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Abstract: Spinal muscular atrophy (SMA), one of the leading inherited causes of child mortality, is a
rare neuromuscular disease arising from loss-of-function mutations of the survival motor neuron 1
(SMN1) gene, which encodes the SMN protein. When lacking the SMN protein in neurons, patients
suffer from muscle weakness and atrophy, and in the severe cases, respiratory failure and death.
Several therapeutic approaches show promise with human testing and three medications have been
approved by the U.S. Food and Drug Administration (FDA) to date. Despite the shown promise
of these approved therapies, there are some crucial limitations, one of the most important being
the cost. The FDA-approved drugs are high-priced and are shortlisted among the most expensive
treatments in the world. The price is still far beyond affordable and may serve as a burden for
patients. The blooming of the biomedical data and advancement of computational approaches have
opened new possibilities for SMA therapeutic development. This article highlights the present
status of computationally aided approaches, including in silico drug repurposing, network driven
drug discovery as well as artificial intelligence (AI)-assisted drug discovery, and discusses the
future prospects.

Keywords: drug discovery; drug therapy; spinal muscular atrophy; SMA; neuromuscular disorder;
computational aided drug discovery; in silico drug repurposing; artificial intelligence

1. Introduction

Spinal muscular atrophy (SMA) is a rare, progressive neuromuscular disease (NMD),
arising from loss-of-function mutations of survival motor neuron 1 (SMN1) gene. It is one
of the leading inherited causes of infant and early childhood mortality [1,2]. More than 95%
of patients struggle from the homozygous deletion of the SMN1 gene, which is responsible
for the encoding of the SMN protein [3]. Consequently, this leads to insufficient SMN
protein in neurons, resulting muscle weakness and atrophy, and in severe cases, respiratory
failure and death [4]. The severity of SMA, from mild to severe, depends on the presence
of the level of SMN protein [5], reflecting an inverse correlation.

Treatment options for SMA are limited and palliative in nature. Even with the remark-
able results of approved drugs, the limitations, such as high cost, unknown long-term effects
and side effects of the treatments, hinder the success of treating SMA patients. To date,
three medications have been approved by the U.S. Food and Drug Administration (FDA)
for SMA, which are nusinersen (Spinraza®) from Biogen, onasemnogene abeparvovec-xioi
(Zolgensma®) from Novartis and recently approved risdiplam (EvrysdiTM). However, the
cost of the former two therapies are astronomical in nature [6–8], while for the latter drug,
which is in the early stage from the announcement of FDA approval, the cost has yet to be
established. Besides the high cost of the treatment, the challenging drug administration for
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the patients with scoliosis and/or spinal deformity may require sophisticated personnel.
As scoliosis is a general symptom of SMA patients, most patients do not acquire the maxi-
mal benefits from the current treatments. Several promising therapeutic approaches are
currently being developed; some are at different stages of clinical trials. Despite this, the
medical cost is still far beyond the affordability of the general populace.

With the advancement of computational approaches, next generation therapeutics
may provide a rapid and less expensive access to new treatment. Researchers, nowadays,
are gaining the advantage of computational technologies, using genomics, transcriptomics
and proteomics approaches to study biological interactions that are crucial for disease
pathogenesis and development of new therapies. In addition, the structural analysis on
the missense mutations in SMN1 protein served a platform to understand the role of the
SMN protein in SMA from the perspective of the molecular structural impact towards
drug design. Furthermore, artificial intelligence (AI), machine learning (ML) and/or deep
learning (DL) have shifted from hype to hope in the pharmaceutical industry due to
increased research and development (R&D) cost and reduced success and efficiency rate
in drug discovery. Owing to the incorporation of genomics and biochemical information,
AI serves as an ‘Open Target’ platform for the prediction of therapeutic targets, which
has been successfully applied to amyotrophic lateral sclerosis (ALS), one of the human
neurodegenerative diseases [9]. Although there are no drug discovery studies utilizing this
technology, this AI-assisted implementation may offer a future hope for SMA patients.

In this review, we provided a brief summary of the biology of SMA disease and
discussed the efficacy and efficiency of currently available drugs, both approved and in
clinical development. Herein, we also reviewed the past and current research that was
carried out with the abovementioned computational approaches and AI-assisted drug
discovery approaches in other human neurodegenerative diseases as future perspectives.

2. Spinal Muscular Atrophy (SMA)

SMA is a monogenic autosomal recessive genetic disorder characterized by the de-
generation of alpha motor neurons (α-MNs) located in the anterior horn of the spinal
cord [10,11]. The progressive destruction of α-MNs, which is responsible for initiating
the muscle contraction, leads to symmetrical muscle weakness and atrophy [12–14]. The
primary manifestations of this disease ultimately result in paralysis and often death in
severe cases. Proximal muscles, specifically the lower muscles, are affected first, then
the upper extremities [7,15]. SMA has a unique genetic background, as the change of
functional loss in SMA peaks at the onset of the disease followed by progressive worsening
condition [16].

SMA is the leading genetic cause of infant mortality globally [17,18] and the second
most common fatal autosomal recessive disorder after cystic fibrosis [19,20]. It occurs with
an estimated pan ethnic incidence of 1 in 6000–10,000 live births and a carrier frequency
of 1 in 40–60 [21–23]. As of September 2015, a total of 4526 patients are registered under
TREAT-NMD, an international network for the neuromuscular field (https://treat-nmd.
org/about-the-treat-nmd-network/ (accessed on 1 April 2020)) (Figure 1). The number
of SMA registries from Europe continent is generally the highest (~65.75%), especially
Eastern region with 1028 patients (~22.71%). A plethora of studies suggested that there
is a difference in incidence and prevalence rate between countries and ethnicities, as well
as SMA subtypes [24–26]. A high incidence (13.7 and 17.8 per 100,000) is found from
Iceland and Slovakia, countries from the European continent; however, there is a lack
of details, such as the number of patients and population size, that may aggravate the
interpretation of these findings [25,27,28]. The incidence of African Americans (Black) is
low, although the only study concerned a Cuban population [29]. This can be explained
by a lower carrier frequency among African Americans and Hispanics, as compared to
Caucasians [24,26,30,31]. Notably, SMA patients can be classified into five clinical types
based on age of onset and level of motor function [32].

https://treat-nmd.org/about-the-treat-nmd-network/
https://treat-nmd.org/about-the-treat-nmd-network/
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Figure 1. Global distribution of SMA patients who have registered under TREAT-NMD. The number of registries is rounded
to two decimal places in percentage and Russia is included in the ‘Rest of the World’ herein. Data source: TREAT-NMD
(https://treat-nmd.org/about-the-treat-nmd-network/ (accessed on 1 April 2020)).

2.1. Disease Etiology

About 95% of SMA cases [33,34] are caused by a homologous deletion or mutation of
the survival motor neuron 1 (SMN1) gene on chromosome 5q13, which is the blueprint for
the SMN protein [3]. The SMN1 is highly conserved and presents as a single copy in the
genome of all eukaryotic organisms [35,36]. A normal individual has two forms of the SMN
gene, which are telomeric SMN1 and its paralog, centromeric SMN2 [11,37] (Figure 2). Both
genes are nearly identical, with only a difference in five base pairs. However, the base pair
differences do not alter the amino acid sequence, and they encode the same SMN protein.

The SMN1 gene produces full-length, functional SMN (FL-SMN) protein. A syn-
onymous C-to-T base substitution (c.840C > T) at the position 6 of SMN2 exon 7 dis-
rupts the proper splicing and leads to a majority (~90%) of exon 7-skipped transcript
(∆7-transcript) [37–40]. Subsequent translation of such transcript results in a truncated
and unstable SMN protein [17,41]. Only ~5–10% FL-SMN protein will be produced by
the SMN2 gene, whereas patients with any form of SMA lack a functioning SMN1 gene
and only depend on the SMN2 gene. Therefore, they are in a condition of deficiency with
regards to SMN protein production, and thus, they lead to a loss of motor neurons in the
spinal cord.

