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Abstract

Hemiparesis, defined as unilateral muscle weakness, often occurs in people post-stroke or

people with cerebral palsy, however it is difficult to understand how this hemiparesis affects

movement patterns as it often presents alongside a variety of other neuromuscular impair-

ments. Predictive musculoskeletal modeling presents an opportunity to investigate how

impairments affect gait performance assuming a particular cost function. Here, we use pre-

dictive simulation to quantify the spatiotemporal asymmetries and changes to metabolic

cost that emerge when muscle strength is unilaterally reduced and how reducing spatiotem-

poral symmetry affects metabolic cost. We modified a 2-D musculoskeletal model by uni-

formly reducing the peak isometric muscle force unilaterally. We then solved optimal control

simulations of walking across a range of speeds by minimizing the sum of the cubed muscle

excitations. Lastly, we ran additional optimizations to test if reducing spatiotemporal asym-

metry would result in an increase in metabolic cost. Our results showed that the magnitude

and direction of effort-optimal spatiotemporal asymmetries depends on both the gait speed

and level of weakness. Also, the optimal speed was 1.25 m/s for the symmetrical and 20%

weakness models but slower (1.00 m/s) for the 40% and 60% weakness models, suggesting

that hemiparesis can account for a portion of the slower gait speed seen in people with hemi-

paresis. Modifying the cost function to minimize spatiotemporal asymmetry resulted in small

increases (~4%) in metabolic cost. Overall, our results indicate that spatiotemporal asym-

metry may be optimal for people with hemiparesis. Additionally, the effect of speed and the

level of weakness on spatiotemporal asymmetry may help explain the well-known heteroge-

nous distribution of spatiotemporal asymmetries observed in the clinic. Future work could

extend our results by testing the effects of other neuromuscular impairments on optimal gait

strategies, and therefore build a more comprehensive understanding of the gait patterns

observed in clinical populations.
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Author summary

Hemiparesis is muscle weakness that occurs primarily on one side of the body and can

occur in a range of different clinical populations. Individuals with hemiparesis tend to

walk with an asymmetrical motion and expend more energy while walking than other

age-matched individuals. We still do not understand how each specific change to the neu-

romuscular system is linked with changes in walking patterns, in part because it is difficult

to test one change at a time in people. Instead, we can use a mathematical model of the

musculoskeletal system that represents the individual changes to the muscular system that

occur in people with hemiparesis. In this study, we modeled how a weakness on one side

of the body can impact walking patterns. We found that the level of weakness and the

walking speed affect the asymmetrical walking patterns of our models, but do not change

the total energy cost. Overall, our study is one step towards better understanding how

neuromuscular impairments affect walking patterns. This knowledge could be applied to

identify rehabilitation strategies that are most likely to improve walking in people with

hemiparesis.

1. Introduction

Hemiparesis is defined as a decrease in muscular strength that primarily affects one side of the

body, and it commonly occurs in clinical populations such as people post-stroke [1,2], individ-

uals with cerebral palsy [3], or after a traumatic brain injury [4,5]. In each of these cases, hemi-

paresis occurs alongside a number of other distinct neuromuscular impairments [6–8], such as

muscle spasticity [9,10], apraxia [11], or generation of abnormal patterns of muscle coordina-

tion [12–14]. The combination of these unilateral neuromuscular impairments result in

marked gait deviations: for example, people post-stroke walk slower, spend more time in dou-

ble support, and typically display asymmetrical step lengths, step times, and joint kinematics

[15–17]. In addition to slower preferred gait speeds and spatiotemporal asymmetries, people

post-stroke also walk with a greater metabolic cost of transport (COT) than age- and speed-

matched control subjects [15,18]. Individuals with cerebral palsy display many of the same

broad characteristics of gait performance: walking with a slower gait speed and greater meta-

bolic COT [19–21] as well as spatiotemporal asymmetries [22–24]. Determining causal links

between neuromuscular impairments and gait performance is challenging because it is impos-

sible to independently modulate all known impairments in people with hemiparesis and then

observe the effects of these changes on gait mechanics or metabolic cost. Yet, an ongoing

objective for clinicians and researchers is to determine the causal associations relating neuro-

muscular impairments, gait deviations, and the energetic cost of walking [15,25–28]. Better

knowledge of how these characteristics interact could be used to identify better intervention

targets that are most likely to improve rehabilitation outcomes.

Previous researchers have tried to identify how specific neuromuscular impairments relate

to measures of gait performance by using regression or correlation analyses. Hemiparesis in

the knee extensors and hip flexors after a stroke has been correlated with reductions in gait

speed and increases in step length asymmetries [25–28]. Similarly, spatiotemporal asymme-

tries have been shown to correlate positively with the energy cost of walking post-stroke [15].

Despite the abundance of work examining relationships between impairment and measures of

gait performance post-stroke, one key limitation of these approaches is that regression analyses

are insufficient to determine the causal effects of any specific impairment.
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When neurotypical individuals walk with greater spatiotemporal asymmetry, their meta-

bolic COT increases compared to symmetrical walking patterns [29,30]. With this rationale,

common rehabilitation interventions have targeted these spatiotemporal asymmetries to try to

improve measures of gait performance in people with hemiparesis. However, recent studies

using biofeedback on step length asymmetry have shown little or no improvement in meta-

bolic COT when people post-stroke walk with more symmetric step lengths [31–35]. Addition-

ally, improving muscle strength is a common target for rehabilitation protocols as a way to

improve spatiotemporal asymmetries, however it’s still unclear if improvements in muscle

strength lead to improvements in gait performance [36,37].

Musculoskeletal modeling and predictive simulation provide the opportunity to generate

predictions about how specific neuromuscular impairments affect gait performance as

researchers can modify muscle parameters in a systematic way while keeping other parameters

unchanged [38,39]. Previous researchers have used musculoskeletal modeling and predictive

simulation to predict gait patterns for both healthy and clinical populations, such as people

with cerebral palsy or people who walk with lower limb prosthetics [38,40–42]. For example,

these studies have helped identify that weak plantar flexor muscle groups can explain calcaneal

or “heel-walking” gait patterns, as seen in children with spastic diplegia [38,43]. Overall, pre-

dictive simulations have led to valuable insight into principles of motor control [40,44,45], the

effect of impairments on gait mechanics and energetics [38,39,43,46] and the effect of gait pat-

terns on joint loading [47,48]. These studies, along with recent advancements in both compu-

tational efficiency and accessibility [49–51], have allowed predictive modeling and simulation

studies to help reveal important principles of gait mechanics [52]. Therefore, we can apply the

methodology of musculoskeletal modeling and predictive simulation to understand the opti-

mal gait patterns for people with neuromuscular impairments.

