can also harm microglia, the immune cells of the
brain that monitor against inflammation and try to ensure
normal functioning of neurons (43). Although not themselves
neurons, microglia play important roles in neural circuits, such
as by regulating synaptic activity and controlling the pool of
NPCs (44–46).

This review focuses on how viral infection of the mother can
trigger defects in fetal neurodevelopment. We examine three
viruses whose effect on brain development has been well studied
in animal and cellular models : Zika virus (ZIKV),
Cytomegalovirus (CMV), and Influenza A virus. Next we
explore the specific pathways triggered in the fetal brain by
pro-inflammatory cytokines produced by the mother in response
to viral infection. Finally, we consider the possibility that the
emerging severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) may have long-term consequences on fetal
brain development.
MATERNAL VIRAL INFECTIONS DURING
FETAL NEURODEVELOPMENT

Viruses are microorganisms that require the host's cellular
machinery to replicate and then infect new cells or integrate
their genetic material into the host genome. To enter host cells,
viruses must express diverse molecules such as proteins or
carbohydrates on their surface that can be recognized by host
cell receptors (47). The innate immune system recognizes these
same viral surface molecules, which acts as the first line of
defense. When so-called “pattern recognition receptors” on the
surface of immune cells or inside the cells recognize pathogen-
associated molecular patterns on the virus, the immune cells
begin to produce pro-inflammatory cytokines and chemokines
by recruiting adapter proteins such as myeloid differentiation
primary response 88 (MYD88), TIR-domain-containing
adapter-inducing interferon-b (TRIF), and translocating chain-
associated membrane protein (TRAM) to initiate a signaling
cascade that culminates in the activation of nuclear factor kappa
B (NF-kB), mitogen-activated protein kinase (MAPK) and
interferon regulatory factors (IRFs). These transcription factors
Frontiers in Immunology | www.frontiersin.org 2
induce the expression of interferon (IFN) a and b as well as pro-
inflammatory cytokines such as interleukin (IL)-6, tumor
necrosis factor (TNF)-a and IL-1b, which recruit more
immune cells to destroy infected cells (48, 49) (Figure 1A).
The immune cells also induce the adaptive immune system to
produce antibodies against the pathogen via signaling involving
the major histocompatibility complex II, CD40, CD80
and CD86.

Many viruses can have the potential to extend an effect on the
fetal brain and trigger pro-inflammatory responses in this way,
with potentially serious consequences for the developing brain.
Such pathogens include rubella virus (50, 51), herpes simplex
virus (52–54) and parvovirus (55). Three viruses that show
strong tropism toward neural ce l l s and l inked to
neurodevelopmental disorders are ZIKV, Influenza A virus and
CMV. All three have been associated with ASD, schizophrenia,
neurosensory alterations, hydrocephaly, or microcephaly
(Figure 1B) (4–30).

Zika Virus
ZIKV is one of the most well-studied viruses that perturb brain
development. It is a single-stranded RNA virus, it belongs to the
family Flaviviridae and genus Flavivirus (56). The most evident
consequence of ZIKV infection of pregnant mothers is
microcephaly in the offspring, and a causal link between the
two was implied by the simultaneous presence of the viral
genome in cerebrospinal fluid and antibodies in neonates (31–
33). Furthermore, animal models in which the virus is injected
into the uterus or directly into the fetal brain ventricle have
provided important insights into how ZIKV disrupts brain
development (Figure 2) (57). These models link virus infection
with decreased brain volume, disorganization of neuronal layers
in the cortex, and apoptosis in the hippocampus and cortex (58),
as well as with disruptions of NPC biology that mimic the
etiology of several neurodevelopmental disorders (41, 59). In
fact, infection of NPCs induces their death by multiple
mechanisms, including apoptosis, pyroptosis, and autophagy,
which contribute to microcephaly in the offspring (60–67).