There are five types of SMA, which are known as SMA type 0, I, II, III and IV. The copy
number of SMN2 gene modifies the severity of the disease phenotype as a high number
of SMN2 copies is related to milder phenotypes [40,42]. For instance, SMA type I patients
generally have one or two SMN2 copies, while SMA type III/IV patients have more than
four copies [43,44]. Nevertheless, this inverse relationship is not always true, as a few
patients with two SMN2 copies showed milder SMA phenotypes, while there have also
been patients with three SMN2 copies that have been defined as type I [21,45–47]. Lacking
either one SMN gene leads to low levels of SMN protein, though this still allows embryonic
development and usually occurs in SMA carriers. Nevertheless, there are no individuals
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with neither SMN genes, which mean homologous loss, as it is hypothesized to be an
embryonic lethal condition [17,48,49].

Figure 2. Schematic diagram of human survival motor neuron (SMN) gene expression for both
healthy individuals and SMA patients. The telomeric SMN1 and centromeric SMN2 genes are
identified specifically in the chromosome 5q13 region (long arm of chromosome 5). The SMN1
gene produces all full length SMN (FL-SMN) protein, while the SMN2 gene produces ~10% FL-
SMN protein and ~90% truncated SMN protein (SMN∆7) due to incorrect splicing. (a) In healthy
individuals, both SMN genes are present. (b) In SMA patients, the absence of the SMN1 gene, due to
mutations, causes no FL-SMN protein production from SMN1 (This condition is indicated as red ‘X’).
The production solely depends on the SMN2 gene, resulting insufficient production.

2.2. Clinical Classification of SMA Subtype

The variability in severity of SMA was defined into a classification scheme in 1991
and highlighted based on the level of motor function and age of onset. There are only
three SMA types in the early scheme [50]. Modifications were subsequently performed by
dividing the former third category based on the age of onset, adding a Type IV as adult-
onset and including a Type 0 for prenatal onset and death within weeks. Figure 3 depicts a
classification of five types of SMA that are characterized by the SMN2 copy number. Such
a gene is theoretically correlated with the SMN protein level, therefore relating to the onset
and severity of different subtypes of SMA.
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Figure 3. Classification of spinal muscular atrophy (SMA) sub-types. * All SMA patients, regardless of the subtypes, have
no functional copies of survival motor neuron 1 (SMN1). SMA can be classified into five types (0-IV) ranging from the
most severe form to a milder form. (a) Type 0 is the most severe form and in-utero onset. They normally have limited life
expectancy. (b) Type I infants display clinical symptoms at birth or by the age of six months. They never develop the ability
to sit and if no intervention is provided results in death by two years. (c) Type II patients are diagnosed within six to 18
months of age and they do develop the ability to sit but they never walk unaided. However, they are able to survive well
into adulthood. (d) Type III can be further classified into IIIa (onset between 18 months to three years old) and IIIb (onset
between ages of three to 30 years old). They have a normal life expectancy. (e) Type IV is the mildest form and adult-onset.
Patients with type IV have a normal life expectancy.

SMA Type 0 (Figure 3a), the rarest yet the most severe form, occurs with minimal
presence of the SMN2 gene [2,51]. It is associated with an in utero onset of the affected
infants with lesser movement and are often born with arthrogryposis (limited joint defor-
mities/contractures) and hypotonia (extremely weak muscle tone, in particular respiratory
and heart muscles), resulting in death before or just after birth. Some of them have respira-
tory failure, facial diplegia (facial paralysis) and/or heart defects, leading to death during
the infancy stage [52–54].

Type I (Figure 3b; Phenotype MIM number from Online Mendelian Inheritance in
Man (OMIM; https://www.ncbi.nlm.nih.gov/omim (accessed on 28 August 2020)), MIM
253300), the most common form of SMA (~45% of cases) [55], is also known as Werdnig–
Hoffmann disease, with a severe form of muscle weakness evident at birth or within
the first few months of life (~ six months at most) [2]. Most of the patients, typically
present with two or three copies of the SMN2 gene [56], have generalized muscle weakness,
including an inability of controlling the movements of the head and inability to sit unaided,
among others. Due to weakness of the respiratory muscles, they have breathing distress
and increased the risk of aspiration [37,57–59]. Babies have difficulty swallowing and
sucking, leading to difficulty with feeding and a failure to thrive [2].

https://www.ncbi.nlm.nih.gov/omim
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Children of SMA Type II (Figure 3c; MIM 253550), which is also known as Dubowitz
disease, have a later childhood onset between the ages of six and 18 months [2]. They are
able to sit unaided; however, they are not able to stand and walk. The progressive muscle
weakness worsens later in life and severely reduces life expectancy. Their symptoms are
associated with scoliosis (a spine that curves side-to-side), tremors (involuntary trembling)
in their fingers and respiratory muscle weakness [33,60,61]. Due to impaired bulbar
function, these children develop breathing problems over time [57]. The combination
of scoliosis and intercostal muscle weakness leads to respiratory insufficiency and more
severely, can be life-threatening.

Approximately 30% of SMA patients are from Type III (Figure 3d; MIM 253400) [33],
referred to as Kugelberg-Welander or Wohlfart-Kugelberg-Welander disease, which has
an onset between 18 months to adulthood [37]. Type III is further classified into Type
IIIa and IIIb, with onset between 18 months to three years old and between ages of 3 to
30 years old, respectively. Typically, patients develop a variable degree of muscle weakness,
resulting in heterogeneous physical symptoms [62]. Although most of them are able to walk
independently, some present with progressive proximal weakness and lose ambulation
after early childhood, and the disease is usually associated with foot deformity, difficulty
of climbing stairs and muscle cramps [2,33,63].

Similar to the characteristics of SMA Type III [64], patients of SMA Type IV (Figure 3e;
MIM 271150) have a late onset, namely in adulthood, usually present at the age of 30 and
above. This type accounts for less than 5% [33] of overall SMA cases, and hence, is consid-
ered as a mild form of SMA. Comparatively, they might have minor disabilities; nonetheless,
they are able to achieve motor milestones and have normal life expectancy [2,62].

2.3. SMN Protein

Mutation events of the SMN1 gene that encodes the SMN protein is predominantly
linked to SMA disease [65]. Understanding the molecular structural of SMN protein is
important and helpful in molecular pathogenesis of SMA. However, as of January 2021,
there is still no FL-SMN protein structure in Protein Data Bank (PDB; https://www.rcsb.
org/ (accessed on 29 January 2021)) and only have SMN-related structures. The SMN, a
38-kDa protein, is ubiquitously expressed in both nucleus and cytoplasm [66] in particular,
having a high concentration in motor neurons of the spinal cord and relatively less in
lymphocytes and fibroblasts [67]. Human SMN protein is coded by eight exons [68]
and it consists of 294 amino acids and harbors several functional domains, including a
basic/lysine (K)-rich region, a Tudor domain, a proline (P)-rich region and a tyrosine-
glycine rich (YG)-box (Figure 4). Those functional domains are highly conserved from
yeast to human and play important roles in the motor system as well as intracellular
processes [69].

The Gemin2 binding domain (Ge2BD), coded by exon 2 and located near the N-
terminus, is highly conserved among SMN-containing eukaryotes, suggesting the impor-
tant role of SMN–Gemin2 interaction [70,71]. Gemin2 is a core protein that functions in the
formation of SMN complex and also aids in the spliceosomal small nuclear ribonucleopro-
tein (snRNP) assembly via the stabilization of the SMN complex [72]. The p53, a tumor
suppressor protein and also transcription regulator, interacts with the domain coded by
exon 2 [73]. The association of p53 with SMN suggests the likelihood for apoptosis to occur.
However, when this interaction is reduced, this could lead to death of motor neurons, as
shown in SMA.

