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A B S T R A C T   

Childhood trauma is a leading risk factor for adolescents developing major depressive disorder (MDD); however, 
the underlying neuroimaging mechanisms remain unclear. This study aimed to investigate the association among 
childhood trauma, MDD and brain dysfunctions by combining static and dynamic brain network models. We 
recruited 46 first-episode drug-naïve adolescent MDD patients with childhood trauma (MDD-CT), 53 MDD pa-
tients without childhood trauma (MDD-nCT), and 90 healthy controls (HCs) for resting-state functional magnetic 
resonance imaging (fMRI) scans; all participants were aged 13–18 years. Compared to the HCs and MDD-nCT 
groups, the MDD-CT group exhibited significantly higher global and local efficiency in static brain networks 
and significantly higher temporal correlation coefficients in dynamic brain network models at the whole-brain 
level, and altered the local efficiency of default mode network (DMN) and temporal correlation coefficients of 
DMN, salience (SAN), and attention (ATN) networks at the local perspective. Correlation analysis indicated that 
altered brain network features and clinical symptoms, childhood trauma, and particularly emotional neglect 
were highly correlated in adolescents with MDD. This study may provide new evidence for the dysconnectivity 
hypothesis regarding the associations between childhood trauma and MDD in adolescents from the perspectives 
of both static and dynamic brain topology.   

Introduction 

Major depressive disorder (MDD) is a common illness and a signifi-
cant public health problem; moreover, it is the leading cause of illness 
and disability, especially among young people (Liu et al., 2022). The 
prevalence of adolescents reporting MDD symptoms has nearly doubled 
in the last decade, increasing from 8.3% in 2008 to 14.4% in 2018 
(Sekhar et al., 2021). Childhood trauma has been associated with the 
appearance of various psychopathological disorders, such as mental 

disorders, posttraumatic stress disorder, and substance use disorders 
(Aas et al., 2017; Gidzgier et al., 2019; Kim & Lee, 2016). In particular, 
MDD is commonly observed among individuals reporting exposure to 
childhood traumatic events (Baldwin et al., 2019; Green et al., 2010), 
and childhood trauma has been established as a major risk factor for 
depression in adolescents (Chen et al., 2021; De Bellis et al., 2019). 
Moreover, meta-analyses show that childhood traumatic events are 
associated with a 2- to 3-fold increase in the risk of MDD and other 
mental disorders (Trotta et al., 2015; van Dam et al., 2012; Varese et al., 
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2012). 
Past neuroimaging studies have demonstrated that childhood trauma 

is associated with MDD-related changes in brain structures and func-
tions, e.g., reductions in total gray matter volume and the volumes of the 
hippocampus, amygdala, anterior cingulate cortex (ACC), and ventro-
medial prefrontal cortices (PFCs) (Frissen et al., 2018; Teicher et al., 
2016; Vythilingam et al., 2002). Studies have also shown that childhood 
traumatic experiences and dimensional symptoms are associated with 
abnormal functional network architecture in individuals with MDD (Yu 
et al., 2019). Furthermore, MDD patients with childhood trauma have 
increased amplitudes of low-frequency fluctuations (ALFFs) in the 
bilateral amygdala and left orbit/cerebellum and decreased fractional 
amplitudes of low-frequency fluctuation (fALFFs) in the left inferior 
temporal gyrus and right middle frontal gyrus compared to those of 
healthy controls (Du et al., 2016; Heim et al., 2008), demonstrating that 
childhood trauma may contribute to brain dysfunction and increase the 
risk of MDD. Moreover, in a multimodal study, childhood trauma was 
found to have long-term effects on the function and structure of the 
brain (Duncan et al., 2015). In adolescents with MDD, recent evidence 
has suggested that childhood trauma is indeed associated with the dy-
namic function among the hub brain regions of the bilateral intra-
calcarine cortex (ICC), right supracalcarine cortex (SCC), right cuneal 
cortex, right lingual gyrus, bilateral superior division of the lateral oc-
cipital cortex and right paracingulate gyrus (Zhang et al., 2022). 