A critical question is how ZIKV comes into contact with
NPCs. Presumably the placenta is to blame as the bridge between
the mother and fetus. This transient organ begins to form at
implantation and supports the passage of nutrition and gases,
toxin elimination, and protection against pathogens (68–70).
Injecting ZIKV into the uterus of pregnant animals leads to
detectable viral antigens in the placenta, indicating that the virus
can infect those cells. Indeed, ZIKV infection of the placenta
leads to total loss of boundaries between placental layers, and
mixing of maternal and fetal blood (71, 72). Once the virus
infects the placenta, it can replicate in cytotrophoblasts and
infect macrophages (Hofbauer cells), which then produce
IFNa, IL-6, and monocyte chemoattractant protein-1 (MCP-1)
(38). Ultimately the virus passes through the placenta and enters
the brain.

Once inside the fetal central nervous system, ZIKV can infect
NPCs, astrocytes, and microglia, but it is toxic only to NPCs.
Microglia, in contrast, allow the virus to replicate but do not die,
implying that they can serve as a viral reservoir in the fetal brain (73).
April 2022 | Volume 13 | Article 816619
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Given the developmental origin of themicroglia from the yolk sac, the
virus likely enters the fetus via the maternal vasculature (73, 74).
Microglia not only help the virus spread throughout the central
nervous system (CNS) (73, 75), but they also induce the secretion
of pro-inflammatory cytokines IL-6, IL-1 b, TNF-a, and MCP-
1, which contribute to neuroinflammation with long-term
consequences (76–78).

Much of what we know about how ZIKV affects the fetal brain
comes from studies in cell culture. Given that a Petri dish can be a
poor mimic of the diverse, highly structured brain, many
researchers have focused on brain organoids (Figure 2). Typically,
human inducible pluripotent stem cells (iPSC) are used to derive
NPCs in a three-dimensional culture system in which specific brain
regions can develop. Brain organoids mimic key characteristics of
human neurodevelopment, such as forming a complex progenitor
zone with abundant outer radial glial cells (79). Interestingly,
infecting brain organoids with ZIKV reduces their volume,
Frontiers in Immunology | www.frontiersin.org 3
analogous to microcephaly (61, 80). Such observations have led to
the idea that ZIKV targets NPCs through recognition via Toll-Like
receptor 3, but not neurons (81–83), while downregulating genes
related to the cell cycle, cell division, neurogenesis, as well as axonal
guidance and differentiation, consistent with the characteristics of
microcephalic offspring born to ZIKV-infected mothers (84, 85).

Cytomegalovirus
This double-stranded DNA virus belongs to the family
Herpesviridae and genus Herpesvirus (86). Congenital CMV
infection leads to clinical manifestations in only 10% of
newborns, yet 10-15% of apparently asymptomatic newborns
have long-term sequelae, such as sensorineural hearing loss,
neurodevelopmental disorders, ophthalmic complications, cerebral
neoplasms, and ASD (Figure 2) (87–89). The virus moves vertically
from mother to fetus by infecting cytotrophoblasts in the placenta,
where the infection alters placenta integrity and development (90,
A B