A central Tudor domain, coded by exon 3 of SMN, facilitates the protein-protein inter-
actions [74]. The domain, which is usually found in RNA-associated proteins, recognizes
symmetric dimethylarginine (sDMA) modifications in arginine/glycine rich regions (RG
domains) of proteins, including Sm proteins (B, D1 and D3) [70,75–77]. Interestingly, SMA-
causing mutations of this domain impair sDMA peptide binding [70]. The proline-rich
region, coded by exon 4 to 6, interacts with prophilin, a key protein in controlling the actin
dynamics in the cells [78,79].

https://www.rcsb.org/
https://www.rcsb.org/
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Figure 4. Diagrammatic representation of the full length SMN (FL-SMN) protein with its respective
available protein structure. The number of exons is indicated within the boxes of SMN protein
diagram with the number of the last amino acid residue of each exon, indicated above. The PDB
structure of the domains are illustrated in the same color that overlaid in the SMN protein diagram
indicating the location of the respective domains (Gemin2 Binding: yellow; Tudor Domain: red;
Polyproline-rich Domain: cyan; YG Box Domain: blue). Abbreviation: UTR, untranslated region.

A most conserved segment near the C-terminus [71], referred to as the ‘YG-box,’ is
responsible for oligomerization, which is crucial for the function of SMN and interac-
tion between SMN with Gemins and Sm proteins. It is also involved in the interaction
with Gemin3 (a dead-box helicase) [80], ZPR1 (a zinc-finger protein) [81] and SIN3A (a
transcription co-repressor) [82].

Given the SMN protein’s critical role in the biogenesis of snRNPs, SMA patients fully
depend on SMN2 gene to compensate the loss of the SMN1 gene for the production of the
SMN protein. However, a relatively low amount of functional SMN protein is produced
while the translated product of aberrant splicing event, termed SMN∆7 (only consists of
282 residues; Figure 5), is unstable and rapidly degrades [83]. The half-life of a functional
SMN is >8 h, while SMN∆7 is about 3 h. A study suggested that the addition of a four-
amino acids motif, EMLA, and a conserved tyrosine/glycine rich motif, YG region, at the
C-terminal, reduce the stability of SMN∆7 [71,83]. EMLA serves as a degradation signal
for ∆7-transcript, is coded by exon 8, while the YG region is coded by exon 6 and 7 [71].
Interestingly, the future deletion of EMLA and YG region from SMN∆7 alone, termed
as SMN∆7∆EMLA and SMN∆7∆YG, respectively (Figure 5), show the increment of the
half-life [83].
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Figure 5. Schematic diagram of transcripts generated from SMN with a series of deletions. The name of the transcript is
shown on the left, which indicates the deleted region. For instance, ∆7 refers to the deletion of exon 7. The start and stop
codons are depicted in green and red triangle icons, respectively. The YG region, a conserved tyrosine/glycine rich motif, in
exon 6 and 7 is indicated by the blue box while EMLA, a four-amino acids motif that replaced the 16-amino acids of exon 7,
is indicated with an arrow. Abbreviation: UTR, untranslated region.

3. Current Drug of SMA

It is well known that the disease severity is related to the SMN protein levels, and thus,
increasing SMN production has been a major SMA drug discovery strategy [84]. Multiple
mechanisms have been targeted to drive higher expression of the full length SMN protein,
either from the SMN2 gene or from the exogenously restored SMN1 gene [35,62]. The
SMN protein was suggested to play a crucial role in neurons and muscle [85–87]; hence,
SMN-independent therapies that provide neuroprotection or slowing down or halting the
events due to the effects of SMN depletion could be an alternative for SMA [88].

3.1. Current Drug—Early Success

Out of 1167 US Food and Drug Administration (FDA)-approved drugs (as of March
2020), there are only three drugs approved for the treatment of SMA, which are nusinersen,
onasemnogene abeparvovec and risdiplam.

Nusinersen (Trade name: Spinraza®) was the first therapy approved in late 2016
by the FDA to treat this rare NMD [89]. Nusinersen, a modified 2′-O-methoxyethyl
phosphorothioate antisense oligonucleotide (ASO), effectively modulates the splicing
of SMN transcripts [6,90–92]. The drug is directly administered to the central nervous
system (CNS) via intrathecal injection to modify the splicing process of SMN2 pre-mRNA
by promoting exon 7 retention, resulting in the enhancement of the FL-SMN protein
expression level [90,93] (Figure 6). Hua et al. (2010) highlighted that nusinersen provides
phenotypic and pathologic benefit in the animal models, both mild and severe SMA
through direct injection into CNS. This was in agreement with Passini et al. (2011), who
worked on improving the efficacy of ASO [94]. However, due to the inability of the
transverse of the blood–brain barrier, it is applied via injection into the spinal canal for
SMA therapeutic application [95].The intrathecal route allows the direct delivery of drugs to
CNS by circumventing the blood–brain barrier [96]. The recommended dose for nusinersen
is 12 mg [6]. Results on the trials on nusinersen suggested that some patients can even
achieve certain milestones that have been lost without treatment, including sitting, standing
and walking. This treatment has been suggested to be given early in the course of the
disease and worked efficiently among the patients with SMA type I, II and III [97]. The
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major drawback of this treatment is that the patient has an increased risk of getting upper
and lower respiratory tract infections and constipation [98].

Figure 6. Therapeutic mechanism of SMA drugs, including three FDA-approved drugs (nusinersen, onasemnogene
abeparvovec and the recent FDA-approved drug risdiplam) and drugs that are in clinical trials (branaplam, olesoxime,
reldesemtiv and SRK-015). Nusinersen (PubChem CID: 124037382), a synthetic antisense oligonucleotide (ASO), is designed
to hybridize intronic splicing silencer N1 (ISS-N1), which is heterogenous nuclear ribonucleoprotein (hnRNP) A1-dependent,
to facilitate accurate splicing of SMN2 transcripts. Onasemnogene abeparvovec (no available structure) is a gene therapy
that targets the SMN1 gene replacement using adenovirus vector AAV9 (EMDB: EMD-0535). Risdiplam (PubChem CID:
118513932) and branaplam (PubChem CID: 135565042) are small molecules that have the same mechanism of action as
nusinersen. The red ‘X’ mark represents the deleted SMN1 gene. Other than SMN-dependent drugs, olesoxime (PubChem
CID: 21763506) acts as neuroprotective compound, while reldesemtiv (PubChem CID: 67454400) and SRK-015 act as a fast
skeletal muscle troponin activator (FSTA) and myostatin inhibitor, respectively, to increase the muscle contraction.

In 2019, onasemnogene abeparvovec (onasemnogene abeparvovec-xioi; formerly
AVXS-101), under the trade name Zolgensma® has been approved by FDA as the second
disease modifying SMA treatment for patients aged up to 2 years old with SMA type I [99].
It comprises the capsid of adeno-associated virus 9 (AAV9), delivering complementary
DNA (cDNA), which codes for the SMN protein, to its target motor neurons [100,101]. With
a single, one-time intravenous (IV) administration, AVV9 crosses the blood–brain barrier
and delivers a working copy of the SMN1 gene able to reach patients’ cells, allowing the
production of the SMN protein (Figure 6). Additionally, the SMN1 transgene, along with
the synthetic promoter that consists of the AVV9, plays an important role to sustain SMN
protein production in the long term. Given its effectiveness in resolving the SMA molecular
defect, it adversely affects the liver by increasing the level of serum aminotransferase, a
liver enzyme [7,101,102]. However, elevated liver enzymes can be controlled by using
prednisone [16]. Hence, patients need to be monitored for their liver function at least three
months after administration [7].
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Recently (as of 7 August 2020), risdiplam (Trade name: EvrysdiTM) was approved
by the FDA as the first oral drug for SMA patients [103]. Risdiplam, formerly known as
RG7916, is an investigative drug being developed by Hoffmann-La Roche in collaboration
with PTC Therapeutics and SMA Foundation to treat all types of SMA [62]. Similarly to
nusinersen, it acts as a SMN2 splicing modulator (Figure 6) and improves the efficiency of
the transcription of the SMN2 gene, thus increasing the systemic SMN protein concentration.
Ratni et al. (2018) demonstrated the two-fold increment in SMN protein concentration
after 12 weeks of therapy in patients [104]. However, it may cause some side effects,
including fever, diarrhea, rash, upper respiratory tract infections, pneumonia, constipation
and vomiting according to the respective clinical trial (FIREFISH for infants aged 2 to
7 months and SUNFISH for children and adults aged 2 to 25 years) [103].