Despite accumulating knowledge, recent studies on the relationships 
between childhood trauma and MDD are still limited in several ways. 
First, many of the prior studies were limited in that they only focused on 
functional connectivity (FC) patterns in several predefined regions of 
interest (ROIs) (Fan et al., 2021; He et al., 2022). Although there have 
been some attempts (Yu et al., 2019), knowledge about how childhood 
trauma affects the configuration of large-scale brain networks in MDD 
patients is relatively limited. This question is important since functional 
dysconnectivity in MDD patients is not constrained in a circumscribed 
area but is usually associated with alterations of the entire brain (Yang 
et al., 2021; Zhang et al., 2011). In particular, it has been suggested that 
graph-theoretical-based topological measures (e.g., global and local ef-
ficiency) (Yang et al., 2021) can provide a powerful framework for un-
derstanding brain pathology, but their possible relationships with 
childhood trauma in MDD patients have seldom been reported. Second, 
most conventional neuroimaging studies were performed under the 
assumption that FC strengths between various cortical and subcortical 
regions of the brain are static over the entire duration of an fMRI 
experiment (Biswal et al., 2010; Chen et al., 2017; Smith et al., 2009). 
However, it has been suggested that brain FC fluctuates dynamically, 
and much important information is missed by conventional static 
analysis methods (Bassett et al., 2011; Hutchison et al., 2013; Sie-
benhuhner et al., 2013). Third, most neuroimaging studies are focused 
on the relationship between adult MDD and childhood trauma, while 
research on alterations in the brain function of adolescent MDD patients 
with childhood trauma is still scarce. Hence, there is a need to combine 
static and dynamic brain network measures to fully characterize the 
possible relationships between childhood trauma and MDD-related 
brain dysfunctions, especially in adolescents with MDD. 

To overcome the above limitations, the aim of the present study was 
to investigate possible associations between childhood trauma and brain 
functions in first-episode, drug-naïve patients with MDD by combining 
both static and dynamic brain network models. To our knowledge, our 
work is one of the first to incorporate both static and dynamic brain 
topological organizations in an investigation of the effects of childhood 
trauma on brain function. 

Materials and methods 

Participants 

A total of 99 drug-naïve adolescents with first-episode MDD and 90 

demographically matched healthy controls (HCs) were recruited. Ado-
lescents with MDD were recruited from the First Affiliated Hospital of 
Chongqing Medical University, and HCs were enrolled through local 
media advertising in Chongqing, China. The Ethics Committee of the 
First Affiliated Hospital of Chongqing Medical University approved this 
research protocol (approval ID: 2020–864), and all patients provided 
written informed consent. 

We measured adverse childhood events using the 28-item Childhood 
Trauma Questionnaire (CTQ), a retrospective questionnaire that 
assessed childhood traumatic experiences (Bernstein et al., 1994). The 
CTQ contains five subscales to assess different forms of trauma: 
emotional abuse, physical abuse, sexual abuse, emotional neglect, and 
physical neglect. Standardized cutoffs recommended by the CTQ manual 
(Bernstein et al., 1997) and used in previous studies (Huang et al., 2021; 
Wu et al., 2022) were used to assign patients who exceeded the cutoff on 
one or more CTQ subscales to the MDD with childhood trauma 
(MDD-CT) group (cutoff scores: emotional abuse, 13; physical abuse, 10; 
sexual abuse, 8; emotional neglect, 15; and physical neglect, 10). The 
MDD without childhood trauma (MDD-nCT) group included patients 
without severe abuse or neglect and were defined as having scores below 
the cutoff point on all five subscales. 

The inclusion and exclusion criteria for those three groups are shown 
in Table 1. 

Imaging data acquisition 

MRI scans were acquired on a Siemens Magnetom Skyra 3T scanner 
with a 32-channel head coil. High-resolution transaxial T1-weighted 
structural images were obtained using 3D-MPRAGE with the following 
parameters: repetition time (TR) = 2000 ms; echo time (TE) = 2.56 ms; 
inversion time (TI) = 900 ms; flip angle = 9◦; matrix size, 256 × 256; 
field of view (FOV) = 256 × 256 mm2; slice thickness = 1 mm; slices per 
slab = 192; and voxel size, 1 × 1 × 1 mm3. A total of 240 resting-state 
blood oxygen level-dependent (BOLD) volumes were obtained. The pa-
rameters for BOLD scans were as follows: TR = 2000 ms; TE = 30 ms; flip 
angle = 90◦; FOV = 220 × 220 mm2; number of slices = 36; recon-
structed voxel size = 3.4 × 3.4 × 3 mm3; and layer thickness = 3.0 mm. 

Table 1 
The inclusion and exclusion criteria.  

Group Inclusion criteria Exclusion criteria 

MDD-CT 
and 
MDD- 
nCT 

• aged between 13 and 18 
• meet the diagnostic 
criteria for MDD according 
to the DSM-5 
• HAMD-17 score >7 
• first-episode and drug- 
naïve 

• the presence or past history of severe 
medical, neurological or psychiatric 
disorders (other than MDD in patients) 
• anxiety comorbidity was not 
considered an exclusion criterion 
provided that MDD was the main 
diagnosis and the primary reason for 
seeking assistance 
• substance abuse, head trauma, or loss 
of consciousness 
• contraindications to MRI scanning 
• left handedness. 

MDD-CT • CTQ score exceeds the 
cutoff point for any one or 
more subscales 

MDD-nCT • CTQ score below the 
cutoff point on all five 
subscales 

HCs • aged between 13 and 18 
• HAMD-17 score <=7 
• CTQ score below the 
cutoff point on all five 
subscales 

• the presence or past history of severe 
medical, neurological or psychiatric 
disorders 
• substance abuse, head trauma, or loss 
of consciousness 
• contraindications to MRI scanning 
• left handedness. 