FIGURE 1 | Maternal viral infection. As a result of maternal viral infection, immune responses generate pro-inflammatory cytokines such as IL-1b, IL-6, and IL-17A. These
cross the placenta and generate neuroinflammation in the fetal brain. (A) During viral infection, molecules on the viral surface are recognized and trigger a cascade of events in
the infected cell. Host receptors recognize viral molecules or nucleic acids and initiate a signaling cascade that ends with the nuclear translocation of transcription factors such
as interferon regulatory factor 3 (IRF3), which induce the synthesis of type I interferons a and b, which are ultimately released into the extracellular environment.
There the interferons are detected by cells of the innate immune system. Innate immune system cells, such as macrophages or dendritic cells, recognize pathogen-
associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). They also respond to cytokines such as interferons to activate signaling
pathways via NF-kB to generate pro-inflammatory cytokines such as IL-6 and IL-1b. These factors trigger inflammation and recruit more cells to inhibit viral replication
or kill infected cells. (B) Maternal infection by the Influenza A, Cytomegalovirus or Zika virus generates an increase in maternal pro-inflammatory cytokines that can
reach the fetal circulation through the placenta. In the same way, viruses such as Cytomegalovirus or Zika also cross the placenta and directly affect the fetal brain.
In the fetal brain, the presence of pro-inflammatory cytokines or viruses can result in neurodevelopmental disorders and defects in the formation of the cerebral
cortex, manifesting effects such as ASD, Schizophrenia, neurosensory alteration or microcephaly.
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91) and dysregulates gene expression to inhibit placental cell
differentiation, self-renewal, and migration (39, 92). Similar to
ZIKV, CMV infects and replicates in microglia (93). In animal
models, CMV infects fetal macrophages, which infiltrate the fetal
brain preferentially in the choroid plexus and in ventricular and
subventricular areas, where the macrophages induce inflammation
by producing IL-6, IL-1b, and TNF-a (94–97).

Once inside the fetal brain, CMV can also directly infect
NPCs, likely through platelet-derived growth factor receptor
alpha (PDGFRa) (98). Indeed, expressing this receptor in
NPC-derived neurospheres in vitro allows CMV infection (99).
Like ZIKV, CMV also inhibits NPC neurogenesis, proliferation,
differentiation and migration (100–104), while stimulating their
apoptosis (105). This may help explain why maternal CMV
infection is linked to hearing loss, intellectual disability, and
other cognitive deficits in offspring (106).

Studies with human brain organoids have provided crucial
information about how CMV infection disrupts fetal brain
development (Figure 2). Exposing brain organoids to CMV
alters the structure and organization of the cortex-like
component and the distribution of NPCs and neuronal
populations in cortical layers (107, 108).

Influenza A Virus
Influenza A virus is a single-stranded RNA virus belonging to the
familyOrthomyxoviridae and thegenusAlphainfluenzavirus (109).A
seasonal virus, it causes 3-5 million severe cases globally, with
pregnant women at particularly high risk of complications
following infection. Occasionally, strains of the Influenza virus have
Frontiers in Immunology | www.frontiersin.org 4
causedpandemics that killedmillions of peopleworldwide, such as in
1918 and 2009 (110). Offspring ofmothers infected with Influenza A
virus show reduced psychomotor development in the firstmonths of
life (111), as well as cognitive problems, schizophrenia, and bipolar
disorder (Figure 1B) (9, 11, 13, 15, 18, 112).

Interestingly, the viral genome has yet to be detected in the
placenta or fetal brain (113), suggesting that maternal infection
with the virus affects the fetus indirectly by triggering immune
responses that compromise neurodevelopment. Increases in
maternal levels of IL-6, IL-1b, TNF-a, and IFN-b in response
to infection can damage the placenta and intrauterine fetal
growth restriction caused by hypoxia that can be detected as
upregulation of hypoxic-inducible factor-1a (HIF-1a) in the
placenta (114). In pregnant women expressing human leukocyte
antigen DRB14, this can induce the production of pro-
inflammatory cytokines that cause fetal neuroinflammation,
which has been linked to increased risk of schizophrenia in
offspring (13). Indeed, postmortem histology of schizophrenic
offspring shows disturbed neuronal migration, disorganized
lamina strata, ectopic pyramidal cells, abnormal expression of
neural cell adhesion molecules, no astrogliosis, as well as reduced
densities of axons, dendrites, and synapses. Magnetic resonance
imaging shows smaller intracranial volume than in offspring
born to uninfected mothers as well as less gray and white matter,
especially in the cerebral cortex (115). Animal studies confirm
that viral infection of the mother induces immune responses in
the fetus that alter critical signaling proteins and pathways in
neurodevelopment, such as the fragile X mental retardation
protein (FMR1), glutamatergic/GABAergic balance, and reelin
FIGURE 2 | Models of maternal infection. Modeling of maternal infection in mice either by injection of viruses or cytokines (upper right panel). Maternal infection
activates microglia and neuroinflammation while inhibiting NPC proliferation and neuronal migration. Infecting brain organoids with Zika virus or Cytomegalovirus
inhibits NPC proliferation and promotes their apoptosis, ultimately shrinking the organoid (bottom right panel). For comparison, mock-infected NPCs are intact and
show normal organization of the different cortical layers, as well as normal levels of neuronal migration and survival (left panel).
April 2022 | Volume 13 | Article 816619