Despite the discovery of promising therapeutic strategies, the limitations, including
the treatment viability (in the case of nusinersen), long-term effects, side effects and cost,
among others, are highlighted. As the drugs need to pass through the blood–brain barrier
(BBB), nusinersen must be administrated locally through an intrathecal injection. This
route of administration is challenging and requires sophisticated personnel and technique,
such as image-guided technique, particularly for patients with scoliosis and/or spinal
deformity [105]. Moreover, elevated costs of nusinersen (~USD $125,000 per injection)
associated with screening and subsequent treatment (~USD $750,000 in the first year and
~USD $375,000 annually for subsequent year) place this drug among the most expensive
drugs [6,106]. For the latest approved gene therapy, onasemnogene abeparvovec costs
~USD $2.125 million per injection, although only a single treatment is required for each SMA
type I patient [107], while the cost of risdiplam (the most recent FDA-approved drug) is yet
unknow. Additionally, as all are relatively new therapies, there are no longitudinal studies
for long-term effects, although there is a plethora of studies for side effects. Therefore, a
more cost-effective drug with an alternative route of administration is required for this
devastating SMA.

3.2. Existing Drug—Clinical Trial Stage

Several therapies (Table 1) aiming to increase SMN protein level have been studied
with a different approach, which is small molecule-based. With the promising preclinical
results, risdiplam and branaplam are currently being tested in clinical trials. Risdiplam
(Table 1), the recent FDA-approved drug, is still being evaluated in two clinical trial pro-
grams, which are JEWELFISH (ClinicalTrials.gov identifier: NCT03032172) and RAINBOW-
FISH (ClinicalTrials.gov identifier: NCT03779334) [108]. The former trial is aiming for SMA
patients aged 6 months to 60 years old, while the latter trial is for those infants from birth
to six weeks who are asymptomatic but genetically diagnosed with SMA.

Branaplam (Table 1), developed by Novartis Pharmaceuticals, also known as LMI070
and NVS-SM1, acts similarly to risdiplam to improve the SMN protein concentration by
correcting the splicing defect in human SMN2 gene [62,109]. As the clinical trial phase
II (ClinicalTrials.gov identifier: NCT02268552) only began in July 2019, there is a lack of
information regarding this therapy.

Although there are some promising clinical and preclinical results from ASOs, small
molecules and gene therapies on SMN2, there are still some negative impacts on effi-
cacy [100]. Hence, with the specific function of SMN protein by involving in the neuronal
actin cytoskeleton [110], expanding the repertoire of targets, for example drugs to im-
prove neuromuscular function, is an alternative for SMA drug discovery to complement
the efficiency.
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Table 1. Therapeutic approaches in spinal muscular atrophy: clinical trial stage.

Drug
Name|Structure|DrugBank

ID
Mechanism of Action Route of

Administration
Clinical Trial

Stages Effect of Drugs Type of SMA Sponsor

Risdiplam
(RG7916) *

DrugBank ID:
DB15305

SMN2 splicing modifier
Oral (daily;
through a

g-tube)

II (JEWELFISH,
RAINBOW-

FISH)

Two-fold
increment in
SMN protein
concentration

after 12 weeks of
therapy

All types of
SMA

Hoffmann-La
Roche, PTC

Therapeutics,
SMA

Foundation

Branaplam
(LMI070, NVS-SM1)

DrugBank ID:
DB14918

SMN2 splicing modifier Oral II N/A Type I Novartis

Reldesemtiv
(CK-2127107;

2-aminoalkyl-5-N-
heteroarylpyrimidine)

DrugBank ID:
DB15256

Fast skeletal muscle troponin
activator (FSTA) Oral II

Mild
improvement in
the six-minute

walk test
(6MWT) after 4
and 8 weeks of

treatment

Type II/III/IV Cytokinetics,
Astellas

SRK-015 # Myostatin inhibitor Intravenous (IV)
injection II (TOPAZ) Positive results

in animal model Type II/III Scholar Rock

* Have been recently approved by FDA (as of August 2020) for the patients aged from 2 years old and above; however, it is still under
evaluation for a broad range of patients. # No information of structure and DrugBank ID.

In collaboration with Astellas, reldesemtiv (Table 1), formerly known as CK-2127107, is
being developed by Cytokinetics. It acts as a troponin stimulant that may improve muscle
mass and function in SMA and amyotrophic lateral sclerosis (ALS) patients [62,111,112].
This drug slows down the release of calcium from the regulatory troponin complex of fast
skeletal muscle fibers. The sarcomere is then sensitized to calcium, leading to improved
skeletal muscle contractility and physical performance in a human cohort [113]. Notably,
the interim analyses of SMA patients showed mild improvement for six-minute walk test
(6MWT) and maximal expiratory pressure (MEP) [23]. With the positive result of Phase I,
reldesemtiv is now under investigation in Phase II clinical trial (ClinicalTrials.gov identifier:
NCT02644668) [111].

Developed by Scholar Rock, SRK-015 (Table 1) is a biological monoclonal antibody
against myostatin [23,62]. Myostatin, primarily found in skeletal muscle cells in latent
form, plays an important role in inhibiting the muscle growth and maintaining the skeletal
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muscle mass [114]. With this mechanism of action of SRK-015, muscle tissue of SMA
patients is plausible to convert into active form. The positive result in Phase I (well dose
tolerance up to 30 mg/kg) provides opportunities for patients with SMA Type II and III for
Phase II (TOPAZ; ClinicalTrials.gov identifier: NCT03921528).

4. Computer-Aided Drug Design (CADD)—The Open Window of Therapeutic Agents

With technological advances in the areas of molecular structure characterization,
computational science and molecular biology, CADD is a promising avenue to facilitate
the discovery, design and optimization of potential therapeutic agents in the era of big
data. Not only does it reduce the time for drug discovery, CADD plays a prominent role in
reducing the quantity of testing molecules in vitro or in vivo [115,116]. By predicting the
numerous small molecules, either natural or synthetic compounds, that bind favorably to
the target macromolecules, the number of trial experiments can be minimized.

Of neurological disorders, the discovery of efficient CNS drugs is more challenging as
compared with other diseases [117]. There are several challenges, in general, throughout the
drug discovery process. The most notable obstacle, in the process of lead optimization, is
due to the presence of the blood–brain barrier that restricts the flow of molecules to the brain.
Nonetheless, it is possible to overcome and predict biological activity, pharmacokinetics
(absorption, distribution, metabolism and extraction; ADME) as well as toxicity with
the advent of more sophisticated computational approach such as the high throughput
screening (HTS) method and CNS multiparameter optimization algorithm [117,118].

Approved or investigated drugs, either SMN-dependent or SMN-independent, were
identified with an impressive preclinical or clinical effect; however, none of them are able
to cure the disease alone. Hence, this invokes the compelling motivation to implement a
CADD approach to speed up the development of the SMA drug—in silico drug repurpos-
ing, network-driven drug discovery (NDD) and artificial intelligence (AI)-assisted drug
discovery (AID).

4.1. In Silico Drug Repurposing

Drug repurposing, also known as drug repositioning, is one of the emerging potential
approaches to circumvent the cost and time required for the development of an efficacious
treatment [116,119]. It is defined as a process of identifying new therapeutic indications for
an approved drug. Recently, with the encouragement of fast track marketing authorization
procedure (FDA approvals), this approach has been widely used for rare diseases [119],
including SMA [120], because it offers several benefits over the classical de novo develop-
ment process of drugs. The approved drug compounds, in essence, have passed safety
efficacy, allowing an omission of Phase I clinical trials [120,121].

Several studies have successfully repurposed FDA-approved drugs for SMA treatment
and showed plausible in vitro activities, such as enhancing the SMN2 promoter activity,
modulating SMN2 splicing and stabilizing SMN2 mRNA or SMN protein [62,112,120].
Histone deacetylase inhibitors (HDAC), including sodium butyrate, phenylbutyrate and
valproic acid (VPA), among others, to date, have been explored with SMN2 promoter
activity [112,122–125]. They have demonstrated an increase of SMN protein levels in
patient-derived cells as well as in animal models. HDAC induces the alteration in the
chromatin structure into a tight-coiled transcriptionally-repressed region of chromatin,
thereby activating the gene expression [112,126]. The ability to reverse the cell transcription
held some promise on SMA. Notably, a plethora of studies demonstrated that the most
promising HDAC, VPA, increases two- to four-fold of full length SMN protein in patient-
derived fibroblast cell lines [125,127]. A recent study by Pagliarini et al. (2020) suggests
that the combination of HDAC and nusinersen exerted synergistic effect in enhancing the
expression of SMN2-derived FL-SMN protein [128]. This may reduce the frequency of
nusinersen administration, leading to a reduction of the financial burden for SMA patients.