The aim of this study was to use predictive simulations to explore how a common neuro-

muscular impairment, hemiparesis, should impact patterns of spatiotemporal asymmetry and

metabolic cost for gait patterns that minimize muscular effort. To simulate hemiparesis in our

musculoskeletal model, we systematically reduced the peak isometric muscle strength for all

the muscles on the left limb of our model while keeping the right limb constant and evaluated

patterns of spatiotemporal asymmetry and metabolic cost that emerged across a wide range of

speeds while minimizing muscle excitations. We hypothesized that asymmetric walking pat-

terns would emerge as being optimal as we increased the magnitude of hemiparesis. We then

asked how enforcing symmetric step lengths and step times in models with simulated hemi-

paresis impacted the metabolic cost of transport. Here, we expected that enforcing symmetry

would lead to marked increases in the metabolic cost of transport when compared to models

where symmetry was not enforced. Overall, this work will allow us to gain insight into how a

specific neuromuscular impairment impact gait deviations and the metabolic energy cost of

walking, independent of other neuromuscular changes that occur in a range of clinical

populations.

2. Methods

2.1. Musculoskeletal model

A two-dimensional, sagittal-plane musculoskeletal model with 11 degrees-of-freedom (DOF)

was used (Fig 1A) within the OpenSim Moco software to generate optimal control simulations

of walking [49]. The model had a pelvis that translated and rotated relative to the ground with

3 DOF and the torso was rigidly attached to the pelvis. Each hip, knee, ankle, and toe joints

were each modeled as 1 DOF pin joints. The model was actuated with 24 Hill-type muscle-ten-

don units (12 per limb) based on the DeGrooteFregly2016Muscle model with compliant series
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elastic elements [53]. The DeGrooteFregly2016Muscle model was used for this study since it is

smooth and continuous everywhere; this is required for Moco which uses a gradient-based

optimization approach to solve optimal control problems. In addition, it provides an implicit

form of muscle-tendon dynamics, which is more computationally efficient and converges

more reliably compared to the explicit form of muscle-tendon dynamics [53]. The foot-ground

interactions were simulated using five contact spheres per foot, represented with smooth and

continuous functions [54]. We used this musculoskeletal model with symmetrical strength for

the base conditions, and then created three other models where the peak isometric strength of

each muscle on the left limb was reduced from the base model by 20%, 40%, and 60% for the

three hemiparetic conditions (Fig 1B and Table 1). This unilateral reduction in peak strength

was intended to simulate the loss of force production capacity that commonly results from

Fig 1. Summary of set up. A) Two-dimensional musculoskeletal model with 11 mechanical degrees-of-freedom and 24 muscle-tendon

units [86]. Blue spheres represent foot-contact elements on the model with the blue box visually representing the floor. B) Maximum

isometric muscle forces relative to base model for the 20%, 40% and 60% weak models, muscle strength was uniformly reduced on the

left limb, C) Table showing the optimal control conditions for each speed: we used all four models for each of the speeds between 0.25

m/s and 1.25 m/s, and ran our second analysis at 0.75 m/s for the step length symmetry (SL Sym.) and step length and step time

symmetry (SL and ST Sym.). D) Overview of optimization process in Moco, where the objective function (Eqs 1, 5, or 6 respectively

from methods) and constraints (Eqs 2 and 3 from methods) for the problem are sent to the solver, with specified settings. Note that the

objective function value seen here is for the nominal optimizations, see the methods for further details. The OpenSim image depicted is

based on models available at simtk.org and the specific model and data shown here can be downloaded from https://simtk.org/projects/

post-stroke-sym.

https://doi.org/10.1371/journal.pcbi.1010466.g001
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stroke. Although the weakness resulting from acute stroke results from a loss of descending

drive from the brain, we would need to simulate large reductions in feasible excitations for this

loss to impact the patterns of muscle activation observed in a sub-maximal task like walking.

In addition, because the magnitude of a given loss of descending drive to a set of muscles is

less practical to measure empirically than the resulting weakness, this approach can be more

easily extended to personalize predictive simulations. Finally, we chose to reduce all muscles

on the limb by the same magnitude within each condition for two reasons: First, it allows us to

keep our analysis relatively simple with mild, moderate, and more severe levels of weakness

across the three hemiparetic models. Second, the alternative approach, changing the strength

of each joint independently, is not well-posed as it is not trivial to assess how to weaken mus-

cles that acts across multiple joints. We chose the level of muscle weakness (i.e., 20 to 60% uni-

lateral weakness) based on muscle torque data from Sanchez et al., 2017 [14], that showed that

ambulatory post-stroke patients can have inter-limb muscle strength asymmetries of as much

as 60%.

2.2. Optimal control problem for nominal conditions

We ran several sets of optimal control problems in Moco (full list of conditions in Fig 1C),

which were solved by minimizing the sum of the integrated muscle excitations cubed divided

by the horizontal displacement of the center of mass (Eq 1), which is hypothesized to represent

minimizing muscle fatigue [40,55]. While it is unclear what objective function best explains

features of human gait, several studies have suggested that humans select gait patterns that

reduce the muscular effort, muscle fatigue, or metabolic energy associated with the task [56–

61]. These studies provide evidence that effort optimization may explain why we choose cer-

tain spatiotemporal features of our gait during steady-state walking and when exposed to

novel task demands.

Direct collocation was used to solve for the set of states and controls needed to produce a

full gait cycle, subject to the objective function and constraints. The set of states, x, were 11

generalized coordinates q(t) corresponding to each joint and the three degrees of freedom for

the pelvis, 11 generalized velocities u(t), 24 muscle activations a(t), and 24 normalized tendon

forces ~FT ðtÞ. The set of controls consisted of 24 muscle excitations e(t) and 24 auxiliary vari-

ables representing the derivative of normalized tendon force
_~FT ðtÞ, which were necessary for

Table 1. Peak isometric strength (in N) for each of the 12 muscles for each model. The right limb strength remained unchanged (Base values) while the left limb

strength was modified for the 20%, 40%, and 60% weakness models.