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Elgueta et al. Maternal Infections Consequences in Neurodevelopment
signaling (116). Those studies further confirm that viral infection
of the mother significantly reduces volumes of the prefrontal,
frontal, cingulate, insular, parietal and temporal-auditory regions
of the cortex (117) and can lead to impairments in exploratory
behavior and social interaction in adulthood (118).

SARS-CoV-2
While researchers have explored the effects of maternal infection
with ZIKV, CMVand InfluenzaA virus on fetal neurodevelopment
for several years, we are only beginning to examine whether and
how the recently emerged SARS-CoV-2 virus, responsible for the
current coronavirus disease 2019 (COVID-19) pandemic, may
affect newborns in the long term. SARS-CoV-2 infection induces
similar cellular responses as the other three viruses, including an
increase in pro-inflammatory cytokines associated with disease
severity and can be fatal (119). In particular, COVID-19 patients
show elevated IL-6 in their serum (120), even prompting the
consideration of anti-IL-6 antibodies as a treatment (121, 122). In
some patients, peripheral T helper cells also show high levels of
interleukin (IL) 17A in the lung (123, 124).

Whether the virus can cross the placenta and infect the fetus
is unknown. Several studies have failed to detect viral antigens or
RNA in the placenta (125–133), and placental cells do not seem
to co- express the two receptors normally required for the virus
to enter cells, angiotensin-converting enzyme 2 receptor (ACE2)
and transmembrane protease serine 2 (TMPRSS2) (134, 135). On
the other hand, others have reported viral infection in the
placenta (136–142), but not in the fetal brain, even though
ACE2 and TMPRSS2 are expressed in different types of
neurons and microglia (143–148) as well as NPCs (145, 149).
In fact, NPCs in culture can be artificially infected with SARS-
Frontiers in Immunology | www.frontiersin.org 5
CoV-2 (150, 151). These contradictory findings make it crucial to
assess whether SARS-CoV-2 directly infects fetal neural cells.
Studies with human iPSCs and brain organoid cultures are
essential in this regard, and such work has already described
the expression of ACE2 and TMPRSS2 in the brain (152) and
choroid plexus (152, 153). Since the choroid plexus is essential
for the formation and function of the CNS and cerebrospinal
fluid (CSF) (154), SARS-CoV-2 infection of this region leads to
the breakdown of the barrier between the blood and CSF, which
can allow the passage of virus, immune cells, and cytokines in the
brain, where they can promote a pro-inflammatory environment
(153) and disrupt the normal choroid plexus function (155).
Organoid studies have also shown that SARS-CoV-2 can
contribute to neuroinflammation by infecting pericytes and
then spreading to neural cells such as astrocytes, in which they
induce type I IFN production and ultimately cell death (156).

Substantial circumstantial evidence points to the ability of
SARS-CoV-2 to directly affect the developing brain, but much
more remains to be clarified, especially with respect to viral effects
on NPCs and cortical development. For this work, well-designed
studies are needed with cortical organoids and assembloids
involving the various actors involved in neurodevelopment, such
as immune system cells, choroid plexus and microglia (Figure 3).