In essence, SMN-independent drugs are centered on neuroprotective and muscle
enhancing approaches. Neuroprotective drugs aim to improve the motor neuron func-
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tion while muscle enhancers aim to increase the muscle mass and enhance the muscle
contractibility [111]. In referencing to the localization of the SMN protein in neuronal
cells, neuroprotective drugs for other CNS diseases could be a better option to reposition
for preventing and/or delaying motor neuron death in SMA. Approved neuroprotective
drugs, such as riluzole, hydroxyurea and rasalgiline, which modulate regulatory path-
ways in CNS, may be an option for SMA therapy [62,112,120]. For instance, riluzole, an
approved drug for ALS, exhibits neuroprotective effects through glutamate reduction. The
interim analyses in SMA animal model showed stabilization of neuromuscular junctions;
however, it failed to yield the promising clinical trial result [111]. This may be due to
poor pharmacokinetics properties, leading to poor long-term efficacy [129]. Despite the
limited successes of riluzole, repurposing FDA-approved drugs for CNS disease, including
rasalgiline, is an interesting avenue for SMA.

Given the potential of the drug repurposing approach, with the combination of
publicly available databases and computational methods, the in silico-based approach
may provide benefits, in terms of time and cost, towards the drug discovery process by
narrowing down the top hits through in silico validations [130]. Public repositories for
relevant experimental and biological data, including chemical structures, gene expression,
drug disease association, phenotypic traits, side effects and more, are treasure troves for in
silico drug repurposing. Few important databases that are widely used in drug repurposing
studies are collectively outlined in Table 2 with corresponding URLs. Owing to the wealth
of multi-omics data, different methods have been adopted in drug repurposing, which
can be divided into two major categories: (i) drug-oriented and (ii) disease/therapy-
oriented [131].

Drug-oriented drug repurposing strategies require the knowledge of cheminformatics
and bioinformatics as foundation, including drug information, chemical structures of drug
and target, drug-target network, signaling or metabolic pathway and genomic information.
Information on chemical structure of small molecule compounds can be easily retrieved
from the widely used chemical structure database, such as PubChem [155], ChEMBL [137]
and DrugBank [145], among others. The RCSB Protein Data Bank (PDB) [156] is the
primary database for the three-dimensional (3D) structure of protein target. This 3D-
structure information is crucial for structure-based screening, which aims to reveal how
a ligand binds to the protein target with the aid of molecular docking. Alternatively,
a structure information can be codified into line notation—Simplified Molecular Input
Line Entry System (SMILES) [186] and International Chemical Identifier (InChl) [187]
that can be easily analyzed algorithmically. Moreover, the chemical structure similarity
approach between ligands suggests two molecules that have similar structure are likely
have similar bioactivities [188]. This can be measured using chemical structure fingerprints,
either two- (2D) or three-dimensional (3D), or binary, with a distance metric such as
Euclidean, Manhattan and Mahalanobis (in the case of non-binary chemical fingerprints)
as well as Tanimoto coefficient (Tc; in the case of binary chemical fingerprints) [189,190].
Incorporated with drug-target interactions (DTIs), the chemical structure similarity between
drug compounds and ligand targets may reveal unforeseen associations. DTIs, which are
available in BindingDB [133], ChEMBL [137] and DrugBank [145], among others, can
simply indicate the presence or absence of an interaction. This binary-level information
is useful to employ in pharmacophore modeling, and few models have been recently
developed [191–193]. Other than chemical structure data resources, genomics data that are
available from the National Center for Biotechnology Information (NCBI) GenBank, Gene
Expression Omnibus (GEO) [172], Single Nucleotide Polymorphism database (dbSNP) [175]
and Sequence Read Archive (SRA) [174] are also important to understand the disease and
drug mechanism of actions in order to provide insight on the discovery of new uses for
existing drugs.
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Table 2. List of databases that widely used for the in silico drug repurposing studies.

Category Database URL Reference

Drug and
target database

Binding Database (BindingDB) https://www.bindingdb.org/bind/index.jsp (accessed on 29
December 2020) [132,133]

Biological General Repository for
Interaction Datasets (BioGRID) https://thebiogrid.org/ (accessed on 29 December 2020) [134,135]

ChEMBL https://www.ebi.ac.uk/chembl/ (accessed on 29
December 2020) [136,137]

ChemDB http://chemdb.ics.uci.edu/ (accessed on 29 December 2020) [138]

ChemSpider http://www.chemspider.com/ (accessed on 29 December 2020) [139]

Connectivity Map (CMap) https://portals.broadinstitute.org/cmap/ (accessed on 29
December 2020) [140,141]

Database of Interacting Proteins (DIP) https://dip.doe-mbi.ucla.edu/dip/Main.cgi (accessed on 29
December 2020) [142,143]

Drug Repurposing Hub https://clue.io/repurposing (accessed on 29 December 2020)
(accessed on 29 December 2020) [144]

DrugBank http://www.drugbank.ca/ (accessed on 29 December 2020) [145]

DrugCentral http://drugcentral.org (accessed on 29 December 2020) [146]

Exascale Compound Activity Prediction
Engine (ExCAPE-DB)

https://solr.ideaconsult.net/search/excape/ (accessed on 29
December 2020) [147]

GPS-Prot http://gpsprot.org/ (accessed on 29 December 2020) [148]

Human Protein Reference Database
(HPRD) http://www.hprd.org/ (accessed on 29 December 2020) [149,150]

Library of Integrated Network-based
Cellular Signatures (LINCS)

https://lincs.hms.harvard.edu/db/ (accessed on 29
December 2020) [151]

Molecular INTeraction database (MINT) https://mint.bio.uniroma2.it/ (accessed on 29 December 2020) [152,153]

Proteopedia http://proteopedia.org (accessed on 29 December 2020) [154]

PubChem http://pubchem.ncbi.nlm.nih.gov (accessed on 29
December 2020) [155]

RCSB Protein Data Bank (PDB) https://www.rcsb.org/ (accessed on 29 January 2021) [156]

Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) https://string-db.org/ (accessed on 29 December 2020) [157]

Structures of Well-curated Extracts,
Existing Therapies, and Legally

regulated Entities for Accelerated
Discovery (SWEETLEAD)

https://simtk.org/projects/sweetlead (accessed on 29
December 2020) [158]

SuperDRUG2 http://cheminfo.charite.de/superdrug2/ (accessed on 29
December 2020) [159]

The NCGC Pharmaceutical Collection
(NPC) https://tripod.nih.gov/npc/ (accessed on 29 December 2020) [160]

The Universal Protein Resource
(UniProt) https://www.uniprot.org/ (accessed on 29 December 2020) [161]

ZINC https://zinc.docking.org/ (accessed on 29 December 2020) [162]

Pathway omics data

Kyoto Encyclopedia of Genes and
Genomes (KEGG)

https://www.genome.jp/kegg/ (accessed on 29
December 2020) [163,164]

Mode of Action by NeTwoRk Analysis
(MANTRA) https://mantra.tigem.it/ (accessed on 29 December 2020) [165,166]

PathwayCommons https://www.pathwaycommons.org/ (accessed on
29 December 2020) [167,168]

Reactome https://reactome.org/ (accessed on 29 December 2020) [169]

https://www.bindingdb.org/bind/index.jsp
https://thebiogrid.org/
https://www.ebi.ac.uk/chembl/
http://chemdb.ics.uci.edu/
http://www.chemspider.com/
https://portals.broadinstitute.org/cmap/
https://dip.doe-mbi.ucla.edu/dip/Main.cgi
https://clue.io/repurposing
http://www.drugbank.ca/
http://drugcentral.org
https://solr.ideaconsult.net/search/excape/
http://gpsprot.org/
http://www.hprd.org/
https://lincs.hms.harvard.edu/db/
https://mint.bio.uniroma2.it/
http://proteopedia.org
http://pubchem.ncbi.nlm.nih.gov
https://www.rcsb.org/
https://string-db.org/
https://simtk.org/projects/sweetlead
http://cheminfo.charite.de/superdrug2/
https://tripod.nih.gov/npc/
https://www.uniprot.org/
https://zinc.docking.org/
https://www.genome.jp/kegg/
https://mantra.tigem.it/
https://www.pathwaycommons.org/
https://reactome.org/
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Table 2. Cont.