Inclusion and exclusion criteria. MDD-CT, MDD with childhood trauma; MDD- 
nCT, MDD without childhood trauma; HCs, healthy controls; DSM-5, Diag-
nostic and Statistical Manual of Mental Disorders, 5th edition; HAMD-17, 17- 
item Hamilton Depression Scale; CTQ, Childhood Trauma Questionnaire; MRI, 
magnetic resonance imaging. 
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Data processing 

After data acquisition, the images were preprocessed using the 
standard pipeline of the DPARSF toolbox (http://rfmri.org/DPARSF) 
(Chao-Gan & Yu-Feng, 2010; Yan et al., 2016). Briefly, the pipeline in-
cludes removing the first 10 time points, slice-timing correction, motion 
realignment, spatial normalization, temporal filtering, and nuisance 
regression. Global signal regression was not performed, as this process is 
controversial (Murphy & Fox, 2017). Specifically, for those participants 
who were under 18 years of age, an adolescent brain template obtained 
from 316 Chinese adolescents (https://github.com/zuoxinian/CCS/ 
tree/master/H3/GrowthCharts/Templates/IPCAS/BrainTemplate) 
(Dong et al., 2020) was used for normalization instead of the default 
brain template. More details of the preprocessing procedures can be 
found in the Supplementary Materials and some previous publications 
(Huang et al., 2021; Long et al., 2020; Zhang et al., 2021). To ensure 
data quality, the following steps, from which 10 subjects were excluded, 
were performed: 1) all images were visually inspected before analysis to 
ensure the absence of apparent or aberrant artifacts, and all scans were 
inspected visually for any gross structural abnormality by an expert 
neuroradiologist; 2) data were excluded from the analyses when 
excessive head motion occurred during scanning, as defined by a mean 
framewise-displacement (FD) > 0.2 mm (Long et al., 2020; Yan et al., 
2019); and 3) in all the following analyses, the mean FD values were 
further used as a covariate to minimize possible effects of head motion. 

Static and dynamic brain network constructions 

The Power functional atlas was used to define the nodes in both static 
and dynamic brain networks, resulting in a total of 264 ROIs distributed 
across the brain (Power et al., 2011) (Supplementary Figure S1). 
Referring to previous work (MW Cole et al., 2013; Mohr et al., 2016; Niu 
et al., 2022), these ROIs were further parcellated into 9 well-established, 
large-scale networks: the default mode network (DMN), fronto-parietal 
network (FPN), sensorimotor network (SMN), visual network (VIS), 
subcortical network (SUB), cingulo-opercular network (CON), salience 
network (SAN), attention network (ATN), and auditory network (AUD). 

The rs-fMRI signals of all voxels within each of the 264 nodes were 
first averaged. The static FC strength was computed as the Fisher’s r-to-z 
transformed Pearson’s correlation coefficients of the averaged rs-fMRI 
signals between each pair of nodes, yielding a 264×264 FC matrix 
that represents the network organization of the static brain. The 
extracted mean rs-fMRI signals were further subdivided into a number of 
time windows using a common sliding-window approach (Long et al., 
2020; Zhao et al., 2022) to construct dynamic brain networks. In the 
primary analyses, based on previous recommendations (Long et al., 
2020; Sun et al., 2019; Tang et al., 2022), a window width of 100 s and a 
step length of 6 s were used, resulting in a total of 61 time windows. The 
effects of using different window widths or step lengths were investi-
gated in the latter part of this study. Similar to the static FC matrices, a 
264×264 dynamic FC matrix was then generated for each time window 
based on the Fisher’s r-to-z transformed FC strengths between pairs of 
nodes within that window. These time-ordered matrices then formed a 
dynamic brain network G = (Gt)t = 1, 2, 3, …, 61, where the tth matrix (Gt) 
represents the “snapshot” of dynamic brain FC patterns within the tth 
time window (Huang et al., 2021; Sun et al., 2019). 

Topological brain network metrics 

After brain network construction, several commonly used static and 
dynamic topological network metrics were calculated for each partici-
pant. All metrics were computed at the whole-brain level and network 
level separately. For static brain networks, we calculated the global ef-
ficiency (Eglob) and local efficiency (Eloc), which are both intuitive and 
widely used metrics to measure the topological features of a static brain 
network (Meijer et al., 2020; Rubinov & Sporns, 2010; Yang et al., 

2021). For dynamic brain networks, a validated metric called the tem-
poral correlation coefficient was computed to quantify the temporal sta-
bility of brain networks, with a higher value indicating higher stability 
(fewer fluctuations) of the dynamic FC patterns over time (Long et al., 
2020, 2023; Sizemore & Bassett, 2018). The static and dynamic brain 
function metrics used in this study have been shown to have high 
test-retest reliability in previous studies (Braun et al., 2012; Cao et al., 
2014; Long et al., 2023). All these metrics were calculated based on 
thresholded, undirected graphs in a wide range of densities from 0.10 to 
0.34 with an interval of 0.01. Such a range was chosen to ensure that all 
metrics are estimable while spurious connections can be minimized 
(Achard & Bullmore, 2007; Zhang et al., 2011). The area under the curve 
(AUC) for each metric across this range (0.10–0.34) was calculated and 
evaluated by statistical analyses to avoid possible bias caused by a single 
density level (Yang et al., 2021; Zhang et al., 2011). More details are 
provided in the Supplementary Materials. 

