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Abstract

Background: Imputation accuracy among other things depends on the size of the reference panel, the marker’s
minor allele frequency (MAF), and the correct placement of single nucleotide polymorphism (SNP) on the reference
genome assembly. Using high-density genotypes of 3938 Nellore cattle from Brazil, we investigated the accuracy of
imputation from 50 K to 777 K SNP density using Minimac3, when map positions were determined according to the
bovine genome assemblies UMD3.1 and ARS-UCD1.2. We assessed the effect of reference and target panel sizes on
the pre-phasing based imputation quality using ten-fold cross-validation. Further, we compared the reliability of the
model-based imputation quality score (Rsq) from Minimac3 to the empirical imputation accuracy.

Results: The overall accuracy of imputation measured as the squared correlation between true and imputed allele
dosages (R2dose) was almost identical using either the UMD3.1 or ARS-UCD1.2 genome assembly. When the size of
the reference panel increased from 250 to 2000, R2dose increased from 0.845 to 0.917, and the number of polymorphic
markers in the imputed data set increased from 586,701 to 618,660. Advantages in both accuracy and marker density
were also observed when larger target panels were imputed, likely resulting from more accurate haplotype inference.
Imputation accuracy increased from 0.903 to 0.913, and the marker density in the imputed data increased from 593,239
to 595,570 when haplotypes were inferred in 500 and 2900 target animals. The model-based imputation quality scores
from Minimac3 (Rsq) were systematically higher than empirically estimated accuracies. However, both metrics were
positively correlated and the correlation increased with the size of the reference panel and MAF of imputed variants.

Conclusions: Accurate imputation of BovineHD BeadChip markers is possible in Nellore cattle using the new bovine
reference genome assembly ARS-UCD1.2. The use of large reference and target panels improves the accuracy of the
imputed genotypes and provides genotypes for more markers segregating at low frequency for downstream genomic
analyses. The model-based imputation quality score from Minimac3 (Rsq) can be used to detect poorly imputed
variants but its reliability depends on the size of the reference panel and MAF of the imputed variants.
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Background
Genotype imputation is a cost-effective statistical ap-
proach to infer genotypes at untyped loci [1–4]. Target
panels genotyped with low-density single nucleotide
polymorphism (SNP) chips can be imputed to higher
density using a reference panel typed at higher density.
Imputation is important to increase the power and reso-
lution of genome-wide association studies [2, 5] and the
accuracy of genomic breeding values for individuals
typed using cheap low-density SNP genotyping arrays
[6]. Imputation accuracy depends on several factors in-
cluding the size and composition of the reference panel
[3, 7], the minor allele frequency (MAF) of imputed vari-
ants [8], and correct placement of variants on the refer-
ence genome assembly [7, 9, 10].
Large and informative reference panels are required to

facilitate accurate imputation of rare and low-frequency
variants [3, 7, 11]. The effect of the target panel size, on
the other hand, has been barely studied. The software
that implement a pre-phasing-based strategy [12], for ex-
ample, Minimac3 [13] and IMPUTE2 [14], impute geno-
types into phased haplotypes. These tools are probably
more sensitive to the size of the target panel because the
phasing accuracy depends on the number and the re-
latedness of the samples considered [15–17]. Errone-
ously inferred haplotypes might compromise the quality
of subsequent imputation.
The correct physical placement of SNPs along the gen-

ome is also crucial for accurate phasing and genotype
imputation [7, 10, 18, 19]. Several iterations of improve-
ment resulted in a highly contiguous and accurate
bovine reference sequence [20]. However, the correct
placement of markers and haplotypes inference remains
challenging in repetitive and duplicated regions [21].
Recently a highly contiguous version (ARS-UCD1.2) of
the bovine reference sequence — assembled using long
sequencing reads — filled gaps and resolved repetitive
regions of the previous UMD3.1 assembly [21].
Identifying and filtering out poorly imputed variants is

important to avoid bias in downstream genomic analyses
[2]. The empirical accuracy of imputation can be obtained
by masking and subsequently predicting genotypes in a
cross-validation setting. To avoid this computationally de-
manding and time-consuming process, the per-locus im-
putation quality scores from imputation programs are
often used as indicators for imputation quality. These
quality scores are correlated with true empirical estimates
[22], however, their reliability with respect to the size of
the reference panel and MAF of the imputed variants has
not been tested extensively.
We herein study the quality of imputation from 50 K

to 777 K SNP density in Nellore cattle from Brazil using
a pre-phasing-based workflow, implemented using the
software packages Eagle2.4 for phasing [16], and Minimac3

for imputation [13]. First, we investigate if the improve-
ments in the new bovine genome assembly (ARS-UCD1.2)
affect the imputation quality. Next, we test the effect of ref-
erence and target panel size on imputation quality. In
addition to the commonly used imputation quality metrics,
we study the marker density in the imputed data set, i.e. the
number of markers segregating in the target panel, after im-
putation. Finally, we study the reliability of model-based
quality scores obtained from the imputation software by
comparing it to empirical measures obtained using cross-
validation.