Category Database URL Reference

Genomics data

ArrayExpress https://www.ebi.ac.uk/arrayexpress/ (accessed on 29
December 2020) [170]

GenBank http://www.ncbi.nlm.nih.gov (accessed on 29 December 2020) [171]

Gene Expression Omnibus (NCBI-GEO) http://www.ncbi.nlm.nih.gov/geo/ (accessed on 29
December 2020) [172]

Pharmacogene Variation (PharmVar) https://www.pharmvar.org/ (accessed on 29 December 2020) [173]

Sequence Read Archive (SRA) https://trace.ncbi.nlm.nih.gov/Traces/sra/ (accessed on 29
December 2020) [174]

Single Nucleotide Polymorphism
database (dbSNP)

https://www.ncbi.nlm.nih.gov/snp/ (accessed on 29
December 2020) [175]

Clinical and
disease information

ClinicalTrials https://clinicaltrials.gov/ (accessed on 29 December 2020) -

Comparative Toxicogenomics Database
(CTD) http://ctdbase.org/ (accessed on 29 December 2020) [176]

DisGeNET https://www.disgenet.org/ (accessed on 29 December 2020) [177]

Drugs@FDA https://www.accessdata.fda.gov/scripts/cder/daf/ (accessed
on 29 December 2020) -

Genome-wide Association Studies
(GWAS Catalog) https://www.ebi.ac.uk/gwas/ (accessed on 29 December 2020) [178]

FDA Adverse Event Reporting System
(FAERS)

https://open.fda.gov/data/faers/ (accessed on 29
December 2020) [179]

Online Mendelian in Man (OMIM) https://www.ncbi.nlm.nih.gov/omim (accessed on 28
August 2020) [180]

OpenTargets https://www.opentargets.org/ (accessed on 29 December 2020) [181]

Pharmacogenomics Knowledgebase
(PharmGKB) https://www.pharmgkb.org/ (accessed on 29 December 2020) [182]

Side Effect Resource (SIDER) http://sideeffects.embl.de/ (accessed on 29 December 2020) [183]

Therapeutic Target Database (TTD) http://db.idrblab.net/ttd/ (accessed on 29 December 2020) [184]

Rare disease and
orphan drugs

eRAM http://www.unimd.org/eram/ (accessed on 29 December 2020) [185]

Orphanet (Oprhadata and Oprhanet
Rare Disease Ontology (ORDO)) http://www.orpha.net (accessed on 29 December 2020) -

The disease-oriented approach is only applicable if the information of disease model is
available and commonly used to study the contribution of pharmacological characteristics
towards drug repositioning effort on a particular disease. Incorporated with clinical trial
information, for adverse drug events (ADEs) and FDA approval labels that are available
from ClinicalTrials (https://clinicaltrials.gov/ (accessed on 28 August 2020)), Drug@FDA
(https://www.accessdata.fda.gov/scripts/cder/daf/ (accessed on 28 August 2020)), side
effect resource (SIDER) [183] and more, this strategy shows promise to identify off-target
effects and predict the side effects and ADEs of drugs, leading to the improvement of the
efficiency of drug discovery. As of December 2020, SIDER (version 4.1), a comprehensive
side effects database, comprises 1430 drugs with 5868 side effects, resulting in 139,756
drug–side effect pairs [183]. This pair information can be applied as features in building a
prediction model for disease indications, which has been implemented by Yang and Agar-
wal (2011) [194], Bisgin et al. (2014) [195], Ye et al. (2014) [196] and Sridhar et al. (2016) [197].
Compared with the drug-oriented approach, this requires more specific knowledge of drug
and disease, including the gene signatures and disease pathways. Gene signatures, de-
fined here as the sets of significantly up- and down-regulated genes, derived from disease
omics data, are publicly available from the connectivity map (CMap) [140,141] and the
National Institutes of Health (NIH) library of integrated network based cellular signatures
(LINCS) [151]. The advantage of integrating this information in drug repurposing is the
added involvement of molecular- and/or genetic-level mechanisms, leading to the discov-
ery of hidden mechanisms of drug and target [198]. The disease-specific pathway-based

https://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/geo/
https://www.pharmvar.org/
https://trace.ncbi.nlm.nih.gov/Traces/sra/
https://www.ncbi.nlm.nih.gov/snp/
https://clinicaltrials.gov/
http://ctdbase.org/
https://www.disgenet.org/
https://www.accessdata.fda.gov/scripts/cder/daf/
https://www.ebi.ac.uk/gwas/
https://open.fda.gov/data/faers/
https://www.ncbi.nlm.nih.gov/omim
https://www.opentargets.org/
https://www.pharmgkb.org/
http://sideeffects.embl.de/
http://db.idrblab.net/ttd/
http://www.unimd.org/eram/
http://www.orpha.net
https://clinicaltrials.gov/
https://www.accessdata.fda.gov/scripts/cder/daf/
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approach utilizes metabolic and signaling pathways, gene expression correlation and pro-
tein interaction network information to narrow down the target proteins/molecules from a
general signaling networks to a specific network and predict the connection between drugs
and disease. Notably, Kyoto Encyclopedia of Genes and Genomes (KEGG) [163,164] is a
frequently used database for such approach. The network is a way to discover informative
relationships between drugs and targets that consists of two main entities, which are nodes
and edges. The nodes in such network are represented as genes, proteins, molecules or
other biological entities, while the edges are the connections that can be weighted based on
the attributed information.

The blooming of drug repurposing resources and the advances in computational
sciences give rise to the development of novel algorithms/tools and approaches that are
capable of capitalizing on publicly available data. A list of widely used drug repurposing
approaches is summarized in Table 3 with their respective required data and software tools,
though the table is neither extensive nor exhaustive.

Although more databases are increasingly being established with enormous infor-
mation, drug repositioning still remains as a tremendous challenge, especially for rare
diseases, as drug repurposing studies are highly dependent on the available information
and knowledge on disease mechanism, target protein/gene. Moreover, there are numer-
ous available drug repurposing methods based on the availability of specific information.
Hence, choosing the proper approaches and tools to mine novel knowledge based on the
study of interest is extremely crucial, as otherwise the success of this approach may be
hindered. It is necessary to emphasize the importance of integration of computational and
experimental methods, and in-depth mechanistic computational pipelines or models in
order to maximize the success rates of drug repurposing.

4.2. Network-Driven Drug Discovery (NDD)

Network biology epitomizes the cell as a cluster of molecules interacting with one
another and aims to illustrate the emergence of cellular phenotype from the network of
molecular interactions [227]. The networks can be regarded as establishing the mech-
anistic bridge between the constituent molecules of a cell and the phenotypes that the
cells demonstrate. This perspective alone considers the cellular mechanism of disease
to be materialized due to networks of pathological interactions that occur only in the
disease state. In this context, drug discovery can, hence, be perceived as the search for
agents that significantly disrupt these pathological networks. NDD, as a whole, aims to
identify signatures of molecular perturbations; that is, collections of multiple proteins,
that significantly disturb the structural integrity of the cellular networks bringing forth
the targeted disease mechanism [228]. The search space of therapeutics, such as small
molecules, biologics or other agents, can then be screened and narrowed down based on
their ability to produce the identified perturbation signature. It should be acknowledged
that the compounds of this scheme are not expected to directly bind to all proteins within
the identified signature, but rather to produce a downstream, functional effect on the
molecules making up the signature [229]. This approach is far removed from the traditional
target-driven drug discovery that focuses on specific drug targets, whose downstream
effects will significantly perturb the disease phenotype without much emphasis on cellular
networks for understanding the underlying disease mechanisms.