Ultimately, appropriate animal models are needed, which has
been a challenge so far because the viral “spike” protein binds
only weakly to the ACE2 receptor in mice (157). Researchers can
use the transgenic mouse “B6. Cg-Tg(K18-ACE2)2Prlmn/J”,
which was developed during the SARS-CoV epidemic in 2003
and which expresses the human ACE2 receptor (158). The virus
can infect epithelial cells in the upper and lower respiratory tract
and brain of this mouse. In addition, the “mouse-adapted”
FIGURE 3 | Maternal infection with SARS-CoV-2. Maternal infection with SARS-CoV-2 increases levels of cytokines IL-1b, IL-6, IL-17A, and IFN-g in the mother.
These factors can cross the placenta and induce neuroinflammation in the fetal brain. Whether the virus itself can also cross the placenta and infect the fetus is
unclear. Studies in vitro suggest that the virus can infect fetal choroid plexus cells, where they disrupt production of cerebrospinal fluid and compromise the integrity
of the blood-brain barrier, allowing immune cells and cytokines to enter the developing brain. Studies in vitro have also suggested that SARS-CoV-2 can directly
infect NPCs and microglia.
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recombinant SARS-CoV-2 virus called “SARS-CoV-2 DA” can
enter mouse cells (159). These two models will likely provide
important insights into how maternal infection with SARS-CoV-
2 affects offspring.

Analysis of brain organoids and assembloids may be powerful
for elucidating the effects of not only SARS-CoV-2, but also better
studied viruses like ZIKV and CMV, on fetal neurodevelopment.
For example, combining the use of assembloids and single-cell
analysis may clarify how viruses influence the interactions among
NPC populations, newborn neurons and microglia in different
brain areas. Such work may help identify how viral infection
alters gene expression and signaling pathways in NPCs and
microglia, and determine whether viral effects on offspring
depend on the gestational age at infection. Age-dependent effects
may help explain why ZIKV and CMV target the same cells, yet
exert different long-term effects on the offspring. Ultimately, such
studiesmay lead to strategies that prevent viral entry and replication
in fetal cells, and reduce the production of pro-inflammatory
cytokines that can fight the infection and wreak havoc on the
developing fetal brain.
PRO-INFLAMMATORY CYTOKINES AND
FETAL NEURODEVELOPMENT

The release of pro-inflammatory cytokines by maternal immune
cells in response to infections can reach the developing fetus
through the placenta (160). Furthermore, considering that the
primordial fetal blood-brain barrier (BBB) is highly permeable
throughout development, the maternal pro-inflammatory
cytokines can enter the fetal circulation and profoundly effects
the fetal brain (161). This likely explains why elevated levels of
pro-inflammatory cytokines in the fetal brain and cerebrospinal
fluid have been associated with neuroinflammation and
neurodevelopmental diseases (162–166).
IL-6
IL-6 has well-established effects on neurodevelopment. It is
produced by various cell types, including fibroblasts, endothelial
cells, and immune cells. In the innate immune system,myeloid cells
such as neutrophils, monocytes/macrophages, and dendritic cells
recognize pathogens throughToll-like receptors, then produce IL-6
(167). Higher levels of maternal IL-6 during pregnancy have been
linked to lower cognitive ability in offspring during the first year of
life, suggesting an altered front limbic circuit (168). Higher levels of
maternal IL-6 during pregnancy have also been linked to an
enlarged right amygdala and greater bilateral connectivity of the
amygdala to brain regions involved in sensory processing and
integration (spindle-shaped somatosensory cortex), salience
deletion (insula anterior), and learning and memory (caudate and
parahippocampal gyrus) in 2-year-old offspring (169). These
findings may reflect the effects on IL-6 on working memory,
cognitive function and behavior (169).