The static brain network metrics were computed using the Brain 
Connectivity Toolbox (BCT) (Rubinov & Sporns, 2010). The codes for 
computing the temporal correlation coefficient for dynamic brain net-
works are available at https://github.com/Yicheng-Long/dy 
namic_graph_metrics. 

Statistics 

Group differences in demographics and clinical characteristics were 
compared between groups using the chi-square test or analysis of vari-
ance. Differences were considered significant at p < 0.05. 

All network metrics for both the whole-brain and each of the nine 
networks were compared among the MDD-CT, MDD-nCT and HCs 
groups by analysis of covariance (ANCOVA) covarying for sex, age and 
mean FD. The ANCOVA models were first used to detect significant main 
effects, with FDR corrections performed across the multiple metrics and 
multiple networks examined. When main effects were significant (FDR- 
corrected p < 0.05), Bonferroni post hoc pairwise comparisons were 
further adopted between all pairs of groups (MDD-CT vs. MDD-nCT, 
MDD-CT vs. HCs, and MDD-nCT vs. HCs), and differences were consid-
ered significant at Bonferroni-corrected p < 0.05. Statistical analyses 
were performed using SPSS 23.0 (IBM Corporation, Armonk, NY, USA), 
with significance set at p < 0.05 after FDR corrections. 

Validation analyses 

Several supplementary analyses were further performed to validate 
the results. Firstly, when constructing dynamic brain networks using the 
sliding-window approach, there is still no consensus on the optimal 
window width and step length. Therefore, we repeated the analyses on 
the temporal correlation coefficients using a range of different window 
widths (80/100/120 s) and step lengths (6/8/10 s) to validate that the 
results were not affected by different sliding-window parameters. 

Secondly, a split-half validation analysis was performed by randomly 
spliting the whole sample into two subsets. In both subsets, the age, sex, 
education, and clinical symptoms were all still matched between groups 
(Supplementary Tables S1-S2). The analyses were then repeated inde-
pendently in two subsets. See Supplementray Materials for more details. 

Results 

A schematic diagram of the entire process is shown in Fig. 1. 

Demographic characteristics 

The demographic characteristics of all patients are recorded in 
Table 2. Among the MDD patients, 46 and 53 patients were assigned to 
the MDD-CT and MDD-nCT groups, respectively. There were no signif-
icant differences among the three groups in terms of age, sex, body mass 
index (BMI), and years of education (p > 0.05). Both the MDD-CT and 
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MDD-nCT groups showed significantly higher HAMD-17 and CTQ total 
scores than the HCs group (all p < 0.05, Bonferroni post hoc 
comparisons). 

Comparison of static brain network metrics 

Compared to the HCs and MDD-nCT groups, the MDD-CT group 
showed significant increases in both the Eglob (observed power = 0.858, 
partial η2 =0.058, Bonferroni-corrected p = 0.014, 95% CI of difference 
= 0.000–0.003/Bonferroni-corrected p = 0.006, 95% CI of difference =
0.000–0.002 when compared to MDD-nCT/HCs groups) and Eloc 
(observed power = 0.838, partial η2 =0.056, Bonferroni-corrected p =

0.017, 95% CI of difference = 0.000–0.005/Bonferroni-corrected p =
0.008, 95% CI of difference = 0.001–0.005 when compared to MDD- 
nCT/HCs groups) for the whole-brain (Fig. 2A). Moreover, at the local 
network level, the MDD-CT group had significantly higher Eglob in the 
DMN (observed power = 0.950, partial η2 =0.079, Bonferroni-corrected 
p < 0.001, 95% CI of difference = 0.001–0.006 when compared to the 
HCs group), higher Eglob in the FPN (observed power = 0.810, partial η2 
=0.052, Bonferroni-corrected p = 0.021, 95% CI of difference =
0.000–0.006/Bonferroni-corrected p = 0.012, 95% CI of difference =
0.001–0.006 when compared to the MDD-nCT/HCs groups) and higher 
Eloc in the DMN (observed power = 0.970, partial η2 =0.088, 
Bonferroni-corrected p < 0.001, 95% CI of difference = 0.003–0.012 
when compared to the HCs group) (Fig. 2B, C). However, no significant 
differences in the Eglob and Eloc were found between MDD-nCT and HC 
groups (all Bonferroni-corrected p>0.05). 