Base/Symmetrical 20% 40% 60%

Biceps long head 4105 3284 2463 1642

Biceps short head 557 445.6 334.2 222.8

Gluteus maximus 4450 3560 2670 1780

Psoas 2448 1958.4 1468.8 979.2

Rectus femoris 2192 1753.6 1315.2 876.8

Vastus Intermedius 9593 7674.4 5755.8 3837.2

Gastrocnemius 4691 3752.8 2814.6 1876.4

Soleus 6194 4955.2 3716.4 2477.6

Tibialis anterior 1227 981.6 736.2 490.8

Extensor hallucis longus 889 711.2 533.4 355.6

Flexor digitorum longus 1331 1064.8 798.6 532.4

Flexor digitorum brevis 938 750.4 562.8 375.2

https://doi.org/10.1371/journal.pcbi.1010466.t001
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enforcing the muscle-tendon equilibrium equations in implicit form (Eq 2; 41). The states and

controls were discretized on a grid of 201 evenly distributed nodes over a complete gait cycle.

Optimal control problems were solved for each of the four models for speeds of 0.25, 0.50,

0.75, 1.00, and 1.25 m/s. Each problem was formulated to generate a full stride of walking by

finding the set of model states, controls, and final time tf, subject to the objective function

(Eq 1),

J1 ¼

P24

i¼1

R tf
0
e3
i ðtÞdt

qpelvisx
ðtf Þ � qpelvisx

ð0Þ
ð1Þ

where ei is the excitation of the ith muscle and qpelvisx
is the horizontal position of the pelvis

such that the denominator represents the displacement of the model during the gait cycle. We

chose to minimize muscle excitations cubed based on the hypothesis that effort is an important

factor for producing voluntary movements in humans, including individuals with neuromus-

cular impairments.

Each optimal control problem was solved by minimizing J1 subject to constraints enforcing

skeletal kinematics, skeletal dynamics, muscle activation dynamics, and implicit tendon com-

pliance dynamics (Eq 2; 37,41),

uðtÞ ¼ _qðtÞ

_uðtÞ ¼ f ðqðtÞ; uðtÞ; aðtÞ; ~FT ðtÞÞ ð2Þ

_aðtÞ ¼ f ðeðtÞ; aðtÞÞ

f ðaðtÞ; ~FT ðtÞ; _~FT ðtÞÞ ¼ 0

Bounds were placed on the states, controls, and auxiliary variables (Eq 3).

qLBðtÞ � qðtÞ � qUBðtÞ

uLBðtÞ � uðtÞ � uUBðtÞ

0:001 � eðtÞ � 1 ð3Þ

0:001 � aðtÞ � 1

0 � ~FT ðtÞ � 1:8

� 1000 �
_~FT ðtÞ � 1000

where qLB, qUB, uLB and uUB represent the lower and upper bounds on each kinematic value

and speed, respectively. Excitations (e(t)) and activations (a(t)) were bounded between 0.001

and 1. Normalized tendon forces ( ~FT ðtÞ) were bounded between 0 and 1.8 and their derivative

_~ðFT ðtÞÞ were bounded between -1000 and 1000. Lastly, the optimization was also subject to

periodicity constraints, where the final states and controls must equal the initial states and con-

trols, except for the horizontal position of the pelvis qpelvisx(t), which must account for
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horizontal translation relative to the target velocity v and tf (Eq 4).

qðtf Þ ¼ qð0Þ

qpelvisx
ðtf Þ ¼ qpelvisx

ð0Þ þ ðv � tf Þ

uðtf Þ ¼ uð0Þ ð4Þ

eðtf Þ ¼ eð0Þ

aðtf Þ ¼ að0Þ

~FT ðtf Þ ¼ ~FT ð0Þ

The final time of the gait cycle was allowed to vary within the optimization between 0.3 and

2 seconds, which allowed the optimization to use the optimal stride length and stride time

which satisfied the target gait speed for each condition (Fig 1D).

We used three different initial guesses for each of the 20 conditions (four models and five

speeds each). The first initial guess for each condition was the result of a tracking optimization

which used averaged gait data from healthy control subjects walking at 1.4 m/s [44]. The refer-

ence data were normalized to 101 time points to align the data with the collocation points of

the optimizations. The first initial guesses for each speed were generated by minimizing a

weighted combination of the total integrated muscle excitations cubed and the difference

between experimental and simulated kinematics and ground reaction forces (Eq 5), while

matching the average gait speed (i.e., 0.25, 0.50, 0.75, 1.00, and 1.25).

Jtrack ¼ J1 þ
Z tf

0

w1 �
P11

i¼1

qiðtÞ � q̂i ðtÞ
sqi

 !2

þ
uiðtÞ � ûi ðtÞ

sui

� �2
 !

þ w2 �
P4

j¼1

GRFjðtÞ � ^GRFj ðtÞ
sj

 !2 !" #

dt ð5Þ

For Eq 5, the term J1 represents the muscular effort (Eq 1). The second and third

terms represent deviations from the experimental kinematics and ground reaction forces

(GRFs), respectively. qi(t) and ui(t) are the values and velocities of model coordinate i at

time t, q̂iðtÞ and ûiðtÞ are the reference kinematic data from Miller (2014) [44] of coordinate

i at time t, and σqi and σui are the standard deviations of the reference data, averaged across

the stride. GRFj(t) represents the model ground reaction forces at time t for the horizontal

and vertical forces for the left and right side, and ^GRFjðtÞ and σj represent the reference

ground reaction force data means and standard deviations for each direction and limb. This

initial guess was used for each of the four models for the corresponding walking speed (e.g.,

the tracking solution for 0.75 m/s was used as an initial guess for each of the four models at

0.75 m/s speed). While the reference data from Miller (2014) [44] was at a different gait

speed than the speeds used in this study, the tracking problem solutions produced realistic

gait mechanics across speeds and were reasonable initial guesses for our predictive

simulations.

The other two initial guesses were chosen heuristically from solutions of other conditions,

either different speeds or from different simulated hemiparesis models. For example, the 20%

weak model at 0.75 m/s had the following initial guesses: (1) tracking solution at a speed of

0.75, (2) the solution to the 20% weak model at 1.00 m/s, and (3) the 40% weak solution at 0.75

m/s. If the solutions differed between initial guesses, we chose the optimal solution for each
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condition with the least objective function value, and this solution was then used to calculate

the spatiotemporal asymmetry and metabolic cost (see Section 2.4).

2.3. Step time and step length symmetry conditions

Many of the optimal gait patterns observed for models of varying levels of weakness were spa-

tiotemporally asymmetric. Since reducing these asymmetries is a common rehabilitation

objective for people post-stroke [62], we conducted a second set of optimizations to determine

how reducing the step length and step time asymmetry would impact metabolic cost. There-

fore, we added two terms to the objective function (J2; Eq 6) that allowed us to reduce step

time asymmetry or step length asymmetry for the different models.