Studies in animal models have begun to clarify how IL-6
exerts its effects on fetal neurodevelopment. IL-6 readily crosses
the fetal BBB (170, 171). Intraperitoneal administration of IL-6
Frontiers in Immunology | www.frontiersin.org 6
to pregnant females results in inflammation of the fetal brain and
causes social, motor, and learning deficits in the offspring as
adults (Figure 2) (172, 173). Intraventricular injection of IL-6 on
postnatal day 0.5 increases the formation of excitatory synapses
while reducing inhibitory synapses, cognitive and learning
functions, and social interactions (174). Transgenic mice that
overexpress IL-6 in the brain show reduced neurogenesis in the
dentate gyrus of the hippocampus (175). These perturbations are
linked to an expansion of NPCs in the adult forebrain and to
altered proportions of interneuron subtypes during olfactory
neurogenesis in the offspring as adults. Moreover, IL-6 levels in
the embryo regulate the size of the NPC pool, and the burst of
maternal IL-6 expression upon infection permanently increases
this pool, which persists into adulthood (176, 177). Elevated
maternal IL-6 may also delay the migration of progenitor cells of
GABAergic neurons from the ventral telencephalon to the
developing cortical plate (178).

Infection of pregnant mice causes an increase in IL-6 in both
maternal serum and fetal brain, and loss of Purkinje cells in lobe VII
of the cerebellum. These changes are associated with phosphorylation
of signal transducer and activator of transcription (STAT) 3, a
regulator of genes related to cell proliferation and apoptosis, in the
fetal hindbrain. In support of the role of IL-6 in these brain
alterations, ablating the receptor for IL-6 from placental
trophoblasts mitigates or even prevents the alterations as well as the
accompanying autistic-like behaviors (179). In addition to this
receptor in the placenta, microglia help mediate the effects of IL-6:
the cytokine increases the branching and vacuole density of microglia,
and activated microglia themselves produce IL-6, exacerbating its
adverse effects during neurodevelopment (180).

IL-17A
IL-6 and other cytokines help drive the transition from the initial
innate immune response to the specific adaptive immune response
led by T cells (181). IL-6 in combination with TGF-b promotes the
differentiation of naive T cells towards helper T cells with a Th17
phenotype (182). Th17 cells produce IL-17A (183) in response to
fungal, bacterial and viral infections (184–186). Infection of
pregnant mice has been linked to alterations in IL-17A, which in
turn lead to fetal neurodevelopmental problems (187–189).
Administering IL-17A to the mother or directly into the
embryonic brain activates microglia in the subventricular zone
and increases their phagocytic ability (Figure 2) (180), leading to a
smaller cortex in the embryo and in the offspring as adults. IL-17A
also upregulates gene expression at GABAergic synapses and
reduces anxiety-like behavior in offspring (190).

IL-17A binds to NPCs via a specific surface receptor, inhibiting
their proliferation as well as their ability to form neurospheres or
to differentiate into astrocytes and oligodendrocyte precursor cells
(35). In addition, IL-17A acts to disorganize cytoarchitecture in
the cortex, reflected in delayed expression of neuronal markers in
different cortical layers (191). These cortical alterations are
associated with ASD-like behaviors in the offspring, including
abnormal ultrasonic vocalization, deficits in social interaction, and
repetitive behavior. The tight link between maternal cytokine
signaling and fetal neurodevelopment is reflected in the
observation that maternal infection upregulates the IL-17
April 2022 | Volume 13 | Article 816619

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Elgueta et al. Maternal Infections Consequences in Neurodevelopment
receptor in the fetal cortex, but not if the mother is pretreated with
an anti-IL-17A antibody (191).

IL-1b
During an infection, IL-1b is one of the first cytokines released by
macrophages, monocytes, and dendritic cells. It is required for
efficient innate and adaptive immune responses (192).
Intraperitoneal injection of IL-1b into pregnant animals
(Figure 2) increases the density of amoeboid microglia in the
cortical plate, suggesting inflammation of the fetal brain (193). In
addition, IL-1b injection into pregnant female induces CD4+ and
CD8+T cells to infiltrate the placenta andultimately enter the fetus,
where they thin out the cerebral cortex and cause behavioral deficits
later in the offspring (194). Decreasing IL-1b expression in the
placenta and fetal brain aswell as inhibiting the enzyme nitric oxide
synthase in the cortex reverse the ability of IL-1b to disorganize the
arborization of neuronal dendrites in the offspring (195). The
harmful effects of IL-1b and IL-6 on fetal brain can also be
reversed by intraperitoneal administration of an interleukin-1
receptor antagonist into pregnant animals (196): the antagonist
reduces damage to the placenta, and in the offspring, it reduces the
density of microglia expressing ionized calcium-binding adaptor
molecule 1 (Iba-1) and improves motor performance.