Comparison of dynamic brain network metrics 

Comparisons of the temporal correlation coefficients among the 
three groups are shown in Fig. 3. We observed significantly increased 
temporal correlation coefficients for the whole-brain (observed power 
= 0.915, partial η2 = 0.069, Bonferroni-corrected p = 0.001, 95% CI of 
difference = 0.000–0.001), DMN (observed power = 0.952, partial η2 
=0.080, Bonferroni-corrected p < 0.001, 95% CI of difference =
0.000–0.002), SAN (observed power = 0.764, partial η2 =0.047, 
Bonferroni-corrected p = 0.010, 95% CI of difference = 0.000–0.002) 
and ATN (observed power = 0.870, partial η2 =0.060, Bonferroni- 
corrected p = 0.002, 95% CI of difference = 0.000–0.001) in the 
MDD-CT group compared to the HCs group (Fig. 3A, B, H, I). In addition, 
the temporal correlation coefficient at the whole-brain level (observed 
power = 0.915, partial η2 =0.069, Bonferroni-corrected p = 0.025, 95% 
CI of difference = 0.000–0.001) was significantly higher in the MDD-CT 
group than in the MDD-nCT group (Fig. 3A). There were no significant 
differences in the temporal correlation coefficients between the MDD- 
nCT and HC groups (all Bonferroni-corrected p > 0.05). 

Correlation with clinical symptoms 

Partial correlation analyses were performed to examine the rela-
tionship between alterations in brain measures and clinical symptoms in 
patients with MDD, controlling for sex, age, and mean FD. Acquired p 
values were adjusted using the Benjamini and Hochberg FDR method. A 
significant positive correlation was observed between the temporal 
correlation coefficients of the whole-brain and HAMD-17 scores (r =
0.288, FDR p = 0.024, Fig. 4A), as well as between the temporal cor-
relation coefficients of the whole-brain and CTQ Emotional Neglect 
scores (r = 0.281, FDR p = 0.024, Fig. 4B). 

Validation analyses 

The results were generally unchanged when re-calculating the 

Fig. 1. Flowchart of the whole experiment. MDD-CT, MDD with childhood trauma; MDD-nCT, MDD without childhood trauma; HCs, healthy controls; HAMD-17, 17- 
item Hamilton Depression Scale; CTQ, Childhood Trauma Questionnaire; fMRI, functional magnetic resonance imaging. 

Table 2 
Demographic characteristics.   

MDD- 
CT (n =
46) 

MDD- 
nCT (n 
= 53) 

HCs (n 
= 90) 

Group 
comparisons 

Post-hoc 
comparisons 

Demographic characteristics 

Age (years) 15.98 
±1.40 

15.85 
±1.30 

15.62 
±1.88 

F = 0.813, p 
= 0.445 

– 

Sex (male/ 
female) 

46(14/ 
32) 

53(15/ 
38) 

90(33/ 
57) 

χ2 =1.214, p 
= 0.545 

– 

BMI 20.89 
±3.11 

19.85 
±2.92 

21.31 
±3.88 

F = 3.026, p 
= 0.051 

– 

Education 
(years) 