Int. J. Mol. Sci. 2021, 22, 8962 17 of 33

Table 3. List of software tools for the in silico drug repurposing studies (neither extensive nor exhaustive) based on the
respective approach with the additional required data.

Method Approach Required Data Software Tools (Tool Name|Tool URL)

Drug-oriented

In silico screening

Protein 3D structure,
chemical structure,

chemical information
(targets and ligands)

Protein structure prediction tools

I-TASSER [199]
https://zhanglab.ccmb.med.umich.

edu/I-TASSER/ (accessed on 29
December 2020)

Modeller [200] https://salilab.org/modeller/
(accessed on 29 December 2020)

transform-restrained
Rosetta [201]

http://robetta.bakerlab.org/ (accessed
on 29 December 2020)

Docking

Ligand based
screening and

molecular docking

AutoDock [202] http://autodock.scripps.edu/
(accessed on 29 December 2020)

AutoDock Vina [203] http://vina.scripps.edu/ (accessed on
29 December 2020)

High Ambiguity Driven
protein-protein DOCKing

(HADDOCK [204])

https:
//wenmr.science.uu.nl/haddock2.4/

(accessed on 29 December 2020)

PatchDock [205]
https:

//bioinfo3d.cs.tau.ac.il/PatchDock/
(accessed on 29 December 2020)

Pharmacophore mapping and inverse virtual docking (IVD)
programs

Fragment-based
screening

BIOVIA Discovery Studio
https://discover.3ds.com/discovery-
studio-visualizer-download (accessed

on 29 December 2020)

INVDOCK [206]
http://bidd.group/group/softwares/

invdock.htm (accessed on 29
December 2020)

LigandScout [207]
http:

//www.inteligand.com/ligandscout/
(accessed on 29 December 2020)

PharmMap
http://www.meilerlab.org/index.
php/research/show?w_text_id=32

(accessed on 29 December 2020)

PharmMapper [208,209]
http://www.lilab-ecust.cn/

pharmmapper/ (accessed on 29
December 2020)

ZINCPharmer [210] http://zincpharmer.csb.pitt.edu/
(accessed on 29 December 2020)

Drug similarity
studies

Chemical structure,
chemical information of

drugs, clinical trial
information, side effects
and adverse events, FDA

approval labels

Drug-drug similarities prediction and visualization

ChemMine Tools [211] http://chemmine.ucr.edu/ (accessed
on 29 December 2020)

ChemTreeMap [212]
https://chemtreemap.readthedocs.io/

en/latest/ (accessed on 29
December 2020)

Compound Specific
bioActivity DENdrogram

(C-SPACE [213])

http://cspade.fimm.fi/ (accessed on
29 December 2020)

Drug-drug similarities and drug-target interaction prediction

SuperPred [214] https://prediction.charite.de/
(accessed on 29 December 2020)

https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://salilab.org/modeller/
http://robetta.bakerlab.org/
http://autodock.scripps.edu/
http://vina.scripps.edu/
https://wenmr.science.uu.nl/haddock2.4/
https://wenmr.science.uu.nl/haddock2.4/
https://bioinfo3d.cs.tau.ac.il/PatchDock/
https://bioinfo3d.cs.tau.ac.il/PatchDock/
https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
http://bidd.group/group/softwares/invdock.htm
http://bidd.group/group/softwares/invdock.htm
http://www.inteligand.com/ligandscout/
http://www.inteligand.com/ligandscout/
http://www.meilerlab.org/index.php/research/show?w_text_id=32
http://www.meilerlab.org/index.php/research/show?w_text_id=32
http://www.lilab-ecust.cn/pharmmapper/
http://www.lilab-ecust.cn/pharmmapper/
http://zincpharmer.csb.pitt.edu/
http://chemmine.ucr.edu/
https://chemtreemap.readthedocs.io/en/latest/
https://chemtreemap.readthedocs.io/en/latest/
http://cspade.fimm.fi/
https://prediction.charite.de/
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Table 3. Cont.

Method Approach Required Data Software Tools (Tool Name|Tool URL)

Disease-/therapy-
oriented

Signature-based drug
repurposing

Gene signatures
information,

disease/genetics data,
drug omics data

Signature-based drug repurposing tool

Cogena [215]
http://bioconductor.org/packages/

release/bioc/html/cogena.html
(accessed on 29 December 2020)

ksRepo [216]
https://github.com/adam-sam-
brown/ksRepo (accessed on 29

December 2020)

DrugSig [217]
http://biotechlab.fudan.edu.cn/

database/drugsig/ (accessed on 29
December 2020)

Pathway-/network-
based drug
repurposing

General drug information,
pathway information

Network-based drug repurposing tool

Drug Repurposing
Recommendation System

(DRRS [218])

http://bioinformatics.csu.edu.cn/
resources/softs/DrugRepositioning/

DRRS/index.html (accessed on 29
December 2020)
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Cytoscape [222] https://cytoscape.org/ (accessed on 29
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Pathway Studio [224] https://www.pathwaystudio.com/
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~patikaweb/ (accessed on 29

December 2020)

VisANT [226]
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As opposed to the canonical SMN-independent treatment based on many disease-
modifying pathways, potential drug targets may be found on the periphery of the pathways
using the NDD approach. A network analysis based on the two main proteins (Figure 7),
SMN1 and SMN2, as protein input in GeneMANIA (https://genemania.org/ (accessed
on 29 December 2020)) [223], has generated a network of putative interacting proteins
that works in unison to bring about the phenotypes as seen in SMA. Proteins such as
GEMINs [230], SNRPB [231], DDX20 [232] and PFN2 [233] appear to be highly correlated
to the functioning of SMN1 and SMN2. These proteins are essential to SMN in forming
macromolecular complexes (e.g., SMN-GEMINs, SMN-snRNPs) to chaperon the assembly
of small nuclear ribonucleoproteins (snRNPs) that are vital to pre-mRNA splicing for
producing the final SMN1 and SMN2 proteins [230]. Modulating these proteins in the
cellular network within the context of SMA may serve as an opportunity to develop novel
therapeutics complementary to the conventional SMN-dependent treatments in addressing
the challenge of creating a robust and sustainable solution to curing SMA.
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Figure 7. Protein network based on two main proteins, SMN1 and SMN2, and their respective interactions with other
proteins related to SMA, generated using GeneMANIA [223] (https://genemania.org/ (accessed on 29 December 2020)).
The most prevalent network relationship, reported by literature, among the proteins is physical interactions (pink color) at
67.64%, as visually shown by the line thickness, while the smallest belong to the shared protein domains at 0.59%.

With the advances of network biology, the rapid growth of publicly available biomed-
ical data and the advanced computational analytics, the NDD approach, a mechanistic
based approach, proposes an alternative to identify the novel target as potential SMN-
independent treatment. Collectively, a comprehensive analysis of drug-protein interac-
tions on a genome-wide scale is crucial and provides beneficial effects in drug discovery,
especially for polypharmacology and phenotypic screening [234]. Several studies has
discovered many disease-modifying pathways in SMA, such as the RhoA/Rho kinase
(ROCK) [79,235,236], the cyclic adenosine monophosphate (cAMP) pathway [237], the
extracellular regulated kinase (ERK) [235,238], the c-Jun N-terminal Kinase (JNK) [239] and
the p53-pathway [240], which show promise as further SMA therapy development [100].
For instance, Y-27632 and fasudil, ROCK inhibitors, have been suggested to improve the
lifespan of an intermediate SMA mouse model (Smn2B/-) without any effects on the expres-
sion levels of the SMN protein [236,241,242]. Discussing all the listed signaling pathways
in detail would go beyond the scope of this review. Nonetheless, with the given example,
it is clear that a more in-depth level of understanding those pathways is likely to provide
further insights in identifying novel therapeutic targets in a much shorter period.