IFN-g
IFN-g is secreted by natural killer cells as part of the innate
immune response and by CD4+ Th1 cells and CD8+ T cells as
part of the adaptive immune response. In mice, IFN-g inhibits
NPC proliferation by blocking them in G1/S through a pathway
that involves STAT1 (197). Injecting IFN-g into the fetal brain
ventricle on embryonic day 9.5 leads to a smaller number of
immature neurons and larger number of nestin-positive NPCs
on embryonic day 14.5, suggesting that IFN-g inhibits embryonic
neurogenesis (198). These effects can be reversed by inhibiting
signaling downstream of the IFN-g receptor or by knocking
down STAT1 results in a reversal of the adverse effects of IFN-g
administration on neurogenesis (198).

In these ways, the maternal inflammatory response to viral
infection induces pro-inflammatory cytokines that can reach the
developing fetal brain via the placenta and the fetal BBB. These
cytokines exert their effects on NPCs and in microglia leading to
their activation and long-lasting neuroinflammation. These
“indirect” effects of maternal infection add to the direct effects
caused by vertical virus transmission, emphasizing the importance
of developing vaccines against viruses that affect fetal
neurodevelopment and encouraging vaccination among pregnant
women or trying to become pregnant. These considerations also
highlight the need to develop comprehensive anti-viral strategies
that neutralize the virus and dampen the strong maternal immune
response that can harm fetal neurodevelopment.
DISCUSSION

Maternal infections during pregnancy can have severe effects on
fetal brain development, causing long-term consequences
manifesting as ASD, schizophrenia, social disturbances,
Frontiers in Immunology | www.frontiersin.org 7
cognitive impairment, and other disorders. This review has
discussed two of the major mechanisms by which a maternal
infection can alter neurodevelopment. First, vertical transmission
of virus between mother and fetus via the placenta allows the
virus to enter the fetal circulation, from where it infects cells
important for neurogenesis, such as NPCs and microglia. Second,
viral infection in the mother triggers an increase in the levels of
pro-inflammatory cytokines in her systemic circulation, which
then enter the fetal circulation and ultimately reach the
developing brain. These cytokines alter NPC biology and
activate microglia, causing them to produce even more pro-
inflammatory cytokines that maintain neuroinflammation.
Whether fetal brain cells are directly infected by virus or
affected by cytokines coming from other infected cells, the fetal
cells undergo various changes in response to maternal infection,
leading to altered cortical structure, brain size, or connectivity
between brain areas. These perturbations can ultimately affect the
cognitive ability and behavior of the offspring into adulthood.

The severe SARS-CoV-2 pandemic has brought new urgency
to research into how maternal infection with virus can affect fetal
neurodevelopment. It is imperative that we understand whether
SARS-CoV-2 can pass from mother to fetus, and whether it can
directly infect fetal neural cells and microglia. However, as this
review illustrates, the virus may affect fetal neurodevelopment
even without directly infecting it, so studies should examine
whether maternal infection with SARS-CoV2 is associated with
neurodevelopmental disorders. Such studies should examine
COVID-19 patients but also exploit the experimental tools of
human iPSC-derived brain organoids and assembloids, which
have proven so powerful in research on ZIKV and CMV. Such
studies should also make use of appropriate mouse models. The
overarching goal is to prevent or safely manage viral infections
during pregnancy and minimize their long-term consequences
on the offspring.
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