9.98 
±1.41 

9.85 
±1.31 

9.62 
±1.88 

F = 0.813, p 
= 0.445 

–  

Clinical characteristics 

HAMD- 
17 

19.37 
±5.34 

17.62 
±5.03 

1.38 
±1.61 

F = 452.806, 
p<0.001 

MDD-CT, 
MDD-nCT 
>HC 

HAMA 16.43 
±6.31 

14.66 
±6.28 

1.26 
±1.55 

F = 220.404, 
p<0.001 

MDD-CT, 
MDD-nCT 
>HC 

CTQ 51.02 
±10.44 

36.49 
±6.76 

36.28 
±7.26 

F = 58.156, 
p<0.001 

MDD-CT >
MDD-nCT, HC 

CTQ 
-PN 

11.11 
±2.73 

7.74 
±1.78 

7.72 
±1.97 

F = 43.809, 
p<0.001 

MDD-CT >
MDD-nCT, HC 

CTQ 
-EN 

15.61 
±3.95 

10.28 
±3.44 

10.50 
±3.60 

F = 35.400, 
p<0.001 

MDD-CT >
MDD-nCT, HC 

CTQ -SA 6.65 
±3.28 

5.19 
±0.62 

5.22 
±0.54 

F = 12.710, 
p<0.001 

MDD-CT >
MDD-nCT, HC 

CTQ -PA 7.07 
±3.17 

5.51 
±1.10 

5.47 
±0.93 

F = 13.741, 
p<0.001 

MDD-CT >
MDD-nCT, HC 

CTQ -EA 10.59 
±4.09 

7.77 
±2.61 

7.37 
±2.76 

F = 17.350, 
p<0.001 

MDD-CT >
MDD-nCT, HC 

Demographic characteristics. MDD-CT, MDD with childhood trauma; MDD-nCT, 
MDD without childhood trauma; HCs, healthy controls; BMI, body mass index; 
HAMD-17, 17-item Hamilton Depression Scale; HAMA, Hamilton Anxiety Scale; 
CTQ, Childhood Trauma Questionnaire; CTQ-PN, CTQ Physical Neglect sub-
scale; CTQ-EN, CTQ Emotional Neglect subscale; CTQ-SA, CTQ Sexual Abuse 
subscale; CTQ-PA, CTQ Physical Abuse subscale; CTQ-EA, CTQ Emotional Abuse 
subscale. Unless otherwise indicated, data are presented as the mean ± standard 
deviation. 
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temporal correlation coefficients using a range of different window 
widths and step lengths: we consistently observed significantly 
increased temporal correlation coefficients for the whole brain, DMN, 
SAN, and ATN in the MDD-CT group compared to the HC group; in 
addition, the temporal correlation coefficient was significantly higher in 
the MDD-CT group than in the MDD-nCT group at the whole-brain level 
(Supplementary Table S3). 

As shown in Supplementary Figures S2-S3, for most brain network 
metrics, similar trends as found in the whole sample were consistently 

observed in both of the two split-half subset, which could suggest that 
our findings are not likely to be coincidental. Nevertheless, differences 
in statistical significance were only observed in one of the subsets 
(Supplementary Figures S2-S3); such lack of significant differences in a 
smaller subset may underscore the importance of using a larger sample 
to detect group effects. 

Fig. 2. Group differences in network topological properties among major depressive disorder (MDD) patients with childhood trauma, MDD patients without 
childhood trauma patients and HCs. Violin plots illustrating the area under the curve (AUC) parameters of global efficiency (Eglob) and local efficiency (Eloc) for the 
three groups. A: whole-brain; B: default mode network (DMN); C: fronto-parietal network (FPN); D: sensorimotor network (SMN); E: visual network (VIS); F: 
subcortical network (SUB); G: cingulo-opercular network (CON); H: salience network (SAN); I: attention network (ATN) and J: auditory network (AUD). MDD-CT, 
MDD with childhood trauma; MDD-nCT, MDD without childhood trauma; HCs, healthy controls. Means and standard deviations are depicted. *: p < 0.05. **: p <
0.01, ***: p < 0.001. 

Fig. 3. Group differences in the temporal correlation coefficients of network topological properties and schematic of brain network connectivity. A: whole-brain; B: 
default mode network (DMN); C: cognitive control network (FPN); D: sensorimotor network (SMN); E: visual network (VIS); F: subcortical network (SUB); G: cingulo- 
opercular network (CON); H: salience network (SAN); I: attention network (ATN) and J: auditory network (AUD). MDD-CT, MDD with childhood trauma; MDD-nCT, 
MDD without childhood trauma; HCs, healthy controls. Means and standard deviations are depicted. *: p < 0.05. **: p < 0.01, ***: p < 0.001. 
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Discussion 

In the current study, using both static and dynamic brain network 
measures, we identified significant differences between adolescent MDD 
patients with and without childhood trauma, and these differences were 
related to changes in symptoms. The main finding was that MDD ado-
lescents with childhood trauma had higher Eglob and Eloc values and 
higher temporal correlation coefficients of the whole brain than those 
without childhood trauma and HCs. Furthermore, at the local level, we 
found increased Eglob and Eloc in the DMN, increased Eglob in the FPN, and 
increased temporal correlation coefficients in the DMN, SAN and ATN 
functional networks in MDD adolescents with childhood trauma. These 
findings may provide new evidence for the dysconnectivity hypothesis 
regarding the associations between childhood trauma and MDD in ad-
olescents from the perspectives of both static and dynamic brain 
topology. 

Trauma-associated alterations at the whole-brain level 

In this study, we combined both static (global and local efficiency) 
and dynamic (temporal correlation coefficient) network measures to 
better understand the possible trauma-associated alterations in func-
tional brain network topologies in MDD adolescents. We found signifi-
cantly increased Eglob and Eloc in the MDD adolescents with childhood 
trauma than HCs and those patients without childhood trauma. While 
global efficiency quantifies the communication efficiency between long- 
range connections and promotes functional integration, local efficiency 
is an indicator of the regional network’s fault tolerance and reflects 
functional segregation (Sporns, 2013). The higher Eglob and Eloc values 
indicated stronger small-worldization (Suo et al., 2018), which means 
that the network may transform from an optimal organization to an 
excessively stronger small-world network. Using the dynamic brain 
network model, our results showed that the adolescents with MDD and 
childhood trauma showed a higher temporal correlation coefficient, 
which indicates higher consistency of FC patterns between consecutive 
time points (higher temporal stability) (Sizemore & Bassett, 2018). In 
summary, compared to HCs and those patients without childhood 
trauma experiences, the MDD adolescents with childhood trauma 
showed excessively stronger small-worldization and excessively 
increased temporal stability in their brain network topologies. It may 
thus be speculated that these changes may play important roles in the 
associations between childhood trauma and adolescent MDD. Of note, 
prior studies have reported significant changes in these network metrics 
in patients with MDD (Borchardt et al., 2015, 2016; Luo et al., 2015; Ye 
et al., 2015), but their possible relationships with childhood trauma in 