Results
Comparison of the accuracy of imputation between the
UMD3.1 and ARS-UCD1.2 genome assemblies
We considered 3938 Nellore cattle genotyped at 777,962
SNPs using the Illumina BovineHD BeadChip to study
the effect of reference genome assemblies on the imput-
ation accuracy. Following quality control (QC) on the
genotype data, we determined the position of 684,561
and 683,590 autosomal markers of the Illumina Bovi-
neHD BeadChip according to the UMD3.1 and ARS-
UCD1.2 bovine genome assemblies, respectively. An
intersection of 683,504 autosomal SNPs mapped on both
assemblies. The genotypes of 1938 randomly selected
animals (target) were reduced to the markers of the
Illumina BovineSNP50 genotyping array to mimic low
SNP density. The masked genotypes were subsequently
inferred in silico using 777 K genotypes of 2000 animals
(reference) in ten-fold cross-validation. The empirical
accuracy of imputation was assessed by the squared cor-
relation between true and imputed alleles dosage
(R2dose). There was almost no difference in imputation
accuracy when the markers were aligned to either
UMD3.1 or ARS-UCD1.2 with the respective mean
R2dose of 0.916 and 0.917. Only a few SNPs showed
large differences in the accuracy of imputation between
the two assemblies (Fig. 1a, Additional file 1b). Genotype
imputation was less accurate for low-frequency variants
(MAF < 5%) (Additional file 1a) using either the ARS-
UCD1.2 (0.818) or UMD3.1 (0.817) assembly.
The new assembly placed 1507 of 1735 markers that

were previously unmapped (i.e., not assigned to a chromo-
some on UMD3.1) on autosomes; 762 of these passed our
QC parameters and segregated in the target panel after
imputation. Three hundred fifty-six did not pass QC,
mainly due to MAF filtering applied, and 389 markers
were monomorphic after the imputation. The newly
placed autosomal markers were imputed with a mean
R2dose value of 0.802. Compared to the UMD3.1 assem-
bly, 2874 markers were placed on a different chromosome
in the ARS-UCD1.2 assembly. For 1116 of these markers
that passed QC in our data, the mean R2dose was low but
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improved from 0.515 (UMD3.1) to 0.586 (ARS-UCD1.2)
(Fig. 1b).
The analysis of imputation accuracy enabled us to iden-

tify regions with poor imputation quality most likely due
to misplaced SNPs. We partitioned autosomes into seg-
ments of 100 kb and counted the number of SNPs that
were poorly imputed despite moderate minor allele fre-
quency (MAF > 1% and R2dose < 0.8). All SNPs in seg-
ments with more than three poorly imputed SNPs were
considered as putatively misplaced (Fig. 2). A total of 246
segments containing 5447 SNPs (Additional file 2) and
182 segments containing 3549 SNPs (Additional file 3)
were identified as misplaced on the UMD3.1 and ARS-
UCD1.2 assembly, respectively. Of the 5447 putatively
misplaced SNPs on the UMD3.1 assembly, 4769 segre-
gated in a taurine cattle population [7], where using a
slightly different approach 1680 (35%) of these markers
were identified as likely misplaced. A subset of 2205 SNPs
was identified as misplaced on both assemblies with re-
spective mean R2dose of 0.65 and 0.67 when aligned to the
UMD3.1 and ARS-UCD1.2 assembly. Three thousand two
hundred forty-two SNPs in segments identified as mis-
placed on the UMD3.1 assembly were imputed with better
accuracies (not on poorly imputed segments) on the ARS-
UCD1.2 assembly. The mean R2dose for these SNPs in-
creased from 0.78 to 0.93 when aligned to ARS-UCD1.2.
The increase in R2dose was even more substantial (from
0.49 to 0.95) for 386 SNPs that were mapped to a different
chromosome on the new build. On the other hand, 1344
SNPs — not on poorly imputed segments when mapped
to the UMD3.1 assembly — were identified as putatively
misplaced on the ARS-UCD1.2 assembly. The mean
R2dose for these SNPs decreased from 0.89 to 0.73 when
mapped to the ARS-UCD1.2 assembly. The drop in the
accuracy was even more substantial (from 0.89 to 0.14) for