J2 ¼ J1 þ ðw1 � SLSgoalÞ þ ðw2 � STSgoalÞ ð6Þ

The step length symmetry goal (SLSgoal) was formulated to minimize the step length asym-

metry (SLA; Eq 7) during the stride. Theoretically, we would want to compute the step length

for the non-paretic (SLNP) and paretic (SLP) sides across the gait cycle for each iteration. How-

ever, this approach does not work well for predictive simulations because gradient-based opti-

mization approaches require smooth, differentiable objective function terms in order to

achieve reliable convergence. Therefore, we instead approximated step length asymmetry by

performing the following steps. We first set the total stride length to be equal to the stride

length of the respective nominal condition (i.e., the stride length from the 0.75 m/s speed with

20% weakness), such that the stride length is matched within a speed/model condition. Then,

to target a symmetrical step length, we computed the length for the right and left step that

would both result in symmetrical step lengths during the gait cycle. To enforce these step

lengths during the optimization, we set penalties that accumulate if distance between the feet

exceed the targeted step length distance for each foot. Therefore, we are indirectly setting the

step length for the paretic and non-paretic step using smoothing functions that work well for

the optimization algorithm (see S1 Text).

SLA ¼
SLNP � SLP

SLNP þ SLP
� 100 ð7Þ

The step time symmetry goal (STSgoal) was designed to reduce the step time asymmetry dur-

ing the gait cycle (Eq 8). As with the SLSgoal, we needed to find an approximate form of step

time asymmetry for this goal to work well within our optimization framework. Therefore, for

this goal, we computed an approximation of step time asymmetry by detecting the number of

time points each foot was in contact with the ground and computed the asymmetry index by

normalizing by the total number of time points. Time points when both feet were in contact

were assigned to the leading foot. Once we have the total number of nodes for non-paretic

(STNP) and paretic step time (STP), respectively, we can then compute the asymmetry index

based on the number of nodes and the stride time (see S1 Text).

STA ¼
STNP � STP

STNP þ STP
� 100 ð8Þ

Since each of these symmetry goals are approximations of step length and step time asym-

metries, we then computed the actual asymmetry indices to check if the optimal solution

achieves the intended symmetrical pattern. If there were large discrepancies, we would then be

able to adjust settings on the SLS or STS goal and re-run the optimization. We chose to run

this symmetry sub-analysis on the 0.75 m/s speed because the nominal results had a consistent

pattern of increasing step length asymmetry with greater hemiparesis. We also chose this
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speed for this analysis because it aligns closely with the average gait speed reported in recent

studies for patients post-stroke [35]. First, we solved a new set of optimal control problems to

reduce the step time symmetry for each model at 0.75 m/s. For the first set of optimizations, w1

was set to 8 and w2 was set to 0, such that reducing the step length asymmetry was not part of

the objective, only step time asymmetry.

Finally, we solved another set of optimal control problems at 0.75 m/s with the added goal

of reducing both step length and step time asymmetry. In this case, the weighting for J2 were

set as w1 set to 8 and w2 set to 5. These weightings were chosen heuristically such that we were

able to reduce the asymmetry in each domain while getting good convergence. We noticed

that if either w1 or w2 were too large, the optimization would not converge in a reasonable

amount of time.

2.4 Optimization settings

All optimal control problems (26 total conditions: four models x five speeds, plus three more for

step time symmetry and three more for step time and step length symmetry) were solved with

201 evenly spaced grid points, with Hermite-Sampson discretization [63], using CasADi [64] and

IPOPT [65]. Termination settings for the optimization were: 1e-4 constraint violation tolerance

and 1e-4 convergence tolerance. Optimizations were solved on a four-core desktop computer

with a 3.3 GHz Intel Core i5-6600 processor. In total, we ran 60 optimizations for the nominal

conditions (20 conditions with 3 initial guesses each), plus 18 additional optimizations for the

symmetrical goal conditions. Each of the individual optimizations was solved on our desktop

computer in times ranging from 2 to 14 hours, depending on the condition and initial guess.

2.5. Outcome measures and evaluations

The step length for the non-paretic (right) limb was calculated by taking the anterior-posterior

(AP) distance between the ground-contact elements on the heels at the instant of non-paretic

foot-strike where foot-strike was defined as the point when the vertical GRF was greater than

20 N [66]. The step length for the paretic (left) limb was calculated similarly at the instant of

paretic foot-strike. Step time for the non-paretic limb was calculated as the time from paretic

foot-strike to non-paretic foot strike, and step time for the non-paretic limb was calculated as

the time from non-paretic foot-strike to paretic foot-strike.

The metabolic cost of transport (COT) for each condition was also estimated based on the

Umberger2010MuscleMetabolicsProbe accessed through OpenSim [67,68]. The COT was cal-

culated for each condition while holding muscle mass constant, to replicate weakness in the

limb without muscle atrophy. In addition to predicting the change in COT between condi-

tions, the positive and negative muscle fiber work performed for each muscle was also calcu-

lated (Eq 9), since muscle fiber work is a component of the metabolic cost model. First, the

muscle fiber power was calculated for each muscle across time, then the positive and negative

portions of the power curve were separately integrated to calculate positive and negative

mechanical work, respectively for each limb. For the non-paretic side, positive mechanical

power (Wþ
NP) was calculated by:

Wþ

NP ¼
P12

m¼1

R tf
0
PþNPmdt ð9Þ

where m is each of the 12 muscles of the limb, tf equals the total time of the stride and PþNPm is

the positive mechanical power for the mth muscle on the non-paretic side. Negative mechani-

cal work was calculated based on the negative power of each non-paretic muscle. The positive

and negative mechanical work for the paretic limb was calculated the same way as above, but

PLOS COMPUTATIONAL BIOLOGY Spatiotemporal gait asymmetries with simulated hemiparesis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010466 September 9, 2022 9 / 26

https://doi.org/10.1371/journal.pcbi.1010466


with power data from the paretic limb. As with the metabolic COT calculations, we normalized

both the positive and negative mechanical work by dividing by displacement to compute the

positive and negative mechanical COT.

Lastly as different metabolic cost models can result in different predictions of metabolic

cost [69], we evaluated whether our results would change with a different metabolic cost

model. Therefore, we computed the metabolic COT using the Bhargava model [70] for each of

the nominal conditions to compare with the results from the Umberger model.