MDD patients were seldom reported. Here, our findings may partly fill 
such gaps, which will help future studies to identify the existence of 
neuroimaging distinguishable subtypes of MDD associated with child-
hood trauma and provide precise diagnosis and individualized 
treatment. 

Another noteworthy point is that the observed MDD-related alter-
ations in brain network topology in the current study are different from 
many of the previous ones conducted in adult MDD patients, or patients 
with several other trauma-associated disorders. For example, multiple 
previous studies have shown a shift toward a weaker small-world 
network with decreased segregation and integration in the FC network 
of adults with MDD (Li et al., 2015; Luo et al., 2015; Wang et al., 2016). 
Moreover, in adults with posttraumatic stress disorder, it was found that 
segregation (increased Eloc) and integration (increased Eglob) increased, 
showing a shift toward a stronger small-world network (Lei et al., 2015), 
whereas another study reported increased segregation (increased Eloc) 
and decreased integration in children with posttraumatic stress disorder, 
indicating a shift toward regularization (Suo et al., 2015). Inconsistent 
with our study, a significantly lower temporal correlation coefficient in 
adult MDD patients than in HCs was also observed in a multicenter study 
(Long et al., 2020). In summary, previous and our current studies seem 
to reveal some differences in the MDD-related changes in the brain 
network topology between adolescents and adults. It is unclear why the 
transformation direction of the brain network differs between adoles-
cents and adults. One possibility is that the neurobiological effects of 
depressive symptoms and stress vary at different developmental periods. 
These hypotheses clearly require further testing in future studies, 
including longitudinal examination of children with childhood trauma 
as they continue into adulthood. 

Trauma-associated alterations in local network organizations 

The brain is organized into networks, and alterations in network 
architecture may underlie many forms of psychopathology (van den 
Heuvel & Hulshoff Pol, 2010). At the local level, we identified signifi-
cant abnormalities within the DMN in both static and dynamic network 
metrics in the MDD-CT group than HCs group (Figs. 2-3). Abnormal FC 
patterns within the DMN have been frequently reported in patients with 
MDD in previous neuroimaging studies (Hamilton et al., 2011; Sheline 
et al., 2010; Yan et al., 2019; Yu et al., 2019) and large meta-analyses 
(Kaiser et al., 2015). The DMN is known to be involved in the process-
ing of self-related awareness and emotions (Sheline et al., 2009). 
Therefore, it has been widely suggested that dysfunctions within the 
DMN may be associated with the common repetitive and passive focus 
on one’s distress (rumination) in patients with MDD (Hamilton et al., 

Fig. 4. The significant correlations detected in adolescents with MDD. A: correlation between adolescents with MDD and the HAMD-17 scores, B: correlation be-
tween adolescents with MDD and CTQ Emotional Neglect scores. The partial correlation coefficients (r) and p values are presented in the figure. MDD-CT, MDD with 
childhood trauma; MDD-nCT, MDD without childhood trauma; HCs, healthy controls. 
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2015; Tozzi et al., 2021). Notably, multiple previous studies have 
documented the mediating role of rumination in the relationship be-
tween childhood trauma and depression (Kim et al., 2017; Raes & 
Hermans, 2008). Considering these findings of prior studies and our 
results, it may thus be hypothesized that dysfunction within the DMN 
(and possible consequences of increased self-focused rumination) might 
moderate the relationship between childhood trauma and adolescent 
MDD. Here, our work may be one of the first to support such hypothesis 
from the perspectives of static and dynamic brain topographical orga-
nizations to our knowledge. However, since rumination was not assessed 
in the current study, this hypothesis can be further tested in future 
studies. 

This study also showed that the global efficiency of the FPN 
increased in the MDD-CT group compared to that in both the MDD-nCT 
and HCs groups. The FPN has been referred to by various terms, 
including the cognitive control network or system (MW Cole et al., 
2013), the superordinate cognitive control network (Niendam et al., 
2012), the multiple-demand system (Duncan, 2010) and the 
task-positive network (Fox et al., 2005). Task-positive networks are 
mainly involved in executive control and external attention. Our find-
ings indicated that abnormal connectivity patterns of this network are 
associated with dysfunction in executive control (Cole et al., 2014; 
Dosenbach et al., 2008). Notably, in contrast to our findings, the global 
efficiency of the FPN was reported to be reduced in adult MDD patients 
(Tan et al., 2021; Yu et al., 2019), which may again suggest the potential 
differences between adolescent and adult MDDs. 