257 SNPs that were mapped to a different chromosome
on the new build.

Effect of reference panel size on imputation accuracy and
marker density
We used SNPs mapped to ARS-UCD1.2 to study the ef-
fect of reference panel size on the accuracy of imput-
ation and marker density in the imputed data set. Using
four reference panels containing 250, 500, 1000, and
2000 randomly selected animals, we imputed genotypes
for 1938 animals from low (50 K) to high density (777 K)
and compared their imputed and true genotypes using
ten-fold cross validation to take sampling errors and
population substructure into account. The mean squared
correlation between true and imputed allele dosage
(R2dose) increased with an increasing size of reference
panels. For instance, R2dose increased from 0.845 to
0.917 (8.5%) when the reference panel size increased
from 250 to 2000 (Table 1). The variance in R2dose
values was similar across replicates, suggesting popula-
tion substructure had little or no effect on imputation
accuracy in our data (Additional file 4).
The increase in R2dose was observed for markers in all

allele frequency classes (Fig. 3a) but it was greater (from
0.688 to 0.818; 19%) for low-frequency (MAF < 5%) than
for common variants (MAF > 5%; 0.909 to 0.965; 6%).
The correlation-based empirical accuracy metric R2dose
does not reflect the realized marker density (number of
informative markers) in the imputed data set. Therefore,
we studied the marker density in the imputed dataset
when the genotypes were imputed using different refer-
ence panels. Larger reference panels captured a greater
fraction of genetic variation in the population, allowing
the imputation of a larger number of variants (Fig. 3b
and Table 2). In the smallest (n = 250) and the largest

Fig. 1 Difference in imputation accuracy according to reference genome assemblies. Difference in imputation accuracy (R2dose) between the
ARS-UCD1.2 and UMD3.1 assembly for all makers (a), and for markers that were remapped to a different chromosome (b), when genotypes were
aligned to the two Bovine assemblies. To facilitate the interpretation, the y-axis is presented on log-scale in (a)
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(n = 2000) reference panels, 597,095 and 636,201
markers were polymorphic, respectively, of which 595,
609 and 629,025 were also polymorphic in the 1938 tar-
get animals.
When we reduced the marker density of the target an-

imals to the content of the BovineSNP50 BeadChip
genotyping array and imputed the missing genotypes
using reference panels of increasing size, the number of
informative markers increased from 586,701 to 618,660.
The increase in the imputed marker density with larger
reference panels was mainly (~ 90%) due to a higher
number of low-frequency variants (Table 2). The largest
reference panel contained ~ 31% more (150,407 vs. 114,
516) rare alleles (MAF < 2%) than the smallest reference
panel (n = 250 animals), of which 132,931 (92.2%) and
104,222 (92.8%) remained informative post-imputation.
The additional markers available in the imputed data
when genotypes were inferred from the largest reference
panels (compared to the smallest reference panel) were
imputed with the mean and median R2dose of 0.674 and
0.740 with 42% of the markers being imputed with
R2dose > 0.80.

Table 1 Empirical accuracies (R2dose, R2gt, CR) and model-
based (Rsq) imputation quality score from Minimac3 using
different reference panels

Size of the reference panel

250 500 1000 2000

Rsq Low-frequency (MAF < 5%) 0.829 0.856 0.871 0.876

Common (MAF > 5%) 0.942 0.960 0.971 0.978

Global 0.909 0.928 0.938 0.944

R2dose Low-frequency (MAF < 5%) 0.688 0.737 0.778 0.818

Common (MAF > 5%) 0.909 0.936 0.953 0.965

Global 0.845 0.874 0.897 0.917

R2gt Low-frequency (MAF < 5%) 0.690 0.746 0.792 0.832

Common (MAF > 5%) 0.887 0.920 0.941 0.956

Global 0.832 0.868 0.895 0.917

CR Low-frequency (MAF < 5%) 0.992 0.995 0.996 0.997

Common (MAF > 5%) 0.962 0.973 0.98 0.985

Global 0.971 0.980 0.986 0.989

Fig. 2 Local imputation accuracy (R2dose) when imputing HD genotypes using the two bovine genome assemblies. Mean imputation accuracy
(R2dose) for SNPs grouped in segments of 100 kb on the 29 autosomes when aligned to the ARS-UCD1.2 and UMD3.1 assemblies. For better
visualisation, accuracies are plotted as means of 1-R2dose and R2dose-1 for UMD3.1 and ARS-UCD1.2 assemblies respectively. Number of poorly
imputed SNPs (MAF > 1% and R2dose < 0.8) are counted in segments of 100 kb. Segments with more than three poorly imputed SNPs are
identified as putatively misplaced. The putatively misplaced segments on UMD3.1 (blue) and ARS-UCD3.1 (red) are marked in colored tracks
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A subset of rare (MAF < 2%) markers segregating in
the reference panel was monomorphic/fixed in the target
animals (considering the true genotypes). Some of them
turned out polymorphic post-imputation likely due to
erroneously imputed genotypes. The absolute number of
monomorphic markers in the target panel that were
polymorphic post-imputation increased (526 vs. 990 for
n = 250 and 2000 respectively), but the percentage (35
and 14% respectively) decreased with the size of the ref-
erence panel. Interestingly, Minimac3 reported moder-
ately high Rsq values for these markers, increasing with
the size of the reference panel (0.640, 0.683, 0.718, and
0.740 using reference panels with 250, 500, 1000 and
2000 animals respectively).

Effect of target panel size on imputation accuracy and
markers density
We investigated the effect of target panel size on imput-
ation accuracy and number of polymorphic markers
after imputation using a target panel of 500 (base) ani-
mals. The 50 K genotypes of the base animals were
phased together with 0, 600, 1200, 1800, or 2400 add-
itional animals, and subsequently imputed to 777 K
using the same reference panel of 1000 animals. The
mean squared correlation between true and imputed
allele dosages (R2dose) increased when genotypes were
imputed into haplotypes that were inferred in larger tar-
get panels (Fig. 4a and Table 3). For instance, R2dose in-
creased from 0.903 to 0.913 (1.1%) when 2400 additional

Fig. 3 Effect of reference panel size on imputation quality. Imputation accuracy (R2dose) for markers grouped in MAF bins when imputing with
reference panels of different sizes (a). Proportion polymorphic markers (all and rare; MAF < 2%) in the full data set (n = 3938) that are polymorphic
in the reference, target and imputed data, when imputing with reference panels of varying sizes (b)

Table 2 Number of polymorphic and monomorphic markers in reference, target and imputed data

Refa Marker Number of markers

Polymorphic in
reference panel

Polymorphic in
target panel

Monomorphic in
target panel

Polymorphic in
imputed data

Falsely imputedb

250 All 597,095 595,609 1486 586,701 526

Rarec 114,516 113,030 1486 104,222 526

500 All 613,649 610,987 2661 601,082 711

Rarec 129,107 126,446 2661 116,619 711

1000 All 626,122 621,698 4424 611,284 860

Rarec 140,931 136,507 4424 126,155 860

2000 All 636,201 629,025 7176 618,660 990

Rarec 150,407 143,231 7176 132,931 990
aReference panel size
bNumber of markers that were imputed as polymorphic but were monomorphic in the target animals (considering the true genotypes)
cMAF < 2%
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animals were included for haplotype inference. Increase
in accuracy was observed for markers in all allele fre-
quency classes (Fig. 4a). Rare variants (MAF < 2%) bene-
fited the most from large target panels. For common
variants, the marginal increase in accuracy was low be-
yond 600 additional animals (Table 3).
In the 1000 reference animals, 625,538 markers were

polymorphic of which 607,560 were also polymorphic in
the 500 base animals. When we combined the base ani-
mals with different numbers of additional animals (0,
600, 1200, 1800, and 2400) and imputed the missing ge-
notypes, the number of markers that were polymorphic
in the imputed data increased with the number of add-
itional animals used. For instance, the number of poly-
morphic markers in the imputed data increased by 2331
markers (from 593,239 to 595,570) when 2400 additional
animals were considered to infer the haplotypes of the
500 base animals. Most (n = 2323) of them were rare
markers segregating at MAF < 2% (Fig. 4b).
Of 17,978 rare markers that had MAF less than 2% in

the reference panel, 14.6% were monomorphic in the true
genotypes of the target panel. However, some of these rare

markers were polymorphic in the imputed dataset likely
due to erroneously imputed genotypes. The fraction of
fixed markers in the target data that turned polymorphic
after imputation increased with the number of additional
animals used for phase inference in target animals (9.5
and 10.5% using 0 and 2400 additional animals for haplo-
type inference, respectively) (Table 4).

Reliability of the model-based quality score from
Minimac3
Next, we compared the model-based quality score re-
ported by Minimac3 (Rsq) to our three empirical accur-
acy estimates — (i) squared Pearson’s correlation
coefficient between true genotypes and imputed allele
dosages (R2dose) (ii) squared Pearson’s correlation coeffi-
cient between true and imputed “best-guess” genotypes
(R2gt), and (iii) proportion of correctly imputed geno-
types (concordance rate - CR) —. Irrespective of the size
of the reference panel and MAF of the imputed variants,
the Rsq values were higher than R2dose and R2gt but
lower than CR values (Table 1, Additional file 5). How-
ever, the discrepancy between these metrics decreased

Fig. 4 Effect of target panel size on imputation quality. Imputation accuracy (R2dose) for markers grouped in MAF bins when genotypes were
imputed into the haplotypes of 500 target samples that were inferred together with additional samples (a). Proportion of polymorphic markers
(all and rare; MAF < 2%) in the full data (n = 3938) that are polymorphic in the reference (n = 1000), base target (n = 500) and, imputed data
(base), when genotypes were imputed into haplotypes of 500 base animals inferred with different number of additional samples (b)

Table 3 Imputation accuracy (R2dose) in 500 target samples when additional animals were used for haplotype inference

Number of additional samples used for the phasing of 500 target base animals

0 600 1200 1800 2400

Rare (MAF < 2%) 0.748 0.760 0.765 0.767 0.768

Low-frequency (MAF < 5%) 0.804 0.815 0.819 0.820 0.821

Common (MAF > 5%) 0.948 0.952 0.953 0.954 0.954

Global 0.903 0.910 0.912 0.913 0.913
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when either the MAF of the imputed variants or the size of
the reference panels increased (Additional file 6, Table 1).
The Rsq values reported by Minimac3 were highly cor-

related with R2dose (0.77) and R2gt (0.75) but not with
CR (0.03) when a reference panel of 2000 samples was
used to impute 1939 target samples. The very low cor-
relation between Rsq and CR was mainly due to large
discrepancies of both metrics for markers with low
MAF. The mean correlations of Rsq with R2dose, R2gt,
and CR (excluding markers with MAF < 0.5%) increased
from 0.80, 0.81 and, 0.33 to 0.84, 0.84 and, 0.61, respect-
ively, when the reference panel size increased from 250
to 2000 (Fig. 5). These correlations were also stronger
for common than for the rare variants; when imputing
with the largest (n = 2000) reference panel, the correla-
tions of Rsq with R2dose, R2gt and CR were 0.81, 0.81 and,
0.64 and 0.93, 0.92 and, 0.84 for low-frequency (MAF <
5%) and common (MAF > 5%) variants, respectively.

Discussion
Phasing and imputation accuracies of high-density geno-
types using the ARS-UCD1.2 bovine reference genome
assembly have been investigated in different Bos taurus
taurus breeds [11]. In Bos taurus indicus cattle, the ac-
curacy of imputing 50 K genotypes to higher density has
been investigated only using the UMD3.1 assembly of
the bovine genome [23, 24]. To the best of our know-
ledge, our study is the first to evaluate the accuracy of
imputing 50 K to 777 K genotypes in a Bos taurus indi-
cus cattle breed using the ARS-UCD1.2 assembly of the
bovine genome [21].
Higher contiguity of the ARS-UCD1.2 genome assem-

bly might improve haplotype inference in regions that
contained phasing and imputation errors in the previous

assembly (UMD3.1) [7, 10, 18]. While the global accur-
acy of imputation was identical for both assemblies, we
detected a number of segments for which the accuracy
of imputation differed greatly. Moreover, we identified
fewer putatively misplaced SNPs on ARS-UCD1.2 com-
pared to UMD3.1 and observed a substantial improve-
ment in imputation accuracy for 60% of misplaced SNPs
on UMD3.1 when they were mapped to the new build.
However, we also identified SNPs that had considerably
higher imputation accuracy when aligned to UMD3.1
than to ARS-UCD1.2 indicating that some physical ARS-
UCD1.2 coordinates of the 777 K markers are wrong. A
limitation of our study is that we considered only SNPs
interrogated with commercial genotyping chips. These
SNPs suffer from ascertainment bias as they are predom-
inantly located in more accessible regions of the genome
[25]. Hence differences in imputation accuracy between
the two builds might be higher than observed in our study
when imputing whole-genome sequence variant geno-
types. A haplotype-resolved Brahman genome assembly
[26] might further improve the accuracy of imputing ge-
notypes for animals from indicine breeds, particularly
within regions that are not co-linear between Bos taurus
taurus and Bos taurus indicus assemblies.
The accuracy of imputing Illumina BovineHD geno-

types was assessed previously in indicine cattle. Accuracy
greater than 0.957 was obtained when reference panels
of 793 and 171 Nellore and Gyr animals were used to
impute 50 K genotypes to 777 K [23, 24]. Using map po-
sitions of the UMD3.1 assembly and the software FIm-
pute [4], these studies assessed the correlation between
true and imputed (best-guess) genotypes (Rgt). Using a
pre-phasing-based approach that does not explicitly con-
sider pedigree information, we obtained a lower mean

Table 4 Number of polymorphic and monomorphic markers in n = 1000 reference and n = 500 target animals when different
numbers of additional animals were included for phase inference in the 500 target animals

Adda Marker Number of markers

Reference panel Polymorphic in
target panel

Monomorphic in
target panel

Polymorphic in imputed
target panel

Falsely imputedb

0 All 625,538 607,560 17,978 593,239 1702

Rarec 140,584 122,606 17,978 108,379 1702

600 All 625,538 607,560 17,978 594,682 1831

Rarec 140,584 122,606 17,978 109,818 1831

1200 All 625,538 607,560 17,978 595,150 1856

Rarec 140,584 122,606 17,978 110,282 1856

1800 All 625,538 607,560 17,978 595,433 1880

Rarec 140,584 122,606 17,978 110,568 1880

2400 All 625,538 607,560 17,978 595,570 1886

Rarec 140,584 122,606 17,978 110,702 1886
a Number of additional animals
bNumber of markers that were imputed as polymorphic but were monomorphic in the base target (considering the true genotypes)
cMAF < 2%
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imputation accuracy (Rgt) of 0.952 in Nellore cattle, al-
though the number of reference animals (n = 2000) was
considerably higher and the pre-phasing-based approach
applied in our study is expected to be at least as accurate
as FImpute [27]. The slightly lower accuracy obtained in
our study likely resulted from including more low-
frequency markers, that are difficult to impute, rather
than from differences in the imputation software used.
Applying the same MAF filter used in the previous stud-
ies (MAF > 2%), we indeed obtained a comparable accur-
acy (Rgt) of 0.976 using the ARS-UCD1.2 assembly with
pre-phasing-based genotype imputation.
Accurate genotype imputation requires large reference

panels that are genetically related to the target animals
[3, 7, 28]. In our study, the mean accuracy of imputation
(R2dose) increased by 8.52% when the size of the refer-
ence panel increased from 250 to 2000. Our findings
also show that the size of the reference panel is corre-
lated to the number of informative markers, i.e., poly-
morphic, in the imputed data set. Large reference panels
facilitate imputing genotypes for true rare variants.

Importantly, genotypes for additional variants that were
only available when the largest reference panel was con-
sidered, were imputed with moderately high accuracy
(mean R2dose = 0.674). Correlation-based accuracy esti-
mates (R2dose and R2gt) do not reflect the number of
monomorphic sites post imputation, thus the overall
benefit from large reference panels is even higher than
indicated by these measures [12, 29].
Our approach allowed for an indirect investigation of

the effect of sample size on phasing accuracy by studying
the accuracy of imputing genotypes into the inferred
haplotypes. We show that the size of the target panel
also influences pre-phasing-based imputation quality.
Both imputation accuracy and marker density in the tar-
get animals increased when their haplotypes were in-
ferred in larger cohorts. Haplotype inference using
statistical methods benefits from large cohorts [15] due
to better modeling of linkage disequilibrium and in-
creased prevalence of identical by descent tracts [16]. Al-
though the pre-phasing-based strategy employed here is
computationally efficient (and accurate when using

Fig. 5 Correlation between model-based imputation quality score from Minimac3 (Rsq) and empirical measures of imputation accuracy.
Correlation of three empirical measures of imputation accuracy (R2dose, R2gt, CR) with the model-based imputation quality score (Rsq) of Minimac
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larger reference and target panels), our results showed
that care needs to be taken when it is applied to impute
genotypes into smaller cohorts. The new paradigm of
reference-based phasing implemented in Eagle2 and
SHAPEIT3 [30], or use of pedigree information (e.g.,
with FImpute [4] or LINKPHASE3 [31]) might improve
phase inference in small reference and target panels.
As noted by Loh and coworkers [16], the reference
panel used for imputation could also be used as a ref-
erence panel for phase inference. If the size of the
target panel increases, it seems advisable to infer tar-
get haplotypes and impute genotypes in the pooled
data again instead of imputing only the new data.
Our results may be generalized to other applications
of genotype phasing as they highlight that the sample
size needs to be considered in choosing an appropri-
ate phasing method.
Many genotype imputation software tools estimate a

SNP-level model-based quality score to indicate imput-
ation accuracy. This value may be used to detect and
discard poorly imputed variants from downstream ana-
lyses [28, 32]. We compared the model-based imput-
ation quality score from Minimac3 (Rsq) to three
empirical measures of imputation accuracy (R2dose, R2gt,
and CR). In agreement with previous studies that inves-
tigated the model-based accuracies from Beagle [33] and
Minimac3 [22], we found that Rsq values were highly
correlated with correlation-based empirical measures
(R2dose, R2gt). The correlation between empirical and
model-based quality scores increased with the size of the
reference panel. However contrary to the results from a
previous study [22], we found Rsq values to be systemat-
ically higher than the R2dose and R2gt for makers across
all allele frequency classes. The third empirical measure,
CR was not correlated with Rsq when all markers were
considered. This measure, unlike the first two, does not
account for the frequency of imputed alleles and consid-
erably overestimates the accuracy of imputation for rare
variants [34, 35]. However, the correlation between CR
and model-based quality score is also high for variants
with MAF greater than 5%.
The calculation of empirical accuracy using cross-

validation is computationally intensive. Our results
showed that the model-based quality score is highly cor-
related with empirical correlation-based measures. How-
ever, Minimac3 reported moderately high Rsq values
(increasing with the size of the reference panel used; >
0.640) for variants that were falsely imputed (i.e. mono-
morphic in the target panel, considering the true geno-
types, but polymorphic in the imputed data). Because
thresholds between 0.3 and 0.6 are commonly used to
discard markers of insufficient imputation quality [36]
these erroneously imputed variants would qualify for
downstream analyses. Variants that are imputed into

target animals although they are actually not poly-
morphic, may result in conflicting results in association
studies [37]. Our findings show that model-based imput-
ation quality scores, although useful, need to be treated
with caution, particularly for low-frequency and rare var-
iants that have been imputed from less informative ref-
erence panels.

Conclusions
Accurate imputation of BovineHD BeadChip markers is
possible in Nellore cattle using the new bovine reference
genome assembly ARS-UCD1.2. The improvement in
the new assembly affected the imputation of only a small
fraction of SNPs present on the Bovine HD SNP chip.
The global accuracy of imputation was almost identical
to the previous build (UMD3.1). Accuracy of imputation
and the number of informative markers in the imputed
data benefit from large reference panels. The size of the
target panel also has an influence on both metrics when
genotypes are inferred using pre-phasing-based ap-
proaches. The model-based imputation quality scores
from Minimac3 (Rsq) were correlated with the empirical
correlation-based estimates of accuracy. These values
can be used to filter out poorly imputed variants but
their reliability is low for rare and low-frequency variants
particularly when genotypes are imputed from small ref-
erence panels.

Methods
Genotype data
We considered microarray-derived SNP genotypes of
4098 Nellore (Bos taurus indicus) cattle from farms par-
ticipating in the DeltaGen® and Paint® (CRV Lagoa)
breeding programs in Brazil. All animals were genotyped
using the high-density Illumina BovineHD BeadChip
(Illumina, Inc., San Diego, CA, USA), comprising 777,
962 SNPs. Following the genotyping, all animals
remained as either breeding or fattening animals at the
farms. No animals were raised or slaughtered for the
purpose of this study. The map positions of the SNPs
were determined according to the Bos taurus taurus ref-
erence genome assembly UMD3.1 [38]. Quality control
(QC) on the raw genotype data was performed using the
PLINK (v1.9) software [39]. Animals and SNPs with call
rates < 95% were not considered. SNPs that were anno-
tated to non-autosomal chromosomes or SNPs for which
the map positions were unknown were discarded as well
as SNPs that deviated from Hardy-Weinberg proportions
(p < 10− 5). After filtering, 3938 animals with genotypes
for 684,561 autosomal SNPs remained in the dataset.
Sporadically missing genotypes (max 5%) were imputed
using Beagle5 [40].
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Liftover to ARS-UCD1.2
We used the ARS-UCD1.2 (liftover) coordinates (available
from https://www.animalgenome.org/repository/cattle/
UMC_bovine_coordinates/) to determine the physical co-
ordinates of the Illumina BovineHD BeadChip markers
according to the ARS-UCD1.2 genome assembly. Physical
coordinates of 774,091 SNPs were available for the ARS-
UCD1.2 assembly. Using the QC parameters as detailed
above, we excluded 90,501 SNPs and 160 individuals. The
final dataset (ARS-UCD1.2) included 3938 animals with
genotypes at 683,590 autosomal SNPs.

Imputation procedure and assessment of accuracy
To assess the accuracy of imputation for different com-
positions of reference and target panels and two bovine
genome assemblies (see below), we carried out a ten-fold
cross-validation using the 3938 animals. For each fold,
we randomly grouped animals into target and reference
panels. The marker density in the target panels was re-
duced to match the BovineSNP50 (version 2) BeadChip
comprising 56,206 SNPs. Subsequently, the genotypes of
the target panels were imputed to higher density using
information from the reference panel using a pre-
phasing-based imputation workflow. The Eagle v2.4 [16]
software was used to infer haplotypes for the reference
and target panels and Minimac3 [13] was used to impute
genotypes.
Minimac3 provides imputed allele dosages (continu-

ously distributed values between 0 and 2) and best-guess
genotypes (discrete values of 0, 1, or 2). We assessed
empirical imputation accuracy as the squared Pearson’s
correlation coefficient between either true genotypes and
imputed allele dosages (R2dose), or true genotypes and
best-guess genotypes (R2gt). We also calculated the pro-
portion of correctly imputed genotypes (concordance
rate - CR). R2dose values were used to assess imputation
quality in different imputation scenarios and all three
empirical accuracies were used to investigate the reliabil-
ity of the model-based quality score estimate from Mini-
mac3 (Rsq).
Values for R2dose and R2gt cannot be calculated for

markers that are imputed to the major allele in all
target animals because the imputed doses and “best-
guess” genotypes for such markers have zero variance.
Thus, the loss of such otherwise segregating markers
(usually at very low MAF) post-imputation is not
taken into account by the correlation-based imput-
ation accuracy measures. To study the effect of refer-
ence and target panel composition on the realized
marker density in the imputed dataset, we also calcu-
lated the proportion of markers that are imputed to
the major allele in all target samples but were segre-
gating in the real data set.

Identification of misplaced SNPs
We analyzed the accuracy of genotypes imputed from
the largest reference panel to identify regions with poor
imputation quality — due most likely to misplacement
of SNPs — when genotypes were aligned to the two bo-
vine genome assemblies. We partitioned autosomes into
segments of 100 kb and counted the number of poorly
imputed (MAF > 1% and R2dose < 0.8) SNPs. All SNPs in
segments with more than three poorly imputed SNPs
were considered as putatively misplaced.

Test scenarios
Effect of reference and target panel
We used 3938 animals with genotypes for 683,590
markers aligned to the ARS-UCD1.2 assembly to investi-
gate the effect of reference and target panel sizes on im-
putation quality. To study the effect of the reference
panel, we imputed a target panel of 1938 animals from
50 K to 777 K using reference panels with 250, 500,
1000, and 2000 randomly sampled animals in 10 repli-
cates. To study the effect of target panel size, we im-
puted genotypes in pre-phased target panels of varying
sizes using a reference panel of fixed size (n = 1000). Ge-
notypes for 500 animals (base panel) were phased with
an additional of 0, 600, 1200, 1800 or 2400 randomly
sampled animals. The resulting pre-phased target panels
respectively containing 500, 1100, 1700, 2300, and 2900
animals were imputed to higher density using a phased
reference panel of 1000 animals. The imputation was
carried out in 10-fold cross-validation, and the accuracy
of imputation was assessed only for the 500 animals in
the base panel.

Comparison between UMD3.1 and ARS-UCD1.2 genome
assemblies
We compared the accuracy of imputation in SNP ge-
notypes aligned either the UMD3.1 or ARS-UCD1.2
genome assembly by imputing 1938 animals from 50
K to 777 K using a reference panel of 2000 animals in
ten-fold cross-validation (see above). Target and refer-
ence animals were selected randomly. The global im-
putation accuracies were reported as mean R2dose
(see above) from all autosomal markers across all rep-
licates. We also studied the difference in accuracies
for

(i) “newly mapped” markers i.e., markers that are
unmapped when aligned to UMD3.1 and on
autosomes when aligned to ARS-UCD1.2,

(ii) markers aligned to different chromosomes for the
assemblies, and.

(iii)markers identified as putatively misplaced.
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