3. Results

3.1. Overview and model validation

Overall, the kinematic and GRF results for the base model across speeds shared broad similari-

ties in patterns with previous experimental data, which gave us confidence that the modeling

and optimization methods we used produced sensible results (Figs 2 and 3). For example, peak

knee flexion angle occurred earlier in the gait cycle as speed increased (Fig 2B), which aligns

with experimental results [71]. The peak ankle plantarflexion angle at push-off also occurred

earlier in the gait cycle at faster speeds compared with slower speeds (Fig 2C), also matching

with experimental data [71]. Generally, the GRFs also matched experimental data, with greater

peak vertical GRFs (Fig 2D) and greater posterior GRFs during early stance (Fig 2E) for faster

speeds [72]. Across all speeds, the step time and step length variables were each close to sym-

metrical for the base model, demonstrating that the optimal gait patterns for symmetrical

models were symmetrical (Fig 4A and 4D).

3.2. Effects of simulated hemiparesis on spatiotemporal asymmetry

Generally, for models with muscle strength asymmetries, the optimal solution resulted in

asymmetrical spatiotemporal patterns where the magnitude and direction of the asymmetries

depended on both the level of muscle weakness and the gait speed (Fig 4A and 4B). For slower

gait speeds (e.g., 0.25 and 0.50 m/s), the optimization resulted in a positive step time asymme-

try for both the 40% and 60% weakness models which corresponds to the model taking longer

to transition from the paretic to non-paretic limb than vice versa. At faster speeds (e.g., 1.00 or

1.25 m/s) the optimal gait pattern had a negative step time asymmetry for those same models.

This suggests that the direction of step time asymmetry (positive or negative) is impacted by

the gait speed that an individual walks and the degree of muscle weakness. Generally, the step

times for the non-paretic side (Fig 4B) were about 0.40 seconds across most speeds and condi-

tions, while the step times for the paretic side (Fig 4C) across the conditions were greater at

faster speeds than slower speeds (i.e., ~0.40 seconds at slower speeds and ~0.50 seconds at

faster speeds).

The direction and magnitude of step length asymmetry also varied depending on both the

level of muscle weakness and the gait speed (Fig 4D). Marked step length asymmetries were

generally observed once strength was reduced by 40%. For most speeds, the optimal solution

for the model with 40% weakness was a positive step length asymmetry, with the largest asym-

metry being observed in the weakest model at the slowest speed. These positive step length

asymmetries correspond to a gait pattern where longer steps are taken with the paretic limb

than the non-paretic limb. An exception to this trend occurred in the 1.25 m/s condition

which resulted in a negative step length asymmetry. The optimal solutions produced greater

step lengths on both the non-paretic (Fig 4E) and paretic (Fig 4F) sides for faster speeds com-

pared with slower speeds. The 40% weakness model at 1.25 m/s resulted in step times and step

lengths that stood out from other similar conditions, with a much shorter right step time and
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shorter right and left step lengths than other similar conditions (i.e., 40% weakness at 1.00 m/s

or 60% weakness at 1.25 m/s).

3.3. Metabolic and mechanical cost of transport for nominal conditions

Despite the optimal solutions having marked spatiotemporal asymmetries, the computed met-

abolic COT was relatively consistent within speeds across different model weaknesses (Fig

5A). At speeds between 0.25 and 0.75 m/s, the metabolic COT was similar across all models,

but there were subtle differences across the models in metabolic COT at 1.00 and 1.25 m/s.

The metabolic COT was greater at 1.25 m/s than 1.00 in the 40% (3.57 J/kg/m at 1.00 vs 4.66 J/

kg/m at 1.25 m/s) and 60% weakness (2.93 J/kg/m at 1.00 vs 3.55 J/kg/m at 1.25 m/s) models,

while the metabolic COT was greater at 1.00 m/s than 1.25 in the symmetrical (3.55 J/kg/m at

1.00 vs 3.22 J/kg/m at 1.25 m/s) and 20% weakness models (3.56 J/kg/m at 1.00 vs 3.26 J/kg/m

at 1.25 m/s). Gait speed had a substantial effect on the computed metabolic COT across the

speeds we tested, with greater COT at slower gait speeds than faster gait speeds. At faster gait

speeds (e.g., 1.00 and 1.25 m/s), the metabolic COT was between 3–4 J/kg/m, while at slower

speeds (e.g., 0.25 and 0.50) the metabolic COT was close to 10 J/kg/m, which matches closely

with the trend of metabolic COT across speeds in neurotypical individuals [15,59]. The consis-

tency of the COT for a given speed resulted from complementary changes in limb-specific

metabolic COT. Metabolic COT on the non-paretic limb increased with greater weakness lev-

els (Fig 5B) while COT was reduced proportionally on the paretic limb (Fig 5C).

One important factor to consider when determining metabolic energy consumed by mus-

cles is the amount of mechanical work done by each muscle during walking [73,74]. Therefore,

we evaluated how positive and negative mechanical work changed across speeds and condi-

tions. Overall, the optimal solutions resulted in gait patterns that had greater positive mechani-

cal COT at slower gait speeds (Fig 5D). Additionally, for models with greater muscle weakness

there was a decrease in the magnitude of the positive mechanical COT. While the non-paretic

limb had a similar level of positive mechanical COT across the different models within a speed

(Fig 5F), the reduction in total positive mechanical work was driven by a considerable decrease

Fig 2. Baseline kinematic and ground reaction forces. The (A) hip flexion, (B) knee flexion, (C) ankle flexion angles

and (D) vertical GRF and (E) horizontal GRF for the base model across each of the five gait speeds. Experimental

kinematics and GRFs from adults walking at 1.1 m/s is shown as the mean (black line) and 2 standard deviations

(shaded region) [85]. Time is normalized to the gait cycle with 0% being the time of right heel strike.

https://doi.org/10.1371/journal.pcbi.1010466.g002

Fig 3. Time lapse images. Optimal result of model [86] walking at 1.00 m/s in the base condition. Blue line segments show muscle paths for the 18 muscles in

the model, and the light blue spheres at the feet show the arrangement of the foot-contact elements. The OpenSim image depicted is based on models available

at simtk.org and the specific model and data shown here can be downloaded from https://simtk.org/projects/post-stroke-sym.

https://doi.org/10.1371/journal.pcbi.1010466.g003
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in the magnitude of positive mechanical COT by the paretic limb with increasing weakness

(Fig 5F). These trends were also seen for negative mechanical COT, with greater negative

mechanical COT at slower speeds and a decrease in negative mechanical COT with greater

muscle weakness.

The second important factor in determining metabolic energy consumed by muscles is the

level of muscle activation throughout the gait cycle. Total muscle activation increases at both

faster gait speeds and greater levels of simulated hemiparesis (Fig 5G). At the individual limb

level, the muscle activations for the non-paretic and paretic limbs increase with speed and

weakness as well (Fig 5H and 5I). Overall, the metabolic energy cost does not significantly vary

across level of simulated hemiparesis, which is likely a result of a decrease in mechanical mus-

cle fiber work which offsets the increase in muscle activation with greater muscle weakness.

We observed a typical U-shaped pattern of metabolic COT with respect to gait speed within

a model (Fig 6). Using these results, we can identify the “effort-optimal” solutions that resulted

in the minimum metabolic COT within a model across the speeds. For both the base and 20%

weakness models, the minimum metabolic COT occurred at a gait speed of 1.25 m/s, which is

similar to what is observed experimentally in neurotypical individuals [59,75,76]. For the 40%

and 60% weakness models, the minimum metabolic COT instead occurred at a slower speed

of 1.00 m/s.

Fig 4. Step time and step length results. Spatiotemporal results for step time (top row) and step length (bottom row) for each

condition and each speed. The leftmost column is the step time or step length asymmetry index (A, D), middle column is the non-

paretic (right) step time or step length value (B, E), and rightmost column is the paretic (left) step time or step length value (C, F).

Darker, red colors depict results for faster speeds while lighter, yellow colors depict results for slower speeds. Positive asymmetry

indices indicate that the non-paretic value is greater than the paretic value, whereas negative asymmetry indices indicate that the

paretic value is greater than the non-paretic value.

https://doi.org/10.1371/journal.pcbi.1010466.g004
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To evaluate the sensitivity of our results and conclusions to the metabolic model chosen, we

computed the metabolic COT using the Bhargava metabolic model [70]. The Bhargava model

resulted in slightly greater metabolic COT (average offset of 0.37 ± 0.17 J/kg/m) than the

Umberger model, but the trends across the conditions were similar which suggests that our

conclusions would not change with either the Umberger or Bhargava energetics models.

3.4. Effects of minimizing step length and step time asymmetry in a model

of hemiparesis

Finally, we evaluated whether the predicted metabolic COT would change when enforcing

step length or step time symmetry for models with simulated hemiparesis. To perform this

analysis, we added a term to the objective function which produced gait patterns with approxi-

mately symmetrical step lengths across the different hemiparetic models at a speed of 0.75 m/s.

The optimal solutions for the 20%, 40%, and 60% models had step length asymmetry indices

less than 1.5%, which was close to the symmetrical target of 0% asymmetry (Fig 7B). However,

this resulted in greater step time asymmetry for these gait patterns (Fig 7A). Minimizing step

Fig 5. Metabolic and mechanical cost of transport. Metabolic cost of transport (COT; top row), positive mechanical

COT (middle row), and sum of the integrated muscle activation (bottom row) for each condition. The leftmost column

shows the result for the sum across both limbs, while the middle column shows the results for the non-paretic (right)

limb and the rightmost column shows the result for the paretic (left) limb. Darker, red colors are for faster speeds while

lighter, yellow colors are for slower speeds. Metabolic COT remained relatively consistent within a speed across the

different weakness models, partially a result of an increase in mechanical work done by the right (non-paretic) limb

with a proportional decrease in mechanical work done by the left (paretic) limb.

https://doi.org/10.1371/journal.pcbi.1010466.g005
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length asymmetry resulted in a slightly greater metabolic COT than the nominal conditions by

1–4% (Fig 7C). We then added a third term to the objective function, which in combination

with the others, resulted in gait patterns that had approximately symmetrical step lengths

(maximum asymmetry = 2.6%; Fig 7B) and step times (maximum asymmetry = -1%; Fig 7A).

Despite adopting a gait that was nearly symmetric overall, the metabolic COT for these condi-

tions was less than 1% greater compared to when step length asymmetry was minimized alone,

and only deviated by 5% from the nominal conditions.

4. Discussion

4.1. Overview of key results

The purpose of this study was to quantify the spatiotemporal asymmetries and changes to met-

abolic cost that emerge from effort-optimal predictions of gait with models of simulated hemi-

paresis across a wide range of speeds. Predicting the optimal gait pattern for models with

simulated hemiparesis allows us to gain insight into the isolated effect of unilateral muscle

weakness on gait asymmetry and metabolic COT. We found that the magnitude and direction

Fig 6. Metabolic cost of transport across speeds. Dark blue represents results for the symmetrical (or base) model,

while blue-green lighter colors represent the asymmetrical models. The symmetrical condition included an

optimization at 1.50 m/s so that we could establish the U-shaped curve of metabolic cost (where 1.25 is approximately

the metabolic-optimal speed for the symmetrical model). We did not solve the optimal control problem for other

models at 1.50 m/s because the weakness in the 40% and 60% models prevented convergence at speeds faster that 1.25

m/s.

https://doi.org/10.1371/journal.pcbi.1010466.g006
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of spatiotemporal asymmetry depended on the level of muscle weakness as well as the gait

speed, with greater asymmetries corresponding to a greater level of muscle weakness. We then

compared the metabolic COT across all optimal gait patterns to assess whether simulated

hemiparesis and spatiotemporal asymmetries correspond with an increase in metabolic cost.

We found that the predicted metabolic COT varied little with increasing levels of weakness,

but changed with speed as expected based on experimental data, e.g. [47]. Finally, we evaluated

whether enforcing step length or step time symmetry for the hemiparetic models would

increase the metabolic COT. The metabolic COT only changed by a maximum difference of

5% between the nominal and symmetrical conditions. Overall, our results suggest that the spa-

tiotemporal asymmetries seen in people post-stroke might be derived in part from optimal

adaptations to underlying impairments such as hemiparesis. However, the presence of gait

asymmetries does not necessarily contribute to the increase in metabolic cost that is observed

relative to neurotypical individuals.

Overall, a greater level of hemiparesis resulted in a more asymmetrical gait pattern in both

step time and step length across all speeds, however the direction of the asymmetry depended

on the gait speed. The 20% weakness model had step time asymmetries ranging from -5 to 2%

and step length asymmetries ranging from -10 to 6%, while the 60% weakness models had step

time asymmetries ranging from -20 to 10% and step length asymmetries ranging from -3 to

70%. This suggests that the effort-optimal gait patterns for individuals with mild unilateral

strength deficits may be closer to symmetrical, compared to individuals with much greater

muscle strength impairments who may have effort-optimal gait patterns with greater spatio-

temporal asymmetries.

We also found that metabolic COT is relatively consistent across levels of simulated hemi-

paresis. Metabolic cost is impacted by the level of muscle activation and the magnitude of

mechanical work done throughout the movement. While muscle activation increased with

greater levels of simulated hemiparesis, the positive and negative work performed by the mus-

cle fibers decrease with greater levels of simulated hemiparesis. The decrease in work per-

formed by the muscle fibers is driven by a decrease in work done by the paretic limb due to

less muscle force generation. Overall, this effectively creates a trade-off between muscle activa-

tion and mechanical work, resulting in a similar level of metabolic cost across models within a

gait speed.

There were substantial speed effects on both spatiotemporal asymmetry and metabolic cost.

The magnitude and direction of step length asymmetry was also dependent upon the gait

speed. For hemiparetic gait, a positive step length asymmetry indicates shorter steps with the

paretic limb than the non-paretic limb. This pattern can be expected of a person post-stroke if

they are unable to swing their paretic limb forward. Many of the effort-optimal gait patterns

fall into this category of having positive step length asymmetry with a couple of exceptions at

the 0.25 and 1.25 m/s conditions. For the 60% weak model, there were greater positive step

length asymmetries at slower speeds than for faster speeds. The overall task demands for the

slow speed may allow the model to take extremely short paretic side steps, while still matching

the task speed. The heterogeneity and relative ranges of both positive and negative step length

asymmetries largely mirrors what has been measured in previous experiments of people post-

stroke [35,77,78].

Fig 7. Secondary analysis of spatiotemporal asymmetry. After the nominal conditions (orange solid line), additional

optimizations were performed across the three hemiparetic models with the goal of reducing the step length

asymmetry (green dashed line) to assess the effect of enforced step length (B) symmetry on step time asymmetry (A)

and metabolic cost (C). Finally, a set of optimizations were performed with the goal of reducing both step length and

step time asymmetry (purple dashed line).

https://doi.org/10.1371/journal.pcbi.1010466.g007
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Our results suggest that the direction of step time asymmetry depends on the gait speed

rather than the level of hemiparesis. At 1.25 m/s speed, the effort-optimal gait patterns resulted

in negative step time asymmetries across the three hemiparetic models, while for the 0.25 m/s

speed, the effort optimal gait patterns result in positive step time asymmetries. Paretic step

time here was defined as the time from non-paretic foot strike to paretic foot strike, so it con-

tains the duration of the double support time with the leading, non-paretic limb and the

paretic side swing time. Therefore, a negative step time asymmetry (greater paretic step time

than non-paretic step time) would suggest that the model is using its non-paretic limb for

body weight support and propulsion for a greater period than the paretic limb, which is what

one might expect since weakness occurs in the paretic limb. In contrast, a positive step time

asymmetry may be beneficial at the slow speeds because the paretic swing limb may be less

able to take advantage of passive dynamics relative to what happens at faster speeds, resulting

in a greater activation during swing phase to swing the leg forward.

4.2. Clinical implications for post-stroke rehabilitation

The results from our simulation study have generated a couple of testable hypotheses. First,

that the direction of spatiotemporal asymmetries depends on the severity of hemiparesis and

walking speed. We know that spatiotemporal asymmetries, such as step length asymmetry, in

people post-stroke are heterogeneous, with some individuals having longer step lengths with

their paretic limb than their non-paretic and others having shorter step lengths with their

paretic limb than non-paretic limb [35,78], however what drives these responses remains

unclear [77]. Our results suggest that one of the driving factors of asymmetry could be the level

of hemiparesis, which could be tested via an experimental study by measuring the relationship

between muscle strength asymmetries and spatiotemporal asymmetries during gait at different

speeds.

Furthermore, the hypothesized relationship between severity of hemiparesis and the effort-

optimal gait patterns (i.e., direction and magnitude of spatiotemporal asymmetries) suggests

that clinical rehabilitation programs could be individually tailored based on measures of

between-limb differences in strength. Typical goals for gait rehabilitation programs for people

post-stroke are to have the individuals walk more symmetrically [62,79]. However, it’s still an

open question whether this goal could be considered the optimal way to walk for people post-

stroke, with recent data suggesting that symmetrical step lengths do not improve measures of

metabolic COT [33,35] and result in other kinematic and kinetic asymmetries [32]. The results

of our predictive simulations are consistent with these studies: when we enforced step length

symmetry for the 0.75 m/s speed, the resulting gait pattern had significant step time asymme-

try, with a small increase in metabolic COT. The experimental results in combination with our

simulated results are reasonable given the underlying anatomical system is asymmetric, there-

fore optimal gait patterns are also likely to be asymmetric. However, that the symmetry condi-

tions resulted in only small increases in metabolic COT suggest that there could be multiple

gait strategies for people post-stroke that result in similar consumption of metabolic energy.

Therefore, patients who prioritize a symmetrical appearance of gait may be able to perform

their preferred gait pattern without a large penalty on their endurance.

Another important research question for gait in people post-stroke is what are the factors

that contribute most to the slower gait speed observed in this population compared to age-

matched controls [26,35,80,81]? Our data suggest that moderate levels of hemiparesis could

contribute to the reduction in the energy optimal gait speed, as minimum metabolic COT

occurred at 1.00 m/s for the 40% and 60% weakness models compared with a minimum at

1.25 m/s for the base and 20% weak models. However, this slight reduction in speed does not
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match the difference in preferred gait speed in people post-stroke relative to control (~0.7 m/s

[35]). So, while unilateral muscle weakness may partially contribute to the reduction in gait

speed, other types of impairments such as spasticity and abnormal muscle co-activation pat-

terns or different priorities during gait (e.g., balance and comfort) may have additional

contributions.

Lastly, our data present another potential explanation (besides metabolic COT) for slower

walking speed in people post-stroke: preferred gait speed for people post-stroke may also be

impacted by an individual’s desire to minimize observable spatiotemporal asymmetries. Our

data suggest that moderate speeds of 0.50 and 0.75 m/s result in effort-optimal gait patterns

with moderate levels of gait asymmetry (<10% asymmetry indices), while slower (0.25 m/s) or

faster speeds (1.00 or 1.25 m/s) can result in levels of gait asymmetry greater than 10%. There-

fore, we can hypothesize that people post-stroke may walk with slower gait speeds since this

allows them to maintain lower gait asymmetry while also keeping metabolic COT low. Further

explanation of the preferred gait patterns in people post-stroke could be explained by factors

like balance or comfort, though how people post-stroke sense and perceive these factors is an

important question to be addressed but is beyond the scope of this study.

4.3. Modeling decisions and limitations

Our results build upon several modeling choices that we made throughout the study, and as

such, there are a few limitations to our project that should be considered in future research.

First, we constrained our model to move only in the sagittal plane because our primary kine-

matic variables of interest for this project were step length and step time asymmetry. Since

these asymmetries result from deviations in the sagittal plane, restricting the model to move in

the sagittal plane only allowed us to reduce the number of confounding variables in our analy-

sis. In the future, expanding upon this work with a fully three-dimensional model would allow

for greater insight into non-sagittal plane compensations that can occur in people post-stroke,

such as hip hiking or hip circumduction.

Additionally, we chose an objective function that minimizes the integrated sum of muscle

excitations cubed across all muscles, which has been proposed to be a representation of mini-

mizing muscle fatigue, or maximizing muscle endurance [40]. This objective is formulated

from experimental data that suggests the muscle force-endurance relationship is approxi-

mately cubic [55,82]. While we evaluated the predicted metabolic COT from the results, we

did not use metabolic COT in the objective function. Therefore, there could be different gait

patterns that would further reduce the metabolic cost across each of the conditions. Addition-

ally, co-activation of muscles and muscle spasticity, which often presents together with hemi-

paresis, can also affect the gait performance in individuals with neuromuscular impairments.

Co-activation of muscles could be considered a constraint that emerges due to reliance on

descending control pathways that couple muscles within and across joints, e.g. [13,14]. How-

ever, it is conceivable that reducing effort remains an important objective in post-stroke gait

even in the presence of this obligatory co-activation. While people with hemiparesis do exhibit

other impairments, this study focused on a single impairment (unilateral weakness) to develop

the specific correlations between the variables: weakness, asymmetry, and metabolic energy.

While different objective functions will result in different gait patterns from an optimal control

solution [40,48,83], we believe minimizing muscle excitations cubed is appropriate for this

study as fatigue is likely to be especially relevant for people with neuromuscular impairments.

Overall, the kinematics and ground reaction forces for our results match well with experi-

mental gait patterns for neurotypical adults (Fig 2), however there were a couple deviations

from experimental data observed in our results. During mid-stance, the model has a nearly
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fully-extended knee (~0˚; Fig 1B), while typical human gait patterns involve some mild knee

flexion during mid-stance (~10–20˚; [71]). It is possible that using an objective function that

weights muscle excitations times muscle volume (rather than only muscle excitations) could

induce more knee flexion during stance (e.g., [40,84]). The other kinematic deviation that

occurs is at the hip angle, where the model never achieves hip hyperextension during gait, as is

typically seen in human subjects. This is likely due to a modeling choice to have the pelvis and

trunk locked together (e.g., no lumber flexion angle) to reduce the total number of degrees-of-

freedom in the model and increase the computational speed for each optimization. The conse-

quence of this choice was that both the lumbar and pelvis were tilted forward throughout the

stride (Fig 3), which resulted in an increase in the hip flexion angle relative to the femur.

Finally, the modeling of hemiparesis in our project involved several decisions. First, we

decided to model hemiparesis instead of other impairments such as abnormal muscle coordi-

nation patterns or other changes in muscle properties because hemiparesis is straightforward

to model by reducing peak muscle forces in the model. Future work should add other impair-

ments, either on their own or in combination with hemiparesis, to better understand the inde-

pendent or combinatory effects of the array of impairments after a stroke. Further, we decided

to simulate hemiparesis by reducing the peak isometric muscle forces instead of modifying the

maximum excitation values, which would relate to the decrease in central drive in people post-

stroke. Modeling decreased central drive in a predictive simulation paradigm is impractical

from a computational standpoint, as it would only affect the results when the maximum allow-

able excitation in the simulated weakness condition is exceeded in the base conditions. In gait,

most muscles operate in a submaximal state, oftentimes far below full excitation. Therefore,

setting a threshold excitation of 60% of baseline, for example, would likely result in no changes

to the gait strategy since none of the muscles surpassed 60% excitation level during the baseline

stride. Furthermore, modeling decreased central drive is challenging from a physiological

standpoint because it is difficult to assess the magnitude of impairment in central drive in vivo,

instead, it’s much simpler to measure muscle strength in the limbs using a dynamometer (e.g.,

[10]). Therefore, our choice of reducing peak isometric muscle force as a representation of a

reduction in the ability to produce force allowed for a reasonable way to model hemiparesis

and is applicable since measuring the magnitude of impairment can be easily done in clinical

settings. While we modeled a uniform level of muscle weakness within each hemiparetic

model (i.e., all muscles on the left limb were reduced by the same magnitude) future work

could study how different combinations of muscle weakness affect gait performance. Another

important modeling decision was to keep muscle mass constant across all hemiparetic models

to simulate muscle weakness without muscle atrophy. Muscle mass is used for computing met-

abolic COT, because the metabolic energy consumed by muscles depends on activation levels

and the volume of muscle activated [68]. If we instead modeled muscle weakness alongside

muscle atrophy, it would result in a reduction in metabolic cost for the hemiparetic models

compared with our results due to a reduction in activated muscle mass.

4.4. Conclusion

In this study, we predicted the effort-optimal spatiotemporal patterns for gait with simulated

hemiparetic musculoskeletal models. We found that the magnitude and direction of spatio-

temporal asymmetry is affected by the level of hemiparesis and the gait speed, which may

explain the well-known heterogenous distribution of spatiotemporal asymmetries observed in

clinical data. However, the greater metabolic COT observed in people post-stroke compared

to controls does not appear to be driven by hemiparesis, and instead may be driven by factors

like muscle co-activation or abnormal muscle synergy patterns. Further, our data predict that
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hemiparesis is one aspect that could lead to slower self-selected gait speeds in people post

stroke, but other neuromuscular impairments or preferences may drive gait speed even slower

than what was predicted to be energy optimal in our simulations. Lastly, our data provide addi-

tional theoretical support for the idea that asymmetrical gait patterns may be optimal when

aspects of the underlying control system is asymmetrical. Overall, our study is a step towards a

better understanding of how specific impairments in people post-stroke affect gait patterns

and metabolic COT. Since it is difficult to study how distributed, unilateral muscle weakness

alone affects gait with human participants, our predictive modeling approach can allow for

these tests since we can build custom models that represent the type of impairment we are

focused on testing. Future studies should extend the work presented here to explore the effects

of additional impairments and build a more comprehensive understanding of how a range of

impairments influence post-stroke gait.
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