4.3. AI-Assisted Drug Discovery (AID)

AI application to drug discovery is not a new technology and started around 1990 [243–245].
Driven by the big data in the field of biomedical and/or healthcare, the advancement of
algorithms and technology such as deep learning (DL), graphical processing units (GPUs)
and Google’s tensor processing units (TPUs) enable better predictive capability by short-
ening the computing time [246,247]. To date, AI has been extensively adopted to support
healthcare services and research. Virtual screening [248], quantitative structure-activity

https://genemania.org/
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relationship (QSAR) [249], de novo drug design [250,251], drug repurposing [252] and
chemical space visualization [253] utilized ML extensively to reduce the gap in the con-
ventional methods in drug discovery, while DL shows promise in proposing potent drug
candidates using their properties and toxicity risks [9]. Uptake from the pharmaceuti-
cal industry is still lagged, especially for rare diseases. Given the breadth of AID, we
summarized the pipeline and its pre-requisites (Figure 8).

Figure 8. Machine learning applications in the drug discovery pipeline. Promising developments of pioneering ML research has
brought forth unprecedented advances across various stages of the traditional drug development pipeline, especially the concept of
automation in the early drug discovery process of target identification and validation & compound screening and lead discovery;
relying on the domain of NLP in AI to find prospective drug targets by scanning upon thousands of relevant literature based on
contextual information in research papers, and integrating AI with synthesis robots to explore unknown reaction space to search
for drug candidates in which multiple chemical experiments are conducted automatically in real-time to assess the reproducibility
of chemical reactions and discover new reaction outcomes. AI in the preclinical development has been a game-changer for patient
selection in Phase II and III clinical trials by identifying and predicting human-relevant biomarkers of diseases, thus preventing
unnecessary toxicities and side effects of consuming the experimental drugs for the designated patients [254].

To date, there are only a few drugs that utilized AID that are being conducted for
clinical trials; nonetheless, none of them have proceeded to Phase III and above. DSP-1181,
reportedly the first AID-designed drug in January 2020, which has begun with human
testing, was developed by Exscientia with Japan’s Sumitomo Dainippon Pharma [255]
with the intention of treating obsessive compulsive disorder (OCD) patients. Additionally,
to date, there are no studies utilizing AI for the drug development of SMA; however,
only some case studies of AI being implemented to tackle one of the rare diseases that
closely related to SMA, which is amyotrophic lateral sclerosis (ALS). The breakthroughs
from BenevolentAI and Verge Genomics have demonstrated promises for therapeutic
approaches in ALS by leveraging the AI technology [256,257]. A plethora of studies have
successfully implemented ML models in ALS research, commonly with random forests
(RF) [258], support vector machines (SVM) [259], neural networks (NN) [260] and more.
Chiefly, although all case studies related to ALS are still being evaluated, these studies may
serve as a proxy, so we can extrapolate the efficacy of AI methods employed by others in
developing drugs to treat SMA.

Through a closer inspection of AI techniques in accelerating drug discovery, there are
several common machine learning methods being employed to address the challenges in
two major areas of drug development: (i) design and discovery and preclinical research;
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and (ii) clinical research and safety monitoring (Table 4). In the first major area, a generative
model has been utilized for de novo drug design, as reported by a study conducted by
Prykhodko et al. (2019), who proposed a novel deep learning architecture, LatentGAN,
which combines an autoencoder and a generative adversarial neural network (GAN) to
generate novel structures [261]. The autoencoder was first pre-trained on one-hot encoded
SMILES data derived from ChEMBL database for mapping structures to latent vectors.
These outputs are then fed into the GAN architecture as training data to generate novel
latent vectors that were later decoded in the autoencoder to obtain the SMILES strings
of the novel molecule. It was found that the LatentGAN was able to generate similar
drug-like compounds after training on a randomly selected 100,000 ChEMBL subset data
when compared to the 200,000 generated compounds from LatentGAN in a 2D PCA plot
(explained variance 74.1%) to examine the coverage of the chemical space. A similar study
was carried out by Kadurin et al. (2017) in investigating the viability of utilizing GANs and
autoencoders to generate new molecules with desired molecular properties in silico [262].

Table 4. Utility of machine learning methods in addressing the challenges of drug development.

Machine Learning Methods Area of Drug Development Reference

• Generative model
• Reinforcement learning

Design and Discovery and Preclinical Research
• Synthesis prediction and de novo drug design
• Virtual drug screening and drug

target identification

[261–263]

• Deep representational
learning

• Graph embeddings

Clinical Research and Safety Monitoring
• Clinical trial recruitment
• Adverse drug effects, polypharmacy and

drug-food interaction prediction

[264–266]

In the second major area of clinical research and safety monitoring, deep representa-
tional learning was used in a novel architecture, DeepEnroll, to streamline the process of
finding qualified patients for clinical trials with an NLP-based model called Bidirectional
Encoder Representations from Transformers (BERT), which utilized heterogeneous data
from EC (Text Data) and patient EHR (Tabular Data) to train the model and optimize
the patient-trial matching score in a cross-modal inference fashion [266]. DeepEnroll has
outperformed the best baseline by up to 12.4% in an averaged-F1 score. In addressing
the potential side effects of multi-drug combination administration (polypharmacy), Zit-
nik et al. (2018) presented a graph-embedding-based approach—Decagon—which builds
multimodal graphs of protein–protein interactions and drug–protein target interactions
and the polypharmacy side effects to model each relationship with nodes (i.e., drugs,
proteins) and labeled edges (i.e., side effects) for multi-relational link prediction [265]. It
was found that Decagon can accurately predict polypharmacy side effects, outperforming
baselines by up to 69%. In a similar avenue of research focusing on drug-target interactions,
DeepDTA, a convolutional neural networks (CNN)-based approach, was proposed to
predict drug–target binding affinity using only sequences of proteins and drugs in a 1D
representational state in the CNN model [264]. It has outperformed two state-of-the-art
methods for DT binding affinity prediction, KronRLS algorithm and SimBoost, based on
the concordance index (CI) to measure the model performance.

5. Conclusions

The task of finding a successful, novel drug as treatment for common diseases is
predominantly a daunting yet arduous process, which is even more challenging for a rare
genetic neurological disorder such as SMA. Many research and development pharmaceu-
tical companies and research institutions are hesitant to pursue the drug development
for rare diseases due to the small market size, high cost, possibly low return and lack of
information about the disease, drugs and corresponding drug targets. Recently, CADD
approaches have shown promising potentials in facilitating the drug discovery process
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and may be able to overcome the limiting bottlenecks of its traditional counterparts. Along
with the advances of the knowledge of computational biology and informatics database,
the opportunities provided by drug repurposing cannot be underestimated. The interac-
tions of a drug and a target is a critical point of drug discovery. This information aids to
establish correlations between diseases and targets in order to determine the therapeutic
effect of drugs on various diseases. Hence, the well-known drug–disease relationships that
has been established using network biology will help accelerate the target identification
and lead optimization process for pre-clinical drug development. Integrated with the
domain-specific AI in the ‘chemical big data,’ the novel approach could potentially serve
as a panacea by increasing the efficiency of certain aspects of the drug discovery process.

Despite the promising potential offered by CADD, there are several challenges, includ-
ing the access of databases consisting all the approved drugs and their detailed profiles,
in-depth knowledge of disease, particularly for multifaceted disease, among others [267] to
capitalize the benefit of CADD in advancing the domain of drug research and development.
In spite of the recent advocacy of ‘open science’ in the scientific community, proprietary
databases still remain few and far between. In addition, errors can be found in publicly
available data, such as drug structures and their chemical profiles, among others, leading
to the inevitable failure of identifying lead targets accurately. Research that involved
multidisciplinary fields may face the challenges of integrating the complex theories into
practical applications. This could only become more profound when dealing with the
governance of data quality such as missing, biased and inaccurate data. Demonstrating
this, the lack of the structural data of promising ligand or drug hinders the identification of
potential drug–target interaction. Additionally, the protein–protein interaction network
for a less-studied disease may mislead the drug discovery process. Addressing these
challenges are by no means a trivial endeavor; monumental efforts must be put forth to
develop a standardized, generic CADD framework to complement the traditional approach
of creating novel yet effective therapeutics for both common and uncommon diseases. In
light of such call-to-action, the various techniques and methodologies examined in this
study may serve as a precedent in establishing the cornerstone for the CADD framework.
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NDD network-driven drug discovery
AID artificial intelligence (AI)-assisted drug discovery
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