Furthermore, the temporal correlation coefficients of the SAN and 
ATN increased in the dynamic brain network analysis. While the SAN 
was originally defined as a set of regions encoding emotional and 
cognitive processes associated with individuals, the prominent role of 
the SAN in salient events and emotional regulation of feelings explains 
how the abnormal increase in intranetwork connectivity (segregation) 
in the SAN contributes to ruminative responses to negative emotional 
states and life events in MDD patients (Seeley et al., 2007). Moreover, 
another study found that childhood trauma was associated with 
abnormal SAN connectivity (van der Werff et al., 2013). The attention 
network (including the VAN and DAN) has been implicated in 
stimulus-driven attention (Corbetta et al., 2008) and is involved in 
recognizing the emotional significance of stimuli, generation of affective 
states, and automatic regulation of emotional responses (Phillips et al., 
2003). Thus, it is likely that childhood trauma is associated with altered 
development of the DMN, FPN, SAN and ATN in ways that may have 
important clinical implications. Overall, our current study not only 
confirms the significant relationship between childhood trauma and 
MDD but also links patients’ childhood traumatic experiences to specific 
functional brain network abnormalities, indicating that environmental 
factors may contribute to the neurobiological clinical symptom profile. 

Associations between network measures and clinical symptoms 

We established the associations between clinical symptoms 
(including depression level measured by the HAMD-17 and childhood 
trauma measured by the CTQ) and network metrics. We found that 
higher network metrics were significantly associated with higher 
HAMD-17 and CTQ Emotional Neglect scores in adolescents with MDD. 
As described in the above sections, the temporal correlation coefficients 
indicate the consistency of FC patterns between consecutive time points 
(Long et al., 2020). Our results suggest that increased consistency of FC 
is associated with more severe depressive symptoms. The fact that the 
adolescents with MDD had the highest correlation for the emotional 
neglect subscale of the CTQ suggests that emotional neglect indeed 
seems to affect dynamic brain FC development more profoundly 
compared to other types of childhood trauma. Our results revealed 
positive correlation between HAMD-17, emotional neglect, and brain 
networks in adolescents with MDD, and clinicians must pay more 
attention to childhood trauma among adolescent patients with MDD. 

Limitations and future directions 

Several limitations of the current study must be noted. First, we used 
a cross-sectional approach, which does not allow cause and effect to be 
examined. Second, those with childhood trauma were excluded from the 
HCs group, so no comparisons were made between healthy controls for 
the presence or absence of concomitant childhood trauma. In addition, 
childhood trauma subtype analyses were not conducted due to the small 
sample size of MDD patients. Future studies may focus on the unique 
impact of a particular childhood trauma subtype, such as neglect or 
abuse. Third, childhood trauma was assessed retrospectively through 
self-report; although the CTQ is reliable and widely used, childhood 
trauma history may be over- or underreported due to recall bias. Future 
studies are encouraged to investigate the associations of childhood 
trauma with other aspects of static and dynamic brain networks. Fourth, 
while this study focused on several validated topological metrics for 
brain networks, other measures such as the brain network flexibility 
(Bassett et al., 2011) may be also relevant to the association between 
childhood trauma and MDD, which can be explored in further studies. 
Sixth, the test-retest reliability of a measure of brain functioning is a 
fundamental factor to detect meaningful interindividual differences 
(Noble et al., 2019; Zuo et al., 2019). It is necessary to note that our 
participants were adolescents, while previous studies on the test-retest 
reliability of the brain network metrics have been done mainly in 
adults (Braun et al., 2012; Cao et al., 2014; Long et al., 2023); whether 
there are differences in the reliability of brain network metrics between 
adolescents and adults remains to be further investigated in the future. 
Lastly, although the sample size in this study is larger than most prior 
studies on the possible neuroimaging effects of childhood trauma in 
MDD, it may still be relatively small for getting robust results based on 
recent opinions (Marek et al., 2022). It is necessary for future research to 
further expand the sample size to verify the repeatability of the results. 

In summary, we provide evidence that brain network abnormalities 
in patients with MDD compared to HCs, as well as static and dynamic 
brain network associations of patients with clinical symptoms, are most 
obviously driven by childhood traumatic experiences. The exploration 
of neurobiological markers of individuals with MDD and childhood 
trauma will be essential to advance our knowledge of this disabling 
condition, which will lead to the development of new diagnostic clas-
sifications, treatment options, and prevention methods. Future neuro-
imaging studies also need to shift the focus toward examining 
adolescents with MDD and childhood trauma to better understand brain 
markers of high-risk disease subtypes